水化脱胶工艺.45页PPT
- 格式:ppt
- 大小:4.65 MB
- 文档页数:23
连续水化脱胶工艺流程英文回答:Continuous hydration and de-gelling process is a commonly used technique in various industries, including food processing, pharmaceuticals, and cosmetics. This process involves the removal of water from a gel-like substance to obtain a more stable and solid product.The process begins with the preparation of the gel-like substance, which can be a mixture of various ingredients. For example, in food processing, it could be a mixture of starch, water, and other additives. In pharmaceuticals, it could be a mixture of active ingredients, excipients, and water.Once the gel-like substance is prepared, it is then subjected to the continuous hydration and de-gelling process. This process typically involves the use of heat and mechanical agitation to remove water from the gel andpromote the formation of a solid product.During the process, the gel-like substance is heated to a specific temperature, which is typically above theboiling point of water. This heat helps in evaporating the water present in the gel and promoting the gelatinizationof starch or other gelling agents. The mechanical agitation, such as stirring or mixing, helps in breaking down the gel structure and facilitating the removal of water.As the water is evaporated and the gelatinization process occurs, the gel-like substance transforms into a more solid and stable product. This solid product can then be further processed or used directly in various applications.For example, in food processing, the continuous hydration and de-gelling process can be used to produce instant noodles. The dough-like mixture of flour, water,and other ingredients is subjected to the process,resulting in the formation of solid noodles that can be cooked quickly by consumers.In the pharmaceutical industry, this process can be used to produce tablets or capsules. The gel-like mixture of active ingredients and excipients is subjected to the process, leading to the formation of solid dosage forms that are easier to handle and administer.Overall, the continuous hydration and de-gelling process is a versatile technique that allows for the transformation of gel-like substances into more stable and solid products. It is widely used in various industries to improve the quality, stability, and usability of products.中文回答:连续水化脱胶工艺流程是在食品加工、制药和化妆品等各个行业中常用的技术。
水化脱胶的原理
嘿,让我们来聊聊水化脱胶的原理吧!想象一下,就好像我们在清理一个混乱的房间。
水化脱胶呢,就像是要把房间里那些不需要的、杂乱的“小颗粒”给清理出去。
在食用油或者其他油脂中,会有一些杂质,比如磷脂等。
这些杂质就像房间里的灰尘和杂物一样。
水化脱胶就是通过加水这个巧妙的办法,让这些杂质凝聚起来。
水就像是一个神奇的“召集令”,让那些磷脂之类的杂质乖乖地聚集在一起。
就好像小朋友们听到集合的哨声会跑过来集合一样,磷脂遇到水后也会聚集起来形成胶团。
然后呢,我们就可以像把垃圾打包一样,把这些胶团分离出去,从而让油脂变得更加纯净。
比如说,我们平时吃的植物油,如果不进行水化脱胶,可能就会有一些不好的口感或者影响其质量。
通过这个过程,就能让油变得更清亮、更好用啦!是不是很有趣呢?其实很多看似复杂的原理,就藏在我们生活的点点滴滴中,只要我们细心去发现和理解,就能掌握它们哦!。
连续水化脱胶工艺流程英文回答:Continuous hydration and gelatinization process is a widely used method in the food industry for the production of various products such as starch-based snacks, breakfast cereals, and instant noodles. This process involves the hydration and gelatinization of starch, which is an important step in the production of these food products.The continuous hydration and gelatinization process typically consists of the following steps:1. Mixing: In this step, dry starch is mixed with water to form a slurry. The slurry is then pumped into a continuous cooker.2. Cooking: The slurry is heated in the continuous cooker to a specific temperature and held for a certain period of time. This step is crucial for the gelatinizationof starch, which is necessary for the desired texture and functionality of the final product.3. Cooling: After cooking, the hot slurry is cooled down to a lower temperature to stop the gelatinization process. This is usually done by passing the slurry through a heat exchanger.4. Drying: The cooled slurry is then dried to remove excess moisture and obtain the desired moisture content of the final product. This can be achieved through various drying methods such as hot air drying or extrusion.5. Milling: The dried product is then milled to the desired particle size. This step is important for the texture and appearance of the final product.6. Packaging: The milled product is finally packaged in suitable packaging materials to ensure its shelf life and quality.Continuous hydration and gelatinization process offersseveral advantages over batch processing. It allows for higher production capacity, better control of process parameters, and consistent product quality. Additionally, it reduces labor and energy costs compared to batch processing.中文回答:连续水化脱胶工艺流程是食品工业中广泛使用的方法,用于生产各种产品,如淀粉基零食、早餐谷物和方便面。
油脂加工水化脱胶工艺概述1水化脱胶的概念、作用水化脱胶是利用磷脂等胶溶性杂质的亲水性,将一定量的热水或稀碱、食盐水溶液、磷酸等电解质水溶液,在搅拌下加入到一定温度的毛油中,使其中的胶溶性杂质凝聚沉降分离的一种脱胶方式。
在水化脱胶过程中,被分离出不溶的物质以磷脂为主,还有与磷脂结合在一起的蛋白质、糖基甘油二酯、粘液质和金属离子等。
2水化脱胶的原理在水化过程中能被凝聚沉降的物质以磷脂为主,磷脂中有又以卵磷脂为代表。
这种磷脂属于‘双亲媒性分子“,即在其分子结构中,即有疏水的非极性基团,又有亲水的极性基团。
当毛油中含水量很少时,磷脂呈内盐式结构,此时极性很弱,溶于油中,不到临界温度,不会凝聚沉降析出。
水化时,在毛油当中加入热水之后,磷脂的亲水基团投入水相之中,水分子与成盐的原子团结合,致使分子结构由内盐转化为水化式。
在水化式结构中,磷脂分子中的亲水基团(游离态羟基),具有更强的吸水能力,随吸水量的增加,磷脂由最初极性基团倾入水中呈含水胶束,然后转变成有规则的定向排列。
分子中疏水基团在油相尾尾相连,亲水基团伸向水相形成脂质双分子层(又称液晶形态)。
在脂质分子层中,水分子进入磷脂双分子层间,并未破坏磷脂的分子结构,却引起磷脂的体积膨胀,发生水合作用。
有时脂质体双分子层还能自发膨胀成多层的类似洋葱状的封闭球形结构---“多层脂质体”。
多层脂质体的每个片层都是脂质双分子层结构,片层之间和中心部分充满水相和油相(O/W),若经高频声波处理,可变成磷脂双分子层围成的球状的单层脂质体。
水化后的磷脂和其他胶体物质,极性基团周围吸引了许多水分子之后,在油脂之中的溶液解度减小。
吸水量逐渐增大,膨胀之后,双分子层或多分子层的片状和球状胶体彼此影响,有的甚至开成胶束。
小颗粒的胶体在极性力的作用下,相碰后形成絮凝状胶团,同时水化后的磷脂能吸附油中的其它胶质,而使其颗粒增大,比重增大,为沉降和离心分离创造条件。
磷脂中除上述水化磷脂之外,还存在少量的“非水化磷脂”。