换热器设计计算
- 格式:pptx
- 大小:5.71 MB
- 文档页数:58
换热器设计计算详细过程1.确定换热器的换热负荷和传热系数:首先需要明确换热器所在系统的换热负荷,即所需传热功率。
根据系统的温度差、流体性质、质量流量等参数计算得到传热系数,该系数反映了换热器在给定条件下的传热能力。
2.确定流体入口和出口温度:根据所需的出口温度和流体的性质,可以通过传热方程计算得到流体的入口温度。
同时,需要考虑流体的流速、流态(单相流还是多相流)等因素。
3.选择合适的换热器类型:根据系统的特点和要求,选择合适的换热器类型,如壳管换热器、板式换热器等。
考虑换热器的传热特性、结构特点、施工方便程度等因素。
4.确定换热面积:通过传热方程和传热系数计算得到的换热负荷,可以反推计算出所需的换热面积。
同时还需要考虑换热器的热效率和流体流阻。
5.计算流体质量流量:通过需求传热功率、流体入口和出口温度的关系,可以计算得到流体的质量流率。
同时还需考虑流体的压降和速度等因素。
6.选择换热介质:根据流体的物性参数和流态选择合适的换热介质,如水、蒸汽、油等。
7.根据系统运行条件确定换热器材料:根据流体的性质、温度、压力等参数确定合适的换热器材料,如碳钢、不锈钢、钛合金等。
8.进行换热器的压力损失计算:根据流体的粘度、比热容率、流速等参数计算压力损失,以确保流体能够在换热过程中正常流动。
9.进行换热器的结构设计:根据所选的换热器类型和尺寸,进行换热器结构的设计,包括换热管的布置、壳体的设计等。
10.确定换热器的运行参数:包括换热器的入口温度、出口温度、流量、压力等参数,以便在实际运行中调整和监控换热器的工况。
11.进行换热器的强度计算与选择:根据换热器的运行条件和使用要求,进行强度计算和选择合适的材料和结构,以确保换热器的安全可靠运行。
12.进行换热器的经济性评价:对所设计的换热器进行经济性分析,包括建造成本、维护成本、运行成本等,以确定设计是否经济合理。
完整版换热器计算步骤第一步:确定换热器的基本参数在进行换热器计算之前,需要明确换热器的基本参数,包括所需的换热面积、流体质量流量以及进出口温度等。
这些参数将用于后续的计算。
第二步:确定传热系数换热器的传热系数是换热器计算的重要参数,它表示单位面积上传热的能力。
传热系数的计算可以根据换热器类型采用不同的方法,例如,对于壳管式换热器,可以采用Dittus-Boelter公式或Sieder-Tate公式等。
第三步:计算热负荷根据所需的换热量和传热系数,可以计算出热负荷。
热负荷表示单位时间内从一个流体传递给另一个流体的热量。
第四步:计算流体流量通过热负荷和已知的输入输出温度差,可以计算出流体的质量流量。
流体流量对换热器设计有重要影响,要合理确定。
第五步:计算换热面积在确定了热负荷和流体流量之后,可以通过换热器传热系数来计算所需的换热面积。
换热面积越大,换热效果越好,但对于实际应用来说,换热面积也需要在经济和操作上进行合理的限制。
第六步:确定流体速度流体速度对于换热器的设计和操作都有重要影响。
在实际应用中,需要保证流体速度能够使流体在换热器中均匀流动,并且尽量避免过高或过低的速度。
第七步:校核换热器尺寸换热器的尺寸必须满足设计要求和操作要求。
在校核换热器尺寸时,需要考虑到换热面积、流体速度、壳管或管束结构以及换热器的材料等因素。
第八步:确定换热器传热管的数量换热器传热管的数量是换热器计算中的重要参数。
根据已知的流体流量和传热系数,可以计算出所需的传热管数量。
此外,传热管的直径和长度也需要根据实际应用情况进行确定。
第九步:计算换热器的压力损失换热器的压力损失是通过流体流动过程中所发生的阻力造成的。
压力损失的计算涉及到换热器的结构和材料、流体的速度和粘度等因素。
通过计算压力损失,可以为换热器的实际运行提供参考依据。
第十步:优化设计方案根据以上计算结果,可以对换热器的设计方案进行优化。
通过对不同参数进行适当调整,可以得到满足工程要求和经济要求的最佳设计方案。
换热器的计算举例换热器的计算举例条件:1.空气量4100m3/h2.空气预热温度t空=300 0C (冷空气为20 0C)3.烟气量V''烟=6500m3/h (烟气温度为7000C)4.烟气成分(体积%)CO2 H2o O2N219.4 7.5 2.1 71.05.换热器的型式及材质型式:直管形平滑钢管换热器材质:换热管采用Ф 60*3.5毫米无缝钢管材质16Mn钢最高使用温度小于4500C计算举例:一. 主要热之参数的确定1.入换热器空气的温度t'空=200C出换热器空气的温度t''空=3000C2.入换热器空气量取换热器本身的漏损及管道漏损 3%则V真实=1.03 V'空=1.03×4100=4223m/h或 V空=1.03V'空/3600=4223/3600=1.17m/s3.入换热器烟气的温度考虑16Mn铜的最高温度不大于450℃。
初步确定入换热器的烟气温度t′烟=550℃,稀释导数确定如下:烟气700℃的比热为:C烟(700)=0.01(0.501×19.4+0.392×7.5+0.342×2.1+0.325×71)=0.365KJ/m3℃烟气在550℃的比热为:C烟(500)=0.01(0.484×19.4+0.383×7.5+0.337×2.1+0.321×71)=0.358 KJ/m3℃20℃空气的比热为0.311 KJ/m3℃则φ=(i1-i2)/(i2-i0)=(0.365×700-0.385×550)/(0.358×550-0.311×20)=0.3094.入换热器的烟气量V烟=(1+φ)V′烟=(1+0.309)×6500=8508.5m3/h或V烟=8508.5/3600=2.36m3/s5.烟气成分(%)V CO2= V′CO2(V′烟/V烟)=19.4×6500/8508.5=14.82 V H20=V′H2O(V′烟/V烟)=7.5×6500/8508.5=5.73V O2=(V′O2+21φ)V′烟/V烟=(2.1+21×0.309)×6500/8508.5=6.56V N2=(V′N2+79φ)V′烟/V烟=(71+79×0.309)×6500/8508.5=72.89Σ=1006.计算换热气的烟气温度取换热气绝热效率η换=0.90.先假定烟气出口温度为400℃。
换热器计算公式范文换热器计算公式指的是用于计算换热器传热性能的各种参数和关系的数学方程。
换热器是工程领域常用的一种设备,用于将热量从一个介质传递到另一个介质。
换热器的性能与换热器的设计参数密切相关,因此计算公式对于换热器的设计和运行至关重要。
以下是一些常用的换热器计算公式:1.整体换热系数(U值)的计算公式:U=1/[(1/h₁)+δi+(1/h₂)]其中,U为整体换热系数,h₁为热源侧传热系数,h₂为冷凝侧传热系数,δi为传热面各种传热介质之间的传热阻力。
2.热量传递率(Q)的计算公式:Q = U × A × δTlm其中,Q为换热器的热量传递率,U为整体换热系数,A为传热面积,δTlm为对数平均温差。
3. 对数平均温差(δTlm)的计算公式:δTlm = [(δT₁ - δT₂) / ln(δT₁ / δT₂)]其中,δT₁为热源侧入口温度与冷凝侧出口温度的温差,δT₂为热源侧出口温度与冷凝侧入口温度的温差。
4.传热面积(A)的计算公式:A = Q / (U × δTlm)其中,A为传热面积,Q为热量传递率,U为整体换热系数,δTlm为对数平均温差。
5.热源侧传热系数(h₁)的计算公式:h₁=(k₁×ΔT₁)/δ₁其中,h₁为热源侧传热系数,k₁为热源侧传热介质的导热系数,ΔT₁为热源侧的温差,δ₁为热源侧的传热厚度。
6.冷凝侧传热系数(h₂)的计算公式:h₂=(k₂×ΔT₂)/δ₂其中,h₂为冷凝侧传热系数,k₂为冷凝侧传热介质的导热系数,ΔT₂为冷凝侧的温差,δ₂为冷凝侧的传热厚度。
7.温差比(R)的计算公式:R=δT₁/δT₂其中,R为温差比,δT₁为热源侧入口温度与冷凝侧出口温度的温差,δT₂为热源侧出口温度与冷凝侧入口温度的温差。
这些计算公式是根据传热原理和换热器的物理特性推导而来,通过这些公式可以计算出换热器的各种参数和性能,从而进行换热器的设计、选型和优化。
完整版换热器计算步骤换热器是一种常见的热交换设备,常用于将热能从一个流体传递给另一个流体。
换热器的设计需要进行一系列的计算步骤,以确保其正常运行和高效工作。
下面是一个完整版的换热器计算步骤,包括设计要素、计算公式和实际操作。
设计要素:1.温度:确定进口和出口的流体温度2.流量:计算流体的质量流量,即单位时间内通过换热器的物质量3.效率:计算换热器的传热效率,即输入热量与输出热量之间的比值4.压降:计算流体在换热器中的压降,以确保流体能够正常流动计算步骤:1.确定换热器的类型:换热器可以分为三类,即管壳式换热器、管束式换热器和板式换热器。
选择适合的类型要考虑流体的性质、压力、温度和流量等因素。
2.确定流体的物性参数:包括热导率、比热容和密度等参数。
这些参数可以通过查阅资料或实验测量得到。
3.计算传热面积:传热面积是换热器的一个重要参数,可以通过传热率和传热温差来计算。
传热率可以通过查表或经验公式计算得到。
4.计算输出温度:根据换热器的效率和输入温度,可以计算出输出温度。
效率可以根据使用经验或理论估计。
5.计算流体的质量流量:通常需要根据应用的需求确定流体的质量流量。
质量流量可以通过测量或经验公式计算得到。
6.计算传热面积:传热面积决定了换热器的尺寸和成本,一般需要通过经验公式或计算得到。
7.计算压降:压降是换热器设计的一个关键参数,需要根据应用的压力要求和流体的性质计算得到。
压降过大会导致流体流速降低,影响传热效率。
8.确定流体流向:根据应用需求和设计要求选择流体的进出口方向。
实际操作:1.收集流体数据:收集流体的压力、温度和流量等数据。
2.计算换热面积:根据选择的换热器类型和待换热流体的数据,计算换热器的传热面积。
3.计算输出温度:根据输入温度、效率和换热器的传热特性,计算输出温度。
4.计算质量流量:根据应用需求和设计要求计算流体的质量流量。
5.计算压降:根据流体的性质和流动条件计算压降。
6.确定流体流向:根据应用需求和设计要求确定流体的进出口方向。
换热器热力设计方案计算
热力设计方案计算是确定换热器的尺寸和参数的重要步骤,这些参数
包括换热面积、换热系数、热传导方程等。
以下是一个换热器热力设计方
案计算的示例,详细说明了计算的步骤和方法。
首先,需要确定换热器所需的换热面积。
常用的计算方法是根据传热
方程来确定,传热方程为:
Q=U*A*ΔT
其中,Q是换热器的传热量,U是换热器的总传热系数,A是换热面积,ΔT是换热器的温度差。
通常情况下,需要根据实际工艺条件和热传
导方程来确定ΔT的值。
接下来,需要计算换热器的总传热系数U。
总传热系数是由换热器的
导热系数和对流传热系数组成的。
导热系数是指换热器材料的导热性能,
可以根据材料的热导率和厚度来计算。
对流传热系数是指流体在管内和管
外的传热性能,可以根据换热器的流体流速、壁面温度和换热器的材料来
计算。
在计算总传热系数U时,需要注意传热系数的单位。
通常情况下,传
热系数的单位是一次性热量的传递能力,单位为W/(m²·K)。
传热系数越大,传热效果越好,换热器的尺寸就越小。
在计算换热面积A时,需要考虑多个参数,包括介质流量、介质温度、介质性质和管束的布置方式等。
需要根据实际工艺条件和设计要求来确定。
最后,需要根据计算结果来确定换热器的尺寸和参数。
根据计算的结果,可以选择合适的换热器型号和规格,满足工艺生产的需求。
总之,换热器热力设计方案计算是一个复杂的工程项目,需要考虑众多的参数和条件。
通过准确计算和合理选择,可以设计出满足工艺要求和性能要求的换热器。
换热器设计计算步骤1. 管外自然对流换热2. 管外强制对流换热3. 管外凝结换热已知:管程油水混合物流量 G ( m 3/d),管程管道长度 L (m),管子外径do (m), 管子内径di (m),热水温度 t ℃, 油水混合物进口温度 t 1’, 油水混合物出口温度 t 2” ℃。
1. 管外自然对流换热 1.1 壁面温度设定 首先设定壁面温度,一般取热水温度和油水混合物出口温度的平均值,t w ℃, 热水温度为t ℃,油水混合进口温度为'1t ℃,油水混合物出口温度为"1t ℃。
"w 11t ()2t t =+ 1.2 定性温度和物性参数计算 管程外为水,其定性温度为1()K -℃21()2w t t t =+管程外为油水混合物,定性温度为'2t ℃''"2111()2t t t =+根据表1油水物性参数表,可以查得对应温度下的油水物性参数值一般需要查出的为密度ρ (3/kg m ),导热系数λ(/())W m K ∙,运动粘度2(/)m s ,体积膨胀系数a 1()K -,普朗特数Pr 。
表1 油水物性参数表水t ρλvaPr10 999.7 0.574 0.000001306 0.000087 9.52 20 998.2 0.599 0.000001006 0.000209 7.02 30 995.6 0.618 0.000000805 0.000305 5.42 40 992.2 0.635 0.000000659 0.000386 4.31 50 998 0.648 0.000000556 0.000457 3.54 60 983.2 0.659 0.000000478 0.000522 2.99 70997.70.6680.0000004150.0005832.5580 971.8 0.674 0.000000365 0.00064 2.21 90 965.3 0.68 0.000000326 0.000696 1.95 100958.40.6830.0000002950.000751.75油t ρλva Pr10 898.8 0.1441 0.0005646591 20 892.7 0.1432 0.00028 0.000693335 30 886.6 0.1423 0.000153 1859 40 880.6 0.1414 9.07E-05 1121 50 874.6 0.1405 5.74E-05 723 60 868.8 0.1396 3.84E-05 493 70 863.1 0.1387 0.000027 354 80 857.4 0.1379 1.97E-05 263 90 851.8 0.137 1.49E-05 203 100846.20.13611.15E-051601.3 设计总传热量和实际换热量计算0m v Q Cq t Cq t ρ=∆=∆v v C q t C q t αρβρ=∆+∆油油水水C 为比热容/()j kg K ∙,v q 为总体积流量3/ms ,αβ分别为在油水混合物中油和水所占的百分比,t ∆油水混合物温差,m q 为总的质量流量/kg s 。
换热器的设计型计算Q=q m1C p1(T 1-T 2)=q m2C p2(t 2-t 1)Q=KA ∆t m 2211221A A A 1αλδα++=m A K(无相变传热过程,Re>104,Pr>0.7, bd PrRe .,.80210230λαα=()()12211221t T t T t T tT t m -----=∆ln 1、 设计型计算的命题给定生产任务:q m1,T 1→T 2(or q m2,t 1→t 2)选择工艺条件:t 1,t 2计算目的:换热器传热面积A 及其它有关尺寸(管子规格,根数);qm2特点:结果的非唯一性。
2、 计算公式: 质量衡算:p V N nu d q ⋅⋅=24π热量衡算:Q=q m1C p1(T 1-T 2)=q m2C p2(t 2-t 1)传热速率式:Q=KA ∆t m3、 计算方法:1)计算换热器的热流量)(2111T T Cp q Q m -=2)作出适当的选择并计算平均推动力m t ∆),,,,(2121流向t t T T f t m =∆∴必须选择A 、流向(逆流.并流.复杂流动方式)B 、选择冷却介质出口温度3)计算冷热流体与管壁的对流体给热系数和总传热系数必须选择:A 、冷,热流体各走管内还是管外B 、选择适当的流速C 、选择适当的污垢热阻4)由传热基本方程m t KA Q ∆=计算传热面积关键是:条件参数的选择!4、 条件参数的选择选择的原则:技术可行,经济合理1) t 1:决定于工艺需要,现实条件,经济性。
温度要求不很低,以水为冷却剂时,应以夏季水温为设计温度更安全。
2)t 2:技术:理论上t2可选范围经济性:q m1C p1(T 1-T 2)=q m2C p2(t 2-t 1)t 2越大,q m2消耗越少,↓1122p m p m C q C q⇒经常性操作费用少但∆t m ↓,同时q m2↓可能导致K ↓则mt K Q A ∆⋅=↑⇒设备投资费用大 ∴有经济优化问题。
传热负荷生产上对物料加热(冷却)时所需提供(移除)的热量设Q —传热速率,W ;W1、W2 —热、冷流体的质量流率,kg/s ;Cp1、Cp2 —热、冷流体的比热,J/(kg·K);T1、T2 —热流体的进、出口温度,℃;t1、t2 —冷流体的进、出口温度,℃;r —流体的汽化或冷凝潜热,kJ/kg 。
无相变:()1211p Q W C T T =−()2221p Q W C t t =−()21p Q W r C t t =+−⎡⎤⎣⎦有相变:()()12112221p p Q W C W C t t T T =−=−若忽略热损失,则热流体放出的热量等于冷流体吸收的热量)()22112121212lnln t T t t t t T t t T −−Δ−Δ=−Δ−Δ()()12121122lnmt t T T t t T t T −−−Δ==−−温差修正曲线¾ψ<1(Δtm <Δtm,逆)是由于复杂流动中同时存在并流和逆流;¾换热器设计时ψ值不应小于0.8,否则不经济;¾可改用多壳程来增大ψ,即将几台换热器串联使用。
Hextran使用最大的管长作为初始值进行计算,如果不满足管程压降和管速限制的话就会减少一个增加值再进行计算。
标准指定选择方法。
设计压力会TEMA类型:前管箱(A、B、C、N、D)TEMA类型:壳程(E,F,G,H,J,K,X)TEMA类型:后管箱或后端结构(L,M,N,P,S,T,U,W)翅片的设计(Fins 选项页)¾翅片效率:对于翅片管外膜传热系数的计算,以光管外表面为基准,其关系式如下:hf0—以光管外表面积为基准的翅片管外膜传热系数hf—翅片管表面膜传热系数At—翅片管的光管部分的面积Af—翅片管的翅片部分的面积A0—光管的外表面积Ω—翅片效率⎟⎟⎠⎞⎜⎜⎝⎛Ω+=o f t f fo A A A h h。
非常全面的换热器计算换热器是一种常见的热交换设备,用于在两个流体之间传递热量。
它通常由一系列平板或管道组成,其中一个流体在板或管道的表面流动,而另一个流体在板或管道的另一侧流动。
通过换热表面的热传导,热量从一个流体传递到另一个流体。
为了正确设计和选择换热器,需要进行全面的换热器计算。
换热器计算主要包括以下几个方面:1.热负荷计算:首先需要确定流体之间的热负荷,即需要传递的热量。
这可以通过指定流体的流量、温度差和换热器的效率来计算。
2.传热面积计算:根据热负荷和换热器的传热系数,可以计算所需的传热面积。
传热系数取决于流体的性质、流速和流动方式。
3.流体速度计算:在换热器的设计中,流体速度是一个重要参数。
通过确定流体速度,可以选择合适的管道直径或板间距,以提供足够的传热面积和压降。
4.压降计算:换热器需要在流体之间施加足够的压力差,以保证足够的流动和传热效果。
在设计中需要计算流体在换热器中的压降,并合理选择换热器结构和流体通道。
5.材料选择:根据换热器所处的环境条件和工作介质的性质,需要选择合适的材料来制造换热器。
材料的选择应考虑到其热导率、强度、耐腐蚀性和经济性等因素。
6.温度场分析:换热器中的流体温度分布对传热效果有重要影响。
通过数值模拟或实验分析,可以确定流体在换热器中的温度场,并对该温度场进行优化改进。
7.稳态和瞬态分析:换热器的工作过程可以是稳态的,也可以是瞬态的。
在计算中需要考虑流体的稳态和瞬态特性,并确定换热器在不同工况下的传热性能。
以上是换热器计算的一些基本方面,实际的计算过程可能更加复杂,需要根据具体的应用要求和换热器的结构特点进行调整。
换热器的设计和选择还需要考虑工艺条件、安全性和经济性等综合因素。
在进行换热器计算时,需要细致地分析和估算各项参数,以确保换热器的性能和可靠性。
换热器热量及面积计算公式换热器是工业生产中常用的设备之一,用于将热量从一个介质传递到另一个介质。
其核心功能是通过增大热交换面积,使热量能够更加有效地传递。
在换热器的设计中,热量及面积的计算是至关重要的。
换热器的热量计算是根据热传导的基本原理来进行的。
热传导是指热量从高温区域传递到低温区域的过程。
热传导的速率与温度差、介质的导热系数和热传导距离有关。
换热器的热量传递公式可以表示为:Q=U×A×ΔT其中,Q表示热量传递量,U表示换热系数,A表示换热面积,ΔT表示温度差。
换热系数U是一个关键的参数,它表示单位面积上,单位时间内热量的传递量。
换热系数的大小受多种因素影响,包括换热器的结构、介质的性质和流体运动方式等。
为了计算得到准确的热量传递量,我们需要确定换热系数U的数值。
换热系数U的计算可以根据实际情况采取不同的方法,常见的有经验法、理论法和试验法等。
换热器面积计算公式:换热器的设计中,换热面积的计算是为了满足所需的热量传递量。
基本原则是通过增大换热面积,提高热量的传递效率。
换热器的面积计算公式可以表示为:A=Q/U/ΔT其中,Q表示所需的热量传递量,U表示换热系数,ΔT表示温度差。
根据这个公式,我们可以根据所需的热量传递量来计算换热器的面积。
需要注意的是,在实际应用中,热量及面积的计算往往需要考虑许多复杂的因素,比如介质的流动性质、传热表面的布局和形式、管路的阻力损失等。
因此,在设计换热器时,需要综合考虑这些因素,以确保换热器能够满足所需的热量传递要求。
此外,还有一些常见的换热器类型,如壳管式换热器、板式换热器、螺旋板换热器等,它们的热量及面积的计算公式可能会有所不同。
因此,在实际应用中,需要根据具体的换热器类型和设计要求来选择相应的计算公式。
总结起来,换热器的热量及面积计算是一个复杂的过程,需要综合考虑多种因素。
上述的热量及面积计算公式只是基本的参考,实际设计中还需要根据具体情况进行调整和优化。
换热器设计计算范例设计计算范例:换热器设计一、背景在化工、冶金、石油、食品及制药等工业领域中,换热器被广泛应用于热交换过程中。
换热器的设计与选择对于整个工艺系统的能量效率和运行成本起着重要作用。
本文以一个化工厂的换热器设计为例,计算设计一个适合的换热器。
二、设计需求化工厂中需要进行一个液体-液体的热交换过程。
液体A流体的进口温度为60°C,出口温度为30°C,流量为10m3/h;液体B流体的进口温度为100°C,出口温度为50°C,流量为8m3/h。
需要设计一个换热器来满足热交换的需求。
三、设计计算方法1.热负荷计算首先,我们需要计算换热器所需的热负荷。
热负荷可以通过以下公式计算:Q=m*Cp*ΔT其中,Q是热负荷,m是流体的质量流率,Cp是流体的比热容,ΔT 是入口温度与出口温度之差。
对于流体A,热负荷为:Q_A=10*Cp_A*(60-30)对于流体B,热负荷为:Q_B=8*Cp_B*(100-50)2.选择换热器类型根据热负荷的计算结果,我们可以选择合适的换热器类型。
常见的换热器类型有壳管式换热器、板式换热器和管束式换热器等。
考虑到本例中的液体-液体热交换过程,我们选择壳管式换热器。
壳管式换热器能够适应不同的工况,具有良好的传热效果和可靠性。
3.换热面积计算换热面积是换热器设计的重要参数。
换热面积可以通过以下公式计算:A = Q / (U * ΔTlm)其中,A是换热面积,Q是热负荷,U是换热系数,ΔTlm是对数平均温差。
对于壳管式换热器,ΔTlm的计算公式为:ΔTlm = (ΔT1 - ΔT2) / ln(ΔT1 / ΔT2)其中,ΔT1是进口温度差,ΔT2是出口温度差。
根据实际情况,我们假设换热器的换热系数为500W/(m2·°C)。
根据具体数据进行计算,我们得到:ΔT_A=60-30=30°CΔT_B=100-50=50°CΔTlm = (30 - 50) / ln(30 / 50) ≈ -28.3°CA_A = Q_A / (U * ΔTlm)A_B = Q_B / (U * ΔTlm)4.换热器尺寸设计根据换热面积的计算结果,我们可以进一步确定换热器的尺寸。
换热器设计计算步骤换热器是一种常见的工业设备,用于将热能从一个介质传递到另一个介质,常用于加热、冷却和蒸发等工艺过程。
其设计计算步骤主要包括确定换热器类型、计算换热面积、确定流体侧传热系数、确定传热效率等。
以下是详细的换热器设计计算步骤:1.确定换热器类型:根据实际使用需求和工艺要求,选择合适的换热器类型。
常见的换热器类型包括壳管式、板式、管束式、螺旋板式、翅片等。
2.了解工艺参数:确定进出口流体的温度、流量、压力以及物性参数。
3.确定传热方式:根据流体的性质和工艺要求,确定换热器的传热方式,包括对流、辐射和传导。
4.计算传热面积:根据换热器类型和流体侧的传热特性,计算所需的换热面积。
通常使用热平衡方程或对数平均温差法进行计算。
5.确定流体侧传热系数:根据流体侧的传热特性和工艺要求,选择合适的换热管材料、管型和管束结构,并计算流体侧的传热系数。
6.确定壳侧传热系数:根据壳侧、管侧流体的性质和工艺要求,选择合适的壳管布局和壳侧的传热系数。
7.确定传热效率:根据流体的传热系数、传热面积和对流热传输原理,计算换热器的传热效率。
8.设计换热器尺寸:根据以上计算结果和实际使用需求,确定换热器的尺寸和结构,包括管束长度、壳体直径、传热管的数量、壳程等。
9.选择材料和设备:根据工艺要求、介质性质和设计参数,选择合适的材料和设备,包括管束材料、密封材料、管板材料和支撑结构等。
10.制定操作规程:根据换热器的设计和实际使用情况,制定操作规程,包括换热器的开启、关闭、维护和清洁等程序。
总结起来,换热器设计计算步骤包括确定换热器类型、了解工艺参数、确定传热方式、计算传热面积、确定流体侧传热系数、确定壳侧传热系数、确定传热效率、设计换热器尺寸、选择材料和设备以及制定操作规程。
根据这些步骤进行设计计算,可以确保换热器的设计满足工艺要求,提供高效的热能传递。
换热器工艺计算1. 热负荷计算热负荷是换热器设计的重要参数,它决定了换热器的尺寸和性能。
热负荷可以通过以下公式计算:Q = m × c ×Δt其中,Q为热负荷,m为流体质量流量,c为流体比热容,Δt为进出口温度差。
2. 流体流量与流速流体流量是换热器设计的重要参数,它决定了换热器的处理能力。
流速是流体流动的速率,它会影响换热器的传热性能和压降。
流速的计算公式如下:v = Q / (A × t)其中,v为流速,Q为流体流量,A为流通面积,t为时间。
3. 传热面积传热面积是换热器实现热交换的媒介,其计算公式如下:A = Q / (K ×Δt)其中,A为传热面积,Q为热负荷,K为传热系数,Δt为进出口温度差。
4. 传热系数传热系数是描述换热器传热性能的重要参数,其计算公式如下:K = (q × A) / (L ×Δt)其中,K为传热系数,q为热流量,A为传热面积,L为传热长度,Δt为温度差。
5. 温度差温度差是换热器实现热交换的推动力,其计算公式如下:Δt = t1 - t2其中,Δt为温度差,t1为进口温度,t2为出口温度。
6. 压力损失压力损失是流体在流动过程中克服阻力所损失的压力,其计算公式如下:ΔP = f × (v^2) / 2 × g × d其中,ΔP为压力损失,f为阻力系数,v为流速,g为重力加速度,d为管道直径。
7. 材质选择换热器的材质选择应根据具体的应用场景和工况条件来确定。
常见的材质有不锈钢、铜、钛等。
在选择材质时,应考虑其耐腐蚀性、导热性能、成本等因素。
8. 结构设计换热器的结构设计应根据其工艺要求和工况条件来确定。
常见的换热器类型有管壳式、板式、翅片式等。
在结构设计时,应考虑其传热效率、流体阻力、稳定性等因素。
同时,还应考虑其制造工艺和维修保养的便利性。
板式换热器设计计算与校核计算设计计算与校核计算是指对板式换热器进行设计和校核的过程。
设计计算是在满足热交换需求的前提下,确定板式换热器的尺寸、换热面积、流体通道和板的数量等参数。
校核计算是为了保证板式换热器在运行过程中的可靠性和安全性,对其进行力学和热力学校核。
1.设计计算:a.确定工作流体的流量、温度和压力等参数,根据这些参数计算出所需换热面积。
b.根据换热面积的要求,选择合适的板式换热器型号,并确定换热片的尺寸和数量。
c.计算工作流体的换热面积分布,确定流体通道布局和分流板的位置。
d.根据换热片的尺寸和数量,计算板式换热器的外形尺寸和重量。
e.检查设计结果是否满足热交换需求,并对设计方案进行评估和调整。
2.校核计算:a.应力校核:计算板片和密封垫的应力,包括弯曲应力、剪切应力和接触应力等。
检查应力是否满足材料的强度限制。
b.疲劳校核:根据板片的工作条件和材料的疲劳强度,计算板片的疲劳寿命,确保其在预期的使用周期内不会发生疲劳破坏。
c.热力学校核:计算板片的热应力和热膨胀,检查板片在工作温度下的变形情况。
确保板片的变形不对密封性和换热性能造成影响。
d.压降校核:计算工作流体在板式换热器中的压降,检查压降是否满足设定的要求。
e.泄漏校核:计算板片与密封垫之间的泄漏量,确保泄漏量在可接受范围内。
f.振动校核:计算板片和密封垫的共振频率,检查共振是否存在,并采取相应的措施进行抑制。
设计计算和校核计算是板式换热器设计过程中非常重要的环节,通过对换热器的尺寸、换热面积和流体通道等参数进行合理计算和校核,可以确保换热器在运行过程中具备良好的性能和可靠的安全性。
同时,也可提高换热器的热效率和运行经济性。
换热器设计计算标准1、热流体进口温度:t 11(已知)2、热流体进口温度:t 111(已知)3、冷流体进口温度:t 21(已知)4、冷流体进口温度:t 211(已知)5、热流体工作压力:P 1(已知)6、冷流体工作压力:P 1(已知)7、热流体的流量:M 1(已知);或者冷流体的流量:M 2(已知)8、热流体定性温度:t m1=( t 11+ t 111)/2 9、热流体的比热:c p1(查物性表格) 10、热流体的密度:ρ1(查物性表格) 11、热流体的粘度:μ1(查物性表格) 12、热流体的导热系数:λ1(查物性表格) 13、热流体的普兰特数:Pr 1(查物性表格)14、冷流体定性温度:t m2=( t 21+ t 211)/2 15、冷流体的比热:c p2(查物性表格) 16、冷流体的密度:ρ2(查物性表格) 17、冷流体的粘度:μ2(查物性表格) 18、冷流体的导热系数:λ2(查物性表格) 19、冷流体的普兰特数:Pr 2(查物性表格)20、热量损失系数:ηL (取用)21、传热量:Q 热= M 1 c p1(t 11- t 111) ηL 22、冷流体流量: M 2=Q / c p2(t 211- t 21)23、(t 11- t 211)与(t 111- t 21)比较:若(t 11- t 211)> (t 111- t 21),则Δt max =(t 11- t 211), Δt min =(t 111- t 21);否则 Δt max =(t 111- t 21),Δt min =(t 11- t 211)。
24、逆流时的对数平均温差Δt M =(Δt max -Δt min )/ln(Δt max /Δt min ) 25、加一定修正系数计算有效平均温差Δt 1M =ΨΔt M26、初选传热系数k 0(参考资料)管程 壳程 传热系数(w/m 2·℃) 气体 气体 10~35 气体 高压气 170~260 高压气 气体 170~450 高压气 清水 200~700 气体 清水 20~70 清水 清水 1000~2000 清水 水蒸汽冷凝 2000~4000 高粘度液体 清水 100~300 高温液体 气体 30低粘度液体 清水 200~45027、估算传热面积F 0=Q/ k 0Δt 1M28、管材选择(包括材料、规格Фd 0×δ) 29、管内流体的流速ω2(选取)m/s 30、管程所需流通截面A t = M 2/ρ2ω2 31、每程管数 n=4A t /3.14(d 0-2δ)32、每根管长 l= F 0/nZ t 3.14 d 0(Z t 是管子的流程) 33、选择管子排列方式(一般选择等边三角形排列)E35、平行于流向的管距s p =s ×cos3036、垂直于流向的管距s n =s ×sin30o37、拉杆直径d 1(一般根据管子外径选择)38、作草图39、作图结果得到数据六边形层数 α(由草图得到)l 一台管子根数n t =nZ t一台传热面积F 10=n t 3.14d 0l多台传热面积F 110= F 10×m(m 为台数)管束中心至最外层中心距离D 0(由草图计算或测量) 40、管束外缘直径D L = D 0×2+d 0 41、壳体内径D s =D L +2b 3b 3=0.25×d(壳体壁厚) 按照GB151-89规定,取标准直径[D s ] 42、长径比 l/D s (察看是否合理)43、管程(进出口连接管)接管直径 D 2=1.13(M 2/ρ2ω2) 44、管程雷诺数 Re 2=ω2ρ2(d 0-2δ)/ μ2 45、管程内努塞尔数计算22247、壳程换热系数α1=λ1/d e0.251(d e G max/μ1)0.67[(s1-d b )/d b]-0.2[(s1-d b)/s +1]-0.2[(s1-d b)/(s2-d b)] 0.4式中d e=[F b d b+F f(F f/2n f)]/ (F f +F b)d b 翅片根部圆直径,mn f 每单位长度上翅片片数F b每根管单位长度上以翅根直径为基准的无翅片部分表面积,m2/mF f 每单位长度上翅片的表面积,m2/mG max最小流通截面处质量流速,kg/(m2s)s1垂直气流方向管间距s2平行气流方向管间距s翅片间距48、管内热阻r s,2(查阅相关资料)49、管外热阻r s,1 (查阅相关资料)50、管壁热阻r s=ln(d2/d1)(d2-d1)/2λ(若管壁比较薄,其热阻可以忽略)51、传热系数k=[1/α1 +r s,1+ r s,2d0/d i+1/α2 d0/d i]-152、传热面积F=Q/kΔt1M53、传热面积之比F0/F(比值是否在1.1~1.2)(若不比值<1.1或者>1.2,则k将替代k0再循环计算)54、管内摩擦因子f i(查阅相关图)55、管侧壁温t w2=t m2+ Q/F×1/α 256、壁温下水的粘度μW2(查物性表) kg/(m×s)57、沿程阻力ΔP i=4×L/d i×ρ2ω22/2×(μ/μW2)-0.1458、回弯阻力ΔP r=4×ρ2ω22/2×Z t59、进出口连接管阻力ΔP N=1.5ρ2ω22/260、管程总阻力ΔP t=ΔP i+ΔP r+ΔP N61、理想管束摩擦系数f kf k=1.463(G max d e /μ)-0.245[(s1-d b)/db]-0.9[(s1-d b)/d b+1]0.7(d e/d b)0.962、壳程压降ΔP s=f k G max n/2ρ1。