为 k 1 阶回归变量列向量(包括 k 个回归量),为 k 1 阶回归系数列向量,对于不同个
体回归系数相同,yit 为被回归变量(标量),it 为误差项(标量),则称此模型为个体固 定效应模型。
个体固定效应模型(3)的强假定条件是,
E(iti, Xit) = 0, i = 1, 2, …, N
i 作为随机变量描述不同个体建立的模型间的差异。因为i 是不可观测的,且与可观测 的解释变量 Xit 的变化相联系,所以称(3)式为个体固定效应模型。
LOG(CP1996) LOG(CP2000)
9.4
LOG(CP1997) LOG(CP2001)
LOG(CP1998) LOG(CP2002)
9.2
LOG(CP1999)
9.0
8.8
6000
8.6
5000
8.4
4000
8.2
3000 2000
IP
8.0
2000 4000 6000 8000 10000 12000 14000 7.8
panel 原指对一组固定调查对象的多次观测,近年来 panel data 已经成为 专业术语。
面 板 数 据 从 横 截 面 ( cross section ) 看 , 是 由 若 干 个 体 ( entity, unit, individual)在某一时点构成的截面观测值,从纵剖面(longitudinal section)看 每个个体都是一个时间序列。
(1)
其中 yit 为被回归变量(标量),表示截距项,Xit 为 k 1 阶回归变量列向量(包括 k 个回
归量),为 k 1 阶回归系数列向量,it 为误差项(标量)。则称此模型为混合模型。混合
模型的特点是无论对任何个体和截面,回归系数和都相同。