换热器设计计算范例
- 格式:doc
- 大小:211.00 KB
- 文档页数:15
板式换热器例题1、换热器换热量的计算w t Gc Q 1046750)2065(4187360020000=-⨯⨯=∆= 2、外网进入热水供应用户的水流量s kg t c Q G /10)7095(418710467500=-=∆= 3、加热水的流通断面积换热器内水的流速取0.1~0.5m/s 。
加热水的平均温度为(95+70)/2=82.5℃,该温度下水的密度为970.2kg/m 3。
200206.02.9705.010m w G f r r r =⨯==ρ 4、被加热水的流通断面积换热器内水的流速取0.1~0.5m/s 。
被加热水的平均温度为(65+20)/2=42.5℃,该温度下水的密度为991.2kg/m 3。
201868.02.9913.0360020000m w G f l l l =⨯⨯==ρ 5、选型初选BR12型板式换热器,单片换热面积为0.12m 2/片,单通道流通断面积为0.72×10-3。
6、实际流速加热水流道数为281072.00206.03=⨯==-d r r f f n 被加热水流道数为261072.001868.03=⨯==-d l l f f n 取流道数为28。
加热水实际流速s m f n G w r d r r /5.02.9701072.0281030=⨯⨯⨯==-ρ 被加热水实际流速s m f n Gw l d l l /28.02.9911072.02856.53=⨯⨯⨯==-ρ 7、传热系数查图知传热系数为3600w/m 2.K 。
8、传热温差()()()()℃396595207065952070)()()()(11221122=-----=-----=∆In t t In t t t p ττττ 9、传热面积246.73936001046750m t K Q F p =⨯=∆= 10、需要的片数6212.046.7===d F F N 11、实际片数考虑一个富裕量。
管壳式换热器又称列管式换热器列管式换热器的设计和选用的计算步骤设有流量为m h的热流体,需从温度T1冷却至T2,可用的冷却介质入口温度t1,出口温度选定为t2。
由此已知条件可算出换热器的热流量Q和逆流操作的平均推动力。
根据传热速率基本方程:当Q和已知时,要求取传热面积A必须知K和则是由传热面积A的大小和换热器结构决定的。
可见,在冷、热流体的流量及进、出口温度皆已知的条件下,选用或设计换热器必须通过试差计算,按以下步骤进行。
◎初选换热器的规格尺寸◆ 初步选定换热器的流动方式,保证温差修正系数大于0.8,否则应改变流动方式,重新计算。
◆ 计算热流量Q及平均传热温差△t m,根据经验估计总传热系数K估,初估传热面积A 估。
◆ 选取管程适宜流速,估算管程数,并根据A估的数值,确定换热管直径、长度及排列。
◎计算管、壳程阻力在选择管程流体与壳程流体以及初步确定了换热器主要尺寸的基础上,就可以计算管、壳程流速和阻力,看是否合理。
或者先选定流速以确定管程数N P和折流板间距B再计算压力降是否合理。
这时N P与B是可以调整的参数,如仍不能满足要求,可另选壳径再进行计算,直到合理为止。
◎核算总传热系数分别计算管、壳程表面传热系数,确定污垢热阻,求出总传系数K计,并与估算时所取用的传热系数K估进行比较。
如果相差较多,应重新估算。
◎计算传热面积并求裕度根据计算的K计值、热流量Q及平均温度差△t m,由总传热速率方程计算传热面积A0,一般应使所选用或设计的实际传热面积A P大于A020%左右为宜。
即裕度为20%左右,裕度的计算式为:某有机合成厂的乙醇车间在节能改造中,为回收系统内第一萃取塔釜液的热量,用其釜液将原料液从95℃预热至128℃,原料液及釜液均为乙醇,水溶液,其操作条件列表如下:表4-18 设计条件数据试设计选择适宜的列管换热器。
解:(1) 传热量Q 及釜液出口温度a. 传热量Q以原料液为基准亦计入5%的热损失,按以下步骤求得传热量Q 。
机房空调换热器设计计算
已知条件:
冷却媒介为纯水,冷却对象为湿空气。
换热器为套片式管翅式换热器,铜管选为内螺纹铜管,翅片选为平片开窗片。
设计换热能力Q=40kw ,管程水进口t 1=12℃,管程水出口t 2=17℃;
壳程进口空气t 3=23℃,湿度φ=50%,风量H=12000m 3/h=3.33m 3/s 。
换热形式为交叉换热。
箱体尺寸,长2000mm ,宽600mm ,深300mm 。
纯水的c=4.2×103J/(kg.K )
试计算换热面积、换热器形式等。
计算步骤:
管程换热温差为△t=t 2-t 1=5℃;
根据公式Q=mc △t 得m 水=)
12(t t c Q =1.9kg/s ; 查得
通过查得壳程进口比焓值h 1=45.476kj/kg 。
比容c=0.825m 3/kg
则壳程空气质量流量为m 空=C
H =3.3/0.825=4.04kg/s ; 根据公式Q=m (h1-h2)得h 2=h 1-空
m Q =45.476-40/4.04=45.476-9.9=35.576kj/kg 假定出口干球为t 2=19℃,则通过出口焓值查的出口状态参数如下:
出口相对湿度47.1%,干球19℃
则对数平均换热温差△t /=。
换热器设计计算范例换热器是一种用于传递热量的设备,常用于工业生产中的加热、冷却或蒸发等工艺过程中。
在设计换热器时,我们需要考虑的主要参数包括换热面积、传热系数、温度差以及流体性质等。
下面就以一种换热器设计计算范例进行说明。
假设我们需要设计一个管壳式热交换器,用于加热水和空气的热交换。
设计要求如下:1.加热水的进口温度:70℃2.加热水的出口温度:90℃3.空气的进口温度:25℃4.空气的出口温度:50℃5.加热水的流量:10m3/h6.空气的流量:1000m3/h首先,我们需要确定换热面积的大小。
根据传热计算的公式:Q=U×A×ΔT其中,Q为换热量,U为传热系数,A为换热面积,ΔT为温度差。
假设我们的换热器传热系数U为400W/(m2·℃),温度差ΔT为(90-70)=20℃。
根据公式,换热量可以计算为:Q=400×A×20我们将换热量Q设置为加热水的传热量,可得:Q1=400×A×20为了方便计算,我们将流体的热容量乘以流量定义为A1(加热水)和A2(空气)。
可得:Q1=A1×ΔT1代入已知数值,可得:Q1=10×4.186×(90-70)×1000接下来,我们需根据另一组流体参数计算出Q2(空气)。
Q2=A2×ΔT2代入已知数值,可得:Q2=1.005×1000×(50-25)×1000根据Q1、Q2和总换热量的平衡关系:Q1+Q2=400×A×ΔT可得:10×4.186×(90-70)×1000+1.005×1000×(50-25)×1000=400×A×20解得:A=0.523m2根据已知的流量和管道尺寸,可计算出流速。
流速=流量/A代入数值:流速=10/0.523流速=19.1m/s接下来,我们要确定换热器的结构。
换热器的计算举例换热器的计算举例条件:1.空气量4100m3/h2.空气预热温度t空=300 0C (冷空气为20 0C)3.烟气量V''烟=6500m3/h (烟气温度为7000C)4.烟气成分(体积%)CO2 H2o O2N219.4 7.5 2.1 71.05.换热器的型式及材质型式:直管形平滑钢管换热器材质:换热管采用Ф 60*3.5毫米无缝钢管材质16Mn钢最高使用温度小于4500C计算举例:一. 主要热之参数的确定1.入换热器空气的温度t'空=200C出换热器空气的温度t''空=3000C2.入换热器空气量取换热器本身的漏损及管道漏损 3%则V真实=1.03 V'空=1.03×4100=4223m/h或 V空=1.03V'空/3600=4223/3600=1.17m/s3.入换热器烟气的温度考虑16Mn铜的最高温度不大于450℃。
初步确定入换热器的烟气温度t′烟=550℃,稀释导数确定如下:烟气700℃的比热为:C烟(700)=0.01(0.501×19.4+0.392×7.5+0.342×2.1+0.325×71)=0.365KJ/m3℃烟气在550℃的比热为:C烟(500)=0.01(0.484×19.4+0.383×7.5+0.337×2.1+0.321×71)=0.358 KJ/m3℃20℃空气的比热为0.311 KJ/m3℃则φ=(i1-i2)/(i2-i0)=(0.365×700-0.385×550)/(0.358×550-0.311×20)=0.3094.入换热器的烟气量V烟=(1+φ)V′烟=(1+0.309)×6500=8508.5m3/h或V烟=8508.5/3600=2.36m3/s5.烟气成分(%)V CO2= V′CO2(V′烟/V烟)=19.4×6500/8508.5=14.82 V H20=V′H2O(V′烟/V烟)=7.5×6500/8508.5=5.73V O2=(V′O2+21φ)V′烟/V烟=(2.1+21×0.309)×6500/8508.5=6.56V N2=(V′N2+79φ)V′烟/V烟=(71+79×0.309)×6500/8508.5=72.89Σ=1006.计算换热气的烟气温度取换热气绝热效率η换=0.90.先假定烟气出口温度为400℃。
换热器计算公式范文换热器计算公式指的是用于计算换热器传热性能的各种参数和关系的数学方程。
换热器是工程领域常用的一种设备,用于将热量从一个介质传递到另一个介质。
换热器的性能与换热器的设计参数密切相关,因此计算公式对于换热器的设计和运行至关重要。
以下是一些常用的换热器计算公式:1.整体换热系数(U值)的计算公式:U=1/[(1/h₁)+δi+(1/h₂)]其中,U为整体换热系数,h₁为热源侧传热系数,h₂为冷凝侧传热系数,δi为传热面各种传热介质之间的传热阻力。
2.热量传递率(Q)的计算公式:Q = U × A × δTlm其中,Q为换热器的热量传递率,U为整体换热系数,A为传热面积,δTlm为对数平均温差。
3. 对数平均温差(δTlm)的计算公式:δTlm = [(δT₁ - δT₂) / ln(δT₁ / δT₂)]其中,δT₁为热源侧入口温度与冷凝侧出口温度的温差,δT₂为热源侧出口温度与冷凝侧入口温度的温差。
4.传热面积(A)的计算公式:A = Q / (U × δTlm)其中,A为传热面积,Q为热量传递率,U为整体换热系数,δTlm为对数平均温差。
5.热源侧传热系数(h₁)的计算公式:h₁=(k₁×ΔT₁)/δ₁其中,h₁为热源侧传热系数,k₁为热源侧传热介质的导热系数,ΔT₁为热源侧的温差,δ₁为热源侧的传热厚度。
6.冷凝侧传热系数(h₂)的计算公式:h₂=(k₂×ΔT₂)/δ₂其中,h₂为冷凝侧传热系数,k₂为冷凝侧传热介质的导热系数,ΔT₂为冷凝侧的温差,δ₂为冷凝侧的传热厚度。
7.温差比(R)的计算公式:R=δT₁/δT₂其中,R为温差比,δT₁为热源侧入口温度与冷凝侧出口温度的温差,δT₂为热源侧出口温度与冷凝侧入口温度的温差。
这些计算公式是根据传热原理和换热器的物理特性推导而来,通过这些公式可以计算出换热器的各种参数和性能,从而进行换热器的设计、选型和优化。
换热器热力设计方案计算
热力设计方案计算是确定换热器的尺寸和参数的重要步骤,这些参数
包括换热面积、换热系数、热传导方程等。
以下是一个换热器热力设计方
案计算的示例,详细说明了计算的步骤和方法。
首先,需要确定换热器所需的换热面积。
常用的计算方法是根据传热
方程来确定,传热方程为:
Q=U*A*ΔT
其中,Q是换热器的传热量,U是换热器的总传热系数,A是换热面积,ΔT是换热器的温度差。
通常情况下,需要根据实际工艺条件和热传
导方程来确定ΔT的值。
接下来,需要计算换热器的总传热系数U。
总传热系数是由换热器的
导热系数和对流传热系数组成的。
导热系数是指换热器材料的导热性能,
可以根据材料的热导率和厚度来计算。
对流传热系数是指流体在管内和管
外的传热性能,可以根据换热器的流体流速、壁面温度和换热器的材料来
计算。
在计算总传热系数U时,需要注意传热系数的单位。
通常情况下,传
热系数的单位是一次性热量的传递能力,单位为W/(m²·K)。
传热系数越大,传热效果越好,换热器的尺寸就越小。
在计算换热面积A时,需要考虑多个参数,包括介质流量、介质温度、介质性质和管束的布置方式等。
需要根据实际工艺条件和设计要求来确定。
最后,需要根据计算结果来确定换热器的尺寸和参数。
根据计算的结果,可以选择合适的换热器型号和规格,满足工艺生产的需求。
总之,换热器热力设计方案计算是一个复杂的工程项目,需要考虑众多的参数和条件。
通过准确计算和合理选择,可以设计出满足工艺要求和性能要求的换热器。
换热器的计算举例换热器是一种常见的热交换设备,用于在流体之间传递热量。
它在许多工业过程中发挥着重要的作用,例如化工、石油、食品加工、制药等。
以下是一个计算换热器的例子,以说明如何确定换热器的工作参数和尺寸。
假设我们需要设计一个换热器来将热水从80°C降低到60°C,并且需要将冷水从20°C加热到40°C。
我们已经知道热水的流量为1,000升/小时,冷水流量为800升/小时。
步骤1:确定热水和冷水的进出口温度差首先,我们需要确定热水和冷水的温度差。
在本例中,热水的进口温度为80°C,出口温度为60°C,所以温度差为20°C。
同样,冷水的温度差为20°C。
步骤2:计算热水和冷水的热量热水的热量可以通过以下公式计算:Q=m×c×ΔT其中,Q代表热量,m代表质量,c代表比热容,ΔT代表温度差。
在本例中,热水的质量可以通过以下公式计算:m=流量×密度已知热水的流量为1,000升/小时,那么质量可以通过将流量转换为千克/小时来计算:m=1,000千克/立方米×1立方米/1,000升×1,000升/小时=1千克/小时热水的密度可以通过查找热水的性质表来获取,假设为1千克/立方米。
热水的比热容可以通过查找热水的性质表或使用常见物质的比热容来估计,假设为4.18千焦尔/千克•摄氏度。
因此,热水的热量可以计算为:Q热水=1千克/小时×4.18千焦尔/千克•摄氏度×20°C=83.6千焦尔/小时同样地,可以使用相同的方法计算冷水的热量。
冷水的流量为800升/小时,质量为0.8千克/小时(假设冷水的密度为1千克/立方米),比热容为4.18千焦尔/千克•摄氏度。
因此,冷水的热量为:Q冷水=0.8千克/小时×4.18千焦尔/千克•摄氏度×20°C=66.88千焦尔/小时步骤3:计算换热器的传热面积传热面积是换热器设计中的关键参数,它决定了换热器的尺寸。
换热器的设计型计算Q=q m1C p1(T 1-T 2)=q m2C p2(t 2-t 1)Q=KA ∆t m 2211221A A A 1αλδα++=m A K(无相变传热过程,Re>104,Pr>0.7, bd PrRe .,.80210230λαα=()()12211221t T t T t T tT t m -----=∆ln 1、 设计型计算的命题给定生产任务:q m1,T 1→T 2(or q m2,t 1→t 2)选择工艺条件:t 1,t 2计算目的:换热器传热面积A 及其它有关尺寸(管子规格,根数);qm2特点:结果的非唯一性。
2、 计算公式: 质量衡算:p V N nu d q ⋅⋅=24π热量衡算:Q=q m1C p1(T 1-T 2)=q m2C p2(t 2-t 1)传热速率式:Q=KA ∆t m3、 计算方法:1)计算换热器的热流量)(2111T T Cp q Q m -=2)作出适当的选择并计算平均推动力m t ∆),,,,(2121流向t t T T f t m =∆∴必须选择A 、流向(逆流.并流.复杂流动方式)B 、选择冷却介质出口温度3)计算冷热流体与管壁的对流体给热系数和总传热系数必须选择:A 、冷,热流体各走管内还是管外B 、选择适当的流速C 、选择适当的污垢热阻4)由传热基本方程m t KA Q ∆=计算传热面积关键是:条件参数的选择!4、 条件参数的选择选择的原则:技术可行,经济合理1) t 1:决定于工艺需要,现实条件,经济性。
温度要求不很低,以水为冷却剂时,应以夏季水温为设计温度更安全。
2)t 2:技术:理论上t2可选范围经济性:q m1C p1(T 1-T 2)=q m2C p2(t 2-t 1)t 2越大,q m2消耗越少,↓1122p m p m C q C q⇒经常性操作费用少但∆t m ↓,同时q m2↓可能导致K ↓则mt K Q A ∆⋅=↑⇒设备投资费用大 ∴有经济优化问题。
换热器设计计算范文换热器是一种常见的热交换设备,广泛应用于各个工业领域。
它主要用于将热量从一个流体传递到另一个流体,通常是从高温流体到低温流体,以满足工业流程中的能量需求。
在进行换热器设计前,首先需要明确应用场景中的工艺参数,如流体的温度、压力、流量等。
同时,还需要了解流体之间的传热方式,包括对流传热、辐射传热和传导传热。
换热器的设计主要包括以下几个步骤:1.确定换热器的传热面积:通过传热面积的计算可以确定换热器的尺寸。
传热面积的计算可以根据传热功率和传热系数来进行,其中传热功率可以通过流体的温度差和流体的流量来计算,传热系数则与流体的性质有关。
2.确定流体的路径:根据流体之间的传热方式和热量转移的需求,选择合适的流体路径。
常见的有串、并、对流和混合等不同的路径。
3.选择合适的换热器类型:根据工艺参数的要求以及使用场景的特点,选择合适的换热器类型。
常见的换热器类型包括壳管式换热器、板式换热器、管束式换热器等。
4.进行传热和阻力的计算:传热和阻力是换热器设计中的重要参数,它们的合理计算可以保证换热器的工作效率。
传热的计算可以通过流体的温度差、传热系数和传热面积来进行,阻力的计算可以通过流体的流速、管道的摩阻系数和管道的长度来进行。
5.进行换热器的选型和优化:根据以上的计算结果,选择合适的换热器型号,并进行进一步的优化。
优化的内容可以包括换热器的材料选择、传热面积的增加等。
需要注意的是,在进行换热器设计时,还需要考虑到一些特殊情况,如流体的腐蚀性、高温高压等,以确保换热器的安全可靠性。
总之,换热器设计计算是一个相对复杂的过程,需要考虑到流体参数、传热和阻力的计算等多个因素。
通过合理的设计计算,可以为工业生产提供高效、能耗低的热交换解决方案。
一、已知参数 板式换热器热力计算冷介质流量Gt/h 1825.328584 3对数温差传热系数Δ Tm ℃10.2 2传热面积 K W/m ℃1600Fm 2 911.54 换热面积( 10%的裕量) m 2 1002.7三、设计参数 单板有效换热面积 Fdm28.64 冷介质流程数N1 1 冷介质单道流通面积 A1 m 20.00264热介质流程数 N21 热介质单道流通面积 A2 m20.0156 板片数 n 116.05207 冷介质板间流速 V1 m/s #NAME? 热介质板间流速V2m/s #NAME? 冷介质进、出水口直径 、流速 mm 、m/s 350 #NAME? 热介质进、出水口直径 、流速mm 、m/s900#NAME?换热器参数浆液比热 3.457 kj/kg* ℃ 浆液密度 1180 kg/m 3 粘度0.0022pa*sm /h #NAME? 冷介质比热容kcal/kg ℃ #NAME? 冷介质密度kg/m 3#NAME?冷介质入口水温T 1 ℃ 32 冷介质出口水温T 2℃ 39.00 热介质密度 kg/m3 1180.0 热介质比热容热介质入口温度t 1 kcal/kg ℃℃#NAME?47 热介质出口温度t2℃ 44.7 热介质流量 Wt/h #NAME?m 3/h#NAME?二、传热计算换热量QKW 、kcal/h14860.0 12777300ΔT1=t1-T28.0 ΔT2=t2-T112.7浆液入口温度47.00 ℃浆液出口温度44.74 ℃浆液体积流量#NAME? m3/h 水侧入口温度32.00 ℃水侧出口温度39.00 ℃水侧体积流量#NAME? m3/h 水侧质量流量1825.3 t/h 换热器板片规格7200*1200*1.5 mm 换热器换热面积0 m2 浆液侧板间流速#NAME? m/s 水侧板间流速#NAME? m/s 浆液侧流道宽度24 mm 浆液侧阻力#NAME? m 水侧阻力#NAME? m 换热器净重0.0 kg 换热器荷重0.0 kg浆液参数确保所浆液比热 3.457 kj/kg* ℃3浆液密度1180 kg/m粘度0.0022 pa*s换热器参数板片宽度1200 厚度板片长度7200 1.5水实槽际深测际槽 3.2 浆液流道宽浆侧液实深12 24水测量槽 2.2 通道截面积比当槽量深液当浆侧深13 5.909090909夹紧尺寸0.0实际取整面积接口数量21PL0.6 WN1.0350 20.5400 27.5450 33.5500 40600 54.5 56 700 65 800 87 900 106 1000 123 1200 184 1400 252确保所有标红处参数准确无误!参数计算水侧板间入口处流速#NAME? m/s 板片水侧开口长度半剖管方案截面流速#NAME? m/s 700 椭圆短半轴高度120 mm半椭圆管方案截面流速浆液侧流体阻力#NAME?#NAME?m/sm水侧流体阻力#NAME? m滤总最终取值沿程阻力损失0.47147767#NAME? m浆液测阻力矩形通道尺寸a 流速#NAME? m/sb 运动粘度 1.8644E-06 m2/s 水力半径R动力粘度0.0022 pa*s密度1180.0 kg/m3 当量直径de 雷诺数Re #NAME? 流道长度当量糙粒高度K 4沿程阻力系数0.33404991#NAME?#NAME?最终取值0.33404991沿程阻力损失#NAME? m水测阻力矩形通道尺寸a 流速#NAME? m/s b运动粘度#NAME? m2/s 水力半径R动力粘度#NAME? pa*s密度#NAME? kg/m3 当量直径de 雷诺数Re #NAME? 流道长度当量糙粒高度K 4沿程阻力系数0.471477673 0滤网长度1500 2100总面积3150000#DIV/0! 个1.165 m0.024 m0.011757780.0470311197.2 m0.08 m0.0064 m 0.4 35.5 0.002962963 运动粘度#NAME? m2/s动力粘度#NAME? pa*s 0.005925926 密度#NAME? kg/m37.2 m 雷诺数#NAME?摩擦系数#NAME?压降#NAME? Mpa#NAME? m。
2.4 列管换热器设计示例某生产过程中,需将6000 kg/h的油从140℃冷却至40℃,压力为0.3MPa;冷却介质采用循环水,循环冷却水的压力为0.4MPa,循环水入口温度30℃,出口温度为40℃。
试设计一台列管式换热器,完成该生产任务。
1.确定设计方案(1)选择换热器的类型两流体温度变化情况:热流体进口温度140℃,出口温度40℃冷流体(循环水)进口温度30℃,出口温度40℃。
该换热器用循环冷却水冷却,冬季操作时进口温度会降低,考虑到这一因素,估计该换热器的管壁温和壳体壁温之差较大,因此初步确定选用带膨胀节的固定管板式式换热器。
(2)流动空间及流速的确定由于循环冷却水较易结垢,为便于水垢清洗,应使循环水走管程,油品走壳程。
选用ф25×2.5的碳钢管,管内流速取u i=0.5m/s。
2.确定物性数据定性温度:可取流体进口温度的平均值。
壳程油的定性温度为(℃)管程流体的定性温度为(℃) 根据定性温度,分别查取壳程和管程流体的有关物性数据。
油在90℃下的有关物性数据如下:密度ρo=825 kg/m3定压比热容c po=2.22 kJ/(kg·℃) 导热系数λo=0.140 W/(m·℃) 粘度μo=0.000715 Pa·s 循环冷却水在35℃下的物性数据:密度ρi=994 kg/m3定压比热容c pi=4.08 kJ/(kg·℃)导热系数λi=0.626 W/(m·℃) 粘度μi=0.000725 Pa·s 3.计算总传热系数(1)热流量Q o=W o c poΔt o=6000×2.22×(140-40)=1.32×106kJ/h=366.7(kW)(2)平均传热温差(℃)(3)冷却水用量(kg/h)(4)总传热系数K管程传热系数W/(m·℃) 壳程传热系数假设壳程的传热系数αo=290 W/(m2·℃);污垢热阻R si=0.000344 m2·℃/W , R so=0.000172 m2·℃/W管壁的导热系数λ=45 W/(m·℃)=219.5 W/(m·℃)4.计算传热面积(m2) 考虑15%的面积裕度,S=1.15×S′=1.15×42.8=49.2(m2)。
换热器计算实例范文换热器是一种用于将热量从一个物体传递到另一个物体的设备。
它在许多工业和日常应用中广泛使用,如锅炉系统、空调系统、汽车发动机等。
本文将通过一个实际的案例来说明如何计算换热器的设计参数。
假设我们需要设计一个用于汽车发动机冷却的换热器。
汽车发动机在运行过程中会产生大量的热量,如果不及时散热,将会导致发动机过热,甚至损坏。
因此,冷却系统是汽车发动机非常重要的一部分。
第一步是确定设计参数。
我们需要知道发动机的最大功率和最大工作温度,以及冷却系统的工作条件,如冷却液的进口温度和出口温度。
假设发动机最大功率为100kW,最大工作温度为100°C。
冷却液的进口温度为80°C,出口温度为90°C。
根据这些参数,我们可以计算出需从发动机散热的热量。
热量的传递可以通过换热器的有效面积来实现。
根据热传递定律,热量传递速率与温度差和有效传热面积成正比。
我们可以使用以下公式计算热量传递速率:Q=U×A×ΔT其中,Q为热量传递速率,U为换热系数,A为有效传热面积,ΔT为温度差。
第二步是选择适当的换热器类型。
根据具体的应用要求和可用条件,可以选择不同类型的换热器,如壳管式换热器、板式换热器等。
在汽车发动机冷却系统中,常用的是壳管式换热器,因为它具有良好的热传导性能和可靠性。
第三步是计算换热系数。
换热系数是一个重要的设计参数,它反映了热量传递的效率。
换热系数取决于换热器的结构和材料,以及流体的性质和流动速度。
根据经验公式,壳管式换热器的换热系数可估算为:U=k×ΔTm其中,k为换热系数的经验常数,ΔTm为平均温差。
第四步是计算有效传热面积。
根据前面的公式,我们可以把热量传递速率和换热系数代入,得到:A=Q/(U×ΔT)最后一步是进行换热器的选型和设计。
根据上述计算结果,我们可以选择适当的壳管式换热器,并确定其设计参数,如管道的数量和长度,管径等。
换热器设计计算范例设计计算范例:换热器设计一、背景在化工、冶金、石油、食品及制药等工业领域中,换热器被广泛应用于热交换过程中。
换热器的设计与选择对于整个工艺系统的能量效率和运行成本起着重要作用。
本文以一个化工厂的换热器设计为例,计算设计一个适合的换热器。
二、设计需求化工厂中需要进行一个液体-液体的热交换过程。
液体A流体的进口温度为60°C,出口温度为30°C,流量为10m3/h;液体B流体的进口温度为100°C,出口温度为50°C,流量为8m3/h。
需要设计一个换热器来满足热交换的需求。
三、设计计算方法1.热负荷计算首先,我们需要计算换热器所需的热负荷。
热负荷可以通过以下公式计算:Q=m*Cp*ΔT其中,Q是热负荷,m是流体的质量流率,Cp是流体的比热容,ΔT 是入口温度与出口温度之差。
对于流体A,热负荷为:Q_A=10*Cp_A*(60-30)对于流体B,热负荷为:Q_B=8*Cp_B*(100-50)2.选择换热器类型根据热负荷的计算结果,我们可以选择合适的换热器类型。
常见的换热器类型有壳管式换热器、板式换热器和管束式换热器等。
考虑到本例中的液体-液体热交换过程,我们选择壳管式换热器。
壳管式换热器能够适应不同的工况,具有良好的传热效果和可靠性。
3.换热面积计算换热面积是换热器设计的重要参数。
换热面积可以通过以下公式计算:A = Q / (U * ΔTlm)其中,A是换热面积,Q是热负荷,U是换热系数,ΔTlm是对数平均温差。
对于壳管式换热器,ΔTlm的计算公式为:ΔTlm = (ΔT1 - ΔT2) / ln(ΔT1 / ΔT2)其中,ΔT1是进口温度差,ΔT2是出口温度差。
根据实际情况,我们假设换热器的换热系数为500W/(m2·°C)。
根据具体数据进行计算,我们得到:ΔT_A=60-30=30°CΔT_B=100-50=50°CΔTlm = (30 - 50) / ln(30 / 50) ≈ -28.3°CA_A = Q_A / (U * ΔTlm)A_B = Q_B / (U * ΔTlm)4.换热器尺寸设计根据换热面积的计算结果,我们可以进一步确定换热器的尺寸。
管壳式换热器传热设计说明书设计一列管试换热器,主要完成冷却水——过冷水的热量交换设计压力为管程1.5MPa (表压),壳程压力为0.75MPa(表压),壳程冷却水进,出口温度分别为20℃和50℃,管程过冷水进,出口温度分别为90℃和65℃管程冷水的流量为80t/h。
2、设计计算过程:(1)热力计算1)原始数据:过冷却水进口温度t1′=145℃;过冷却水出口温度t1〞=45℃;过冷却水工作压力P1=0.75Mp a(表压)冷水流量G1=80000kg/h;冷却水进口温度t2′=20℃;冷却水出口温度t2〞=50℃;冷却水工作压力P2=0.3 Mp a(表压)。
改为冷却水工作压力P2=2.5 Mp2)定性温度及物性参数:冷却水的定性温度t2=( t1′+ t1〞)/2=(20+50)/2=35℃;冷却水的密度查物性表得ρ2=992.9 kg/m3;冷却水的比热查物性表得C p2=4.174 kJ/kg.℃冷却水的导热系数查物性表得λ2=62.4 W/m.℃冷却水的粘度μ2=727.5×10-6 Pa·s;冷却水的普朗特数查物性表得P r2=4.865;过冷水的定性温度℃;过冷水的密度查物性表得ρ1=976 kg/m3;过冷水的比热查物性表得C p1=4.192kJ/kg.℃;过冷水的导热系数查物性表得λ1=0.672w/m.℃;过冷水的普朗特数查物性表得P r2;过冷水的粘度μ1=0.3704×10-6 Pa·s。
过冷水的工作压力P1=1.5 Mp a(表压)3)传热量与水热流量取定换热器热效率为η=0.98;设计传热量:过冷却水流量:;4)有效平均温差逆流平均温差:根据式(3-20)计算参数p、R:参数P:参数R:换热器按单壳程2管程设计,查图3—8得温差校正系数Ψ=0.83;有效平均温差:5)管程换热系数计算:附录10,初定传热系数K0=400 W/m.℃;初选传热面积:m2;选用φ25×2.5无缝钢管作换热管;管子外径d0=0.025 m;管子径d i=0.025-2×0.0025=0.02 m;管子长度取为l=3 m;管子总数:取720根管程流通截面积:m2管程流速:m/s管程雷诺数:湍流管程传热系数:(式3-33c)6)结构初步设计:布管方式见图所示:管间距s=0.032m(按GB151,取1.25d0);管束中心排管的管数按4.3.1.1所给的公式确定:取20根;壳体径:m 取Di=0.7m;长径比:布管示意图l/D i=3/0.9=3.3 ,合理选定弓形折流板弓形折流板弓高:折流板间距:m折流板数量:折流板上管孔直径由GB151-2014可确定为 0.0254mm折流板直径由GB151-2014可确定为 0.6955m 7)壳程换热系数计算壳程流通面积:根据式(3-61)中流体横过管束时流道截面积046.0032.0025.016.0233.01o i c1=⎪⎪⎭⎫⎝⎛-⨯=⎪⎪⎭⎫ ⎝⎛-=s d BD A m 2壳程流速:m/s ;壳程质量流速:kg m 2/s ;壳程当量直径:m ;壳程雷诺数:; 切去弓形面积所占比例按 h/D i =0.2查图4-32得为0.145壳程传热因子查 图3-24得为j s =20 管外壁温度假定值 t w1′=45℃ 壁温过冷水粘度 Pa.s粘度修正系数:根据式(3-62)计算壳程换热系数:8)传热系数计算:水侧污垢热阻:r 2=0.000344m 2.℃/w 管壁热阻r 忽略 总传热系数:传热系数比值,合理9)管壁温度计算:管外壁热流密度:W/m2.℃根据式(3-94a)计算管外壁温度:℃误差较核:℃,误差不大;10)管程压降计算:根据式(3-94b)计算管壁温度:℃;壁温下水的粘度:Pa·s;粘度修正系数:;查图3-30得管程摩擦系数:管程数:;管沿程压降计算依据式(3-112):Pa (W=w.ρ)回弯压降:Pa;取进出口管处质量流速:W N2=1750 ㎏/㎡·s; (依据ρw2<3300取 w=1.822m/s) 进出口管处压降(依据 3-113):;管程结垢校正系数:;管程压降:11)壳程压降计算:壳程当量直径:m;雷诺数:;查得壳程摩擦系数:λ1=0.08;(图 3-34)管束压降(公式3-129):Pa;取进出口质量流速: kg/m2·s;( ρw2<2200 取W N2=1000 ㎏/㎡·s) 进出口管压降:Pa;取导流板阻力系数:;导流板压降:Pa壳程结垢修正系数:;(表3-12)壳程压降:Pa;管程允许压降:[△P2]=35000 Pa;(见表3-10)壳程允许压降:[△P1]=35000 Pa;△P2<[△P2]△P1<[△P1]即压降符合要求。
列管式换热器的设计和选用的计算步骤
设有流量为m h的热流体,需从温度T1冷却至T2,可用的冷却介质入口温度t1,出口温度选定为t2。
由此已知条件可算出换热器的热流量Q和逆流操作的平均推动力。
根据
传热速率基本方程:
当Q和已知时,要求取传热面积A必须知K和则是由传热面积A的大小和换热器结构决定的。
可见,在冷、热流体的流量及进、出口温度皆已知的条件下,选用或设计换
热器必须通过试差计算,按以下步骤进行。
◎初选换热器的规格尺寸
◆ 初步选定换热器的流动方式,保证温差修正系数大于0.8,否则应改变流动方式,
重新计算。
◆ 计算热流量Q及平均传热温差△t m,根据经验估计总传热系数K估,初估传热面积A
估。
◆ 选取管程适宜流速,估算管程数,并根据A估的数值,确定换热管直径、长度及排
列。
◎计算管、壳程阻力
在选择管程流体与壳程流体以及初步确定了换热器主要尺寸的基础上,就可以计算管、壳程流速和阻力,看是否合理。
或者先选定流速以确定管程数N P和折流板间距B再计算压力降是否合理。
这时N P与B是可以调整的参数,如仍不能满足要求,可另选壳径再进行计
算,直到合理为止。
◎核算总传热系数
分别计算管、壳程表面传热系数,确定污垢热阻,求出总传系数K计,并与估算时所取用的传热系数K估进行比较。
如果相差较多,应重新估算。
◎计算传热面积并求裕度
根据计算的K计值、热流量Q及平均温度差△t m,由总传热速率方程计算传热面积A0,一般应使所选用或设计的实际传热面积A P大于A020%左右为宜。
即裕度为20%左右,裕度的
计算式为:
某有机合成厂的乙醇车间在节能改造中,为回收系统内第一萃取塔釜液的热量,用其釜液将原料液从95℃预热至128℃,原料液及釜液均为乙醇,水溶液,其操作条件列表如下:
表4-18 设计条件数据
物料流量
kg/h
组成(含乙醇量)
mol%
温度℃操作压力
MPa
进口出口
釜液 3.31450.9
原料液795 1280.53
试设计选择适宜的列管换热器。
解:
(1)传热量Q及釜液出口温度
a. 传热量Q
以原料液为基准亦计入5%的热损失,按以下步骤求得传热量Q。
平均温度℃
分别查得乙醇、水的物性为:
粘度μ
(cp)
热导率λ
(W/mc)
密度ρ
(kg/m3)
比热容Cp
(kJ/kg℃)
乙醇
水
混合物
0.29
0.26
0.262
0.149
0.685
0.539
700
949.4
879.9
3.182
4.237
4.067
以上表中混合物的各物性分别由下式求得:
混合物:Cp
混合物热导率:W/(m℃)
混合物密度:kg/m3
混合物比热容:kJ/(kg℃)
式中为组成为i的摩尔分率,为组分i的质量分率。
其他符号意义同前。
所需传递的热流量:
b. 确定釜液出口温度
假设=113℃,则定性温度为:
℃
由可查得乙醇、水物性,亦由以上推荐公式分别求得釜液的物性为:
粘度μ(cp)
热导率λ
(W/mc)
密度ρ
(kg/m3)
比热容Cp
(kJ/kg℃)
乙醇水釜液0.222
0.224
0.224
0.144
0.686
0.578
678.0
935.6
908.0
2.617
4.267
4.135
由热流量衡算得:
=113.1℃
(2)换热器壳程数及流程
a. 换热器的课程数
对于无相变的多管程的换热器壳程数的确定,是由工艺条件,即冷、热物流进出口温度,按逆流流动给出传热温差分布图如图4-71所示,采用图解方法确定壳程数。
图解壳程数Ns
如图4-71可见,所用水平线数为2,故选取该换热器的壳程为2。
其处理办法,或在一壳体内加隔板或选用两个单壳程的换热器,显然后者比较方便。
故选用两台相同的换热器。
b. 流程规定
冷、热流体的物性及流量均相近。
为减少热损失,先选择热流体(釜液)走管程,冷流体(原料液)走壳程如图4-72所示。
流程示意图
(3)估算传热面积A
a.传热温差
前面已提供了釜液及原料液进出口温度,于是可得:
=17.5℃
在列管式换热器中由于加折流板或多管程,冷、热两流体并非纯逆流,以上应加
以校正,其校正系数按以下步骤求得:
由R、P及壳程数查图4-8(2)得:,于是得传热温差校正值为:
℃
b.传热面积A
根据冷、热流体在换热器中有无相变化及其物性等,选取传热系数℃,于是可求所需传热面积A为:
(4)换热器选型
根据传热温差的大小,传热介质的性质以及结垢、清洗要求等条件选择适宜的换热器,为保证传热时流体适宜流动状态,还需估算管程数。
管程热流体(釜液)体积流量:
选用规格钢管,设管内的流速,则:
单管程所需管子根数n:
设单台换热器的传热面积为,则单台传热面积为:
选取管束长l=6m,则管程数为
故应选取管程数为2。
根据以上确定的条件,按列管换热器标准系列,初步选取型号为G800-II-16-225固定管板式换热器两台,其主要性能参数如下:
壳体内径800mm
公称直径800mm
公称压力 1.6MPa
公称面积225m2
计算面积227m2
管程数 2
管长6000mm
管子规格
排列方式
管间距32mm
管数488根
折流板数18
壳程数1
(5)换热器的核算
按以上数据可分别求出管程和壳程流体流速及雷诺数
管程:流通截面积
式中n为总管数。
管内流速
式中-管程流速m/s;
-釜液流速kg/h;
-釜液平均密度;
管内雷诺数
式中-管内直径,m;
-釜液平均粘度,;壳程:
选折流板间距B=300mm
壳程流通截面积
式中-壳体内径,m;
-管外径,m;
t-管间距,m。
流速
式中-壳程流速m/s;
-原料液平均密度
-原料液流率kg/h。
当量直径
雷诺数
式中-原料液平均粘度
从以上计算结果可知,两流体在换热器中流动均能达到湍流,有利于传热。
a. 管、壳程压力降
①管程压力降
取管壁绝对粗糙度:E=0.2mm
相对粗糙度:
由前面计算已得,故可查得直管壁摩擦系数,于是得单管程压力降为:
回弯压降:
式中-阻力系数
管程总压力降:
校正系数
管程数
串联的壳程数(即串联的换热器数)②壳程压力降
管束压降
三角形排列:F=0.5
壳程流体摩擦因数
折流板数
折流板缺口压降:
壳程总压力降:
壳程压力降结垢校正系数
壳程数
b. 总传热系数K
①管程传热膜系数
管内雷诺数
普兰特数
管长与管内径比:
式中-釜液平均热容℃);
-釜液平均导热系数℃);
℃)②管外传热膜系数
管外雷诺数
普兰特数
式中-原料液平均热容℃);
-原料液平均粘度;
-原料液平均导热系数℃)
℃)
③污垢及管壁热阻
管壁内外侧污垢热阻均为℃/W
钢管壁热导率℃)
管壁热阻℃)/W ④总传热系数
得℃)
式中-管外污垢℃/W;
-管内污垢℃/W;
b-管壁厚m;
-管壁平均直径m;
传热面积
所选换热器实际传热面积:
换热器传热面裕度:
由校核可知,各项性能符合要求,换热能力可满足生产需求,所选换热器可以采用。
例题
现有一单程列管式换热器,管子尺寸为,管长为4.5m,共40根,拟用来将kg/h的苯从30℃加热到70℃,壳程(管外)为120℃饱和水蒸气冷凝水蒸气冷凝
的表面传热系数。
考虑管内苯侧污垢热阻,管外侧污垢热阻及热损失均忽略不计,试求:
a. 总传热系数,并判断该换热器是否合用。
b. 若将苯的流量提高20%,并维持其出口温度不变,该换热器是否合用?若仍使用上述换热器,则实际操作时苯的出口温度为多少?
c. 在操作过程中,可采取什么措施使苯流量提高20%的出口温度达到原工艺要求,并就一种措施加以定量说明。
已知:管材的热导率
操作范围内苯的物性参数可视为不变:
℃)
解:
a. 设管内的表面传热系数为
则管内
由以上条件可采用以下公式计算空气表面传热系数:
所以
判断合用否?
又℃
热流量
所需换热面积为
则
换热管的实际面积为,则
所以该换热器合用。
b. 若将苯的流量提高20%,则管内表面传热系数将增大,设为
则
此时总传热系数为,则
热流量
此时所须的换热面积为
所以若将苯的流量提高20%,并维持其出口温度不变,则该换热器不合用。
若仍使用上述换热器,设实际操作时苯的出口温度为
则
即
整理得
解得℃
即苯流增加20%,仍用上述换热器时苯的出口温度为66.1℃
c. 在操作过程中,可采取提高加热蒸气压力即提高加热蒸气温度的方法使苯流量提高20%后仍达到原工艺要求。
设提压后蒸气的温度为
℃
又℃
解得℃
即加热蒸气温度提高到129.6℃。