MM
Si, j (m,n)T(m,n)
P
m1n1
MM
MM
[Si,j(m,n)]2
[T(m,n)]2
m1n1
m1n1
根据施瓦兹不等式,0P1,并且在 S i, j ( m , n ) T (m,n)
比值为常数时取极大值为1。但实际上两幅不同图像的P值
介于0和1之间,很难达到理想值。根据经验取某个阈值P0, 如果P> P0,则匹配成功; P< P0,则匹配失败。
.
Moravec算子
Moravec算具有最大-最小灰度方差的点作为特 征点。其步骤为:
1 计算各像元的兴趣值(Interest Value)。在以像素为中心 w×w的影像窗口中(如5×5的窗口),计算图中所示四 个方向相邻像素灰度差的平方和:
2. 用户先指定三个控制点,程序根据三个控制点算出主辅 图像旋转、平移和尺度差异,再用金字塔模板匹配方法进 行配准。
.
全自动匹配
不需要用户事先提供任何信息,单纯依据两幅图像自身的 信息进行匹配计算。由于主辅图像之间存在旋转、平移和 尺度差异,如何找到初始定位信息是其难点。
方法多种多样。包括直方图匹配、Hu不变矩、金字塔模
板匹配、小波Gabor 算子、基于空间变换的方法等。将在 后面特征点匹配部分讲述。
.
基于TIN的图像配准算法流程
提取主辅图像特征点 特征点匹配
特征点构三角网 建立仿射变换关系 辅图像小面元校正
.
特征类型
灰度特征点。Moravec算子、Forstner算子与Hannah算子。 角点。SUSAN算子, Harris算子,王算子,沈俊算子。 边缘特征(线型)。Canny算子, Marr算子。 纹理特征。灰度共生矩阵,小波Gabor算子。