光纤通信系统概论论文
- 格式:doc
- 大小:28.50 KB
- 文档页数:3
光纤通信技术论文光纤通信技术的出现,实现了数据的高速率,大容量的通信,下面是店铺整理了光纤通信技术论文,有兴趣的亲可以来阅读一下!光纤通信技术论文篇一浅议光纤通信技术摘要:光纤通信技术的出现,实现了数据的高速率,大容量的通信,随着通信技术的快速发展,光纤通信的应用范围将更加广泛,其相关技术的发展也将受到更广泛的关注。
文章通过论述光纤通信技术的概念,优点,以及光纤通信相关技术的发展,对光纤通信技术的相关知识进行了概述。
关键词:光纤通信;通信系统;优点;发展随着科学技术的迅猛发展,通信领域内的各种新型技术悄无声息的进行着演化,光纤通信技术的出现给通信领域带来了一场革命,使利用光纤作为传输媒介实现光传输变为了现实,实现了高速率,大容量的数据通信,光纤通信因此得到了业内人士的青睐,得到了快速的发展。
经过半个世纪的研发,光纤通信技术应用于生活中的各个领域,但就目前的光纤通信技术而言,人类开发的仅是其潜在能力的5%左右,仍有巨大的潜力等待开发,因此光纤通信技术的应用前景将十分广阔,光纤通信技术将向更高水平,更深层次发展。
1 光纤通信技术概述光纤通信技术,即利用光波作为信息载体,使用光导纤维作为传输媒介进行信号传输,达到信息的传递,其中光导纤维由纤芯,包层和涂层组成,利用纤芯和包层的折射率不同,实现光信号在纤芯内的全反射进一步实现光信号的传输。
从原理上看,光纤通信系统由光源,光发射机,光纤,光接收机和光检波器构成,光纤通信系统可以分为模拟光纤通信系统和数字光纤通信系统,其中数字光纤通信系统应用更为广泛,所有数字光纤通信系统都是以一连串的“0”和“1”组成的比特流方式进行通信。
数字光纤通信系统的原理是,在信号的发送端将所要发送的信息进行A/D转换,利用转换后的数字信号调制光源器件,经调制后的光源器件会发出携带信息的光波,即当数字信号为“1”时,光源器件发送一个光脉冲,当数字信号为“0”时,光源器件不发送脉冲,光波经光纤传输后到达接收端,在接收端,光接收机通过光检波器检测所需信号,再进行D/A转换,恢复为原来的信息,完成信息的一次传递。
光纤通信技术论文论光纤通信技术的特点和发展趋势摘要:光纤通信不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。
光纤通信技术作为信息技术的重要支撑平台,在未来信息社会中将起到十分重要的作用。
本文探讨了光纤通信技术的主要特征及发展趋势。
关键词:光纤通信技术特点发展趋势接入技术引言近年来随着传输技术和交换技术的不断进步,核心网已经基本实现了光纤化、数字化和宽带化。
同时,随着业务的迅速增长和多媒体业务的日益丰富,使得用户住宅网的业务需求也不只局限于原来的语音业务,数据和多媒体业务的需求已经成为不可阻挡的趋势,现有的语音业务接入网越来越成为制约信息高速公路建设的瓶颈,成为发展宽带综合业务数字网的障碍。
1.光纤通信技术定义光纤通信是利用光作为信息载体、以光纤作为传输的通信力式。
在光纤通信系统中,作为载波的光波频率比电波的频率高得多,而作为传输介质的光纤又比同轴电缆或导波管的损耗低得多,所以说光纤通信的容量要比微波通信大几十倍。
光纤是用玻璃材料构造的,它是电气绝缘体,因而不需要担心接地回路,光纤之间的中绕非常小,光波在光纤中传输,不会因为光信号泄漏而担心传输的信息被人窃听,光纤的芯很细,由多芯组成光缆的直径也很小,所以用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的问题。
2.光纤通信技术的特点2.1 频带极宽,通信容量大。
光纤的传输带宽比铜线或电缆大得多。
对于单波长光纤通信系统,由于终端设备的限制往往发挥不出带宽大的优势。
因此需要技术来增加传输的容量,密集波分复用技术就能解决这个问题。
2.2 损耗低,中继距离长。
目前,实用的光纤通信系统使用的光纤多为石英光纤;此类光纤损耗可低于0.20dB/km,这样的传输损耗比其它任何传输介质的损耗都低,因此,由其组成的光纤通信系统的中继距离也较其他介质构成的系统长得多。
如果将来使用非石英极低损耗传输介质,理论上传输的损耗还可以降到更低的水平。
光纤通信概述通信原理论文(一)光纤通信概述通信原理论文光纤通信是一种传输信息的方法,通过利用光纤传输光的方式来传输信息。
相较于传统的电缆传输方式,光纤传输方式有着更高的传输速度和更大的传输容量,因此已经被广泛应用于很多领域之中。
光纤通信的传输原理由两部分构成:信号的传输和光波的传输。
信号的传输是指电子信号通过光纤中的信号处理器进行数字化,然后通过调制器将其转换为光信号。
光信号的传输是指在光纤中的光信号的传输。
这两部分共同构成了光纤通信的传输原理。
光纤通信的传输速率是指可以在单位时间内传输的数据量。
它的速率一般用每秒钟传输的比特数(bps)来表示。
光纤通信的传输速率很高,可以达到1Gbps或更高。
由于传输速率越高,传输的数据量越大,因此光纤通信的传输容量也很大。
光纤通信的传输容量是指在单位时间内可以传输的最大数据量。
传输容量决定了光纤通信可以传输多少数据,传输速率决定了将这些数据传输到目的地所需的时间。
光纤通信主要有两个部分构成:发送端和接收端。
发送端是指发送信息的终端设备,它通常由一个数字到模拟转换器、一个调制器和一个激光二极管组成。
接收端是指接收信息的终端设备,它通常由一个接收器和一个放大器组成。
在光纤通信中,发送端的任务是将信号转换为光信号,并将其通过光纤发送到接收端。
接收端的任务是收集光信号并将其转换为电信号,然后将其发送到接收端的终端设备。
总的来说,光纤通信是一种高速、高容量的通信方式。
它的传输原理由信号的传输和光波的传输构成,传输速率和传输容量都很高。
通过发送端和接收端的协调工作,光纤通信可以将信息准确、快速地传输到目的地。
随着技术的不断改进,光纤通信在未来的通信领域中有着广阔的发展前景。
光纤通信原理论文第一篇:光纤通信原理论文光纤通信原理论文浅谈掺铒光纤放大器光纤是光导纤维的简写,是一种利用光在玻璃或塑料制成的纤维中的全反射原理而达成的光传导工具。
掺铒光纤是在石英光纤中掺入了少量的稀土元素铒(Er)离子的光纤,它是掺铒光纤放大器的核心。
从20世纪80年代后期开始,掺铒光纤放大器的研究工作不断取得重大的突破。
WDM技术、极大地增加了光纤通信的容量。
成为当前光纤通信中应用最广的光放大器件。
光纤放大器是光纤通信系统对光信号直接进行放大的光放大器件。
在使用光纤的通信系统中,不需将光信号转换为电信号,直接对光信号进行放大的一种技术。
掺铒光纤放大器(EDFA即在信号通过的纤芯中掺入了铒离子Er3 + 的光信号放大器)是1985年英国南安普顿大学首先研制成功的光放大器,它是光纤通信中最伟大的发明之一。
掺铒光纤放大器的工作原理:掺铒光纤放大器主要是由一段掺铒光纤(长约10-30m)和泵浦光源组成。
其工作原理是:掺铒光纤在泵浦光源(波长980nm或1480nm)的作用下产生受激辐射,而且所辐射的光随着输入光信号的变化而变化,这就相当于对输入光信号进行了放大。
研究表明,掺铒光纤放大器通常可得到15-40db的增益,中继距离可以在原来的基础上提高100km以上。
那么,人们不禁要问:科学家们为什么会想到在光纤放大器中利用掺杂铒元素来提高光波的强度呢?我们知道,铒是稀土元素的一种,而稀土元素又有其特殊的结构特点。
长期以来,人们就一直利用在我学器件中掺杂稀土元素的方法,来改善光学器件的性能,所以这并不是一个偶然的因素。
另外,为什么泵浦光源的波长选在980nm或1480nm呢?其实,泵浦光源的波长可以是520nm、650nm、980nm、和1480nm,但实践证明波长980nm的泵浦光源激光效率最高,次之是波长1480nm的泵浦光源。
掺铒光纤放大器的基本结构:EDFA的基本结构,它主要由有源媒质(几十米左右长的掺饵石英光纤,芯径3-5微米,掺杂浓度(25-1000)x10-6)、泵浦光源(990或1480nm LD)、光耦合器及光隔离器等组成。
光纤通信论文六篇光纤通信论文范文1光纤通信是一种以光线为传媒的通信方式,它主要利用光波实现信息的传送。
光纤通信技术最基本的系统组成有三大板块,主要有:光的放射、接受和光纤传输。
该通信系统可以单独进行数字信号或者模拟信号的传输,也可以进行类似于多媒体信息和话音图像多种不同类别的信号的混合传输。
光纤通信的基本特征如下。
1.1宽频带,大容量在光纤通信技术中,光纤可容纳的传输带宽高达50000GHz。
光源的调制方式、调制特性以及光纤的色散特性确定了光纤通信技术系统的容许频带。
比如说,有一些单波长光纤的通信系统,通常使用的是密集波的分复用等简单一些的技术,从而避开通信设备存在瓶颈效应等电子问题,促使光纤宽带发挥乐观的效应,增加光纤传输的信息量。
1.2抗干扰光纤通信有一个特殊好的优点,就是它拥有极强的抗电磁干扰力量。
由于光纤通信的主要制作原料——石英,具有极强的绝缘性、抗腐蚀性,所以光纤通信具有极强的抗干扰力量。
光纤通信也不会受到电离成的变化、太阳黑子的活动和雷电等电磁干扰,更不会在意人为释放电磁的影响,石英为光纤通信技术带来了巨大的优势。
光纤的质量轻、体积小,既能有效节约空间又能保证安装便利。
而且,制作光纤的原始材料来源丰富,成本低廉,温度稳定度高、稳定性能好,所以使用寿命一般都很长。
光纤通信优势明显,促成了光纤通信技术在现代生活中的广泛应用,并且这个应用过的范围还在不断的拓展。
2光纤通信技术进展特点2.1扩大了单一波长传输的容量当今社会仅单一波长传输的容量就高达40Gbit/s,并且相关部门在这个基础上已经开头讨论160Gbit/s的传输技术。
在讨论40Gbit/s以上的传输技术时,应当对光纤的PMD做出详细的要求。
2021年,美国优先在LTU-TSG15会议中提出了将新的光纤类别引入40Gbit/s系统的倡议。
并且认为在PMD传输中一些问题有待探讨。
我们坚信在不久的将来,举世瞩目的特地的40Gbit/s的光纤类型将会消失。
《光纤通信基础》课程论文论述光纤通信的基本原理、系统构成与技术发展二○一六年十二月目录1 概念 (3)2 光纤通信的原理 (3)3 光纤通信的特点 (4)3.1 光纤通信和有线电缆通信相似 (4)3.2 通信容量大 (4)3.3 通信质量好,不受电磁干扰,损耗小 (4)3.4 节省材料,铺设方便 (4)3.5 重量轻,体积小 (4)3.6 泄露小,安全保密性好 (4)4 光纤通信系统的构成 (5)4.1 光发信机 (5)4.2 光中继器 (5)4.3 光收信机 (5)4.4 光纤连接器、耦合器等无源器件 (5)5 光纤通信技术发展 (5)5.1 SDH 系统 (5)5.2 不断增加的信道容量 (5)5.3 光纤传输距离 (6)5.4 向城域网发展 (6)5.5 互联网发展需求与下一代全光网络发展趋势 (6)6 光纤通信的应用领域 (6)6.1 通话领域的应用 (6)6.2 多媒体领域的应用 (7)6.3 网络领域的应用 (7)6.4 医疗领域的应用 (7)7 我国光纤通信技术的现状和发展 (7)8 光纤通信发展趋势及前景 (8)摘要:光纤通信技术把人类带上了信息的高速公路。
快速掌握并有效利用信息,就能为人类社会造福, 光纤通信在信息传递方面起着主导作用,在将来的科学进步中,光纤通信同样会起着举足重轻的作用。
因此光纤通信技术是信息时代一块重要的奠基石,为国民经济、国防事业和人民生活带来了巨大变革,所以系统地理解光纤通信技术具有非常重要的意义。
因此我想就在课堂上学到的东西结合文献调研来简单论述一下光纤通信的原理,并说明光纤通信系统的构成,以及就光纤通信的未来发展趋势等进行简要阐述。
关键词:光纤通信;原理;系统构成;发展趋势1 概念光纤即为光导纤维的简称。
光纤通信是以光波作为信息载体,以光纤作为传输媒介的一种通信方式。
从原理上看,构成光纤通信的基本物质要素是光纤、光源和光检测器。
光纤除了按制造工艺、材料组成以及光学特性进行分类外,在应用中,光纤常按用途进行分类,可分为通信用光纤和传感用光纤。
光纤通信概述通信原理论文-V1光纤通信概述及通信原理随着时代的进步,现代化的通信工具越来越成为人们生活中必不可少的一项。
而光纤通信作为现代通信技术的代表之一,快速发展并被广泛使用。
本文将对光纤通信的概念、原理、特点和优势等进行详细介绍。
一、光纤通信的概念和定义光纤通信是指利用光纤作为信号传输介质,通过调制光波来传送信息的一种通信方式。
光纤通信是一种先进的数字通信技术,它使大量信息能够通过同一根光纤传输,不仅传输距离长、传输速度快,而且抗干扰、保密性强。
二、光纤通信的原理1. 发送端发送端一般由调制器、激光器、驱动电路和热控制器等组成。
调制器将送入的电信号转换为模拟光信号,并将其输入到激光器中。
2. 光纤传输利用光纤作为信号传输介质,通过调制光波来传送信息。
光纤内部有一个非常高的折射率,从而使得光线可以有效地沿光纤传输。
另外,由于光速非常快,也是在光线传输方面优秀表现的一个方面。
3. 接收端接收端由检测器、前置放大器、数字处理器等组成。
检测器将光信号转换成电信号,前置放大器将信号放大,数字处理器则将信号整形、滤波并进行解码。
三、光纤通信的特点和优势1. 传输速度快相较于传统通信方式,光纤通信具有非常高的传输速度,能够实现Gb/s级别的高速传输,从而大大提高信息传输的效率。
2. 传输距离长光纤通信具有非常长的传输距离,一般可达到几十公里甚至更远。
而且即使是在传输距离非常远的情况下,它的传输质量也能够保持良好。
3. 阻止干扰光纤通信利用光传输信号,因此光信号不会伴随着磁场和电场,所以不易受到干扰。
4. 安全保密光纤通信的传输过程由于是利用光信号进行传输,难以被窃听和截获,从而保证信息的安全性。
总结:本文简要介绍了光纤通信的概念、原理、特点和优势。
通过阐述,希望能够更好地加深大家对于现代通讯技术的认知。
在未来,随着通信技术的不断发展与升级,“光纤通信”将会继续引领未来通信技术的发展趋势。
《光纤通信》结课论文——相干光通信技术简介摘要:伴随着视频会议等通信技术的应用和互联网的普及产生的信息爆炸式增长,对作为整个通信系统基础的物理层提出了更高的传输性能要求,为此科学研究工作者们提出了相干光通信这一解决办法。
本文简要介绍了相干光通信的基本原理、相干光通信相对其他通信方式的优点、它所涉及的主要技术和运用状况。
关键词:相干调制外光调制偏振保持频率稳定频谱压缩超长波长光纤通信一、相关背景在光纤通信领域,更大的带宽、更长的传输距离、更高的接受灵敏度,是科学研究者们永远的追求。
虽然波分复用(WDM)技术和掺铒光纤放大器(EDFA)的应用已经使光纤通信系统的带宽和传输距离得到了极大地提升但随着视频会议等一系列新的通信技术的不断发展应用和互联网普及带来的信息爆炸式增长,相干光通信技术的研究与应用显得越发的重要。
相干光通信的理论和实验始于80年代,经过十年的研究,相干光通信进入实用阶段,英美日等国相继进行了一系列相干光通信实验。
在数字通信方面,扩大C波段放大器的容量,克服光纤色散效应的恶化,以及增加自由空间传输的容量和范围已成为重要的考虑因素。
在模拟通信方面,灵敏度和动态范围成为系统的关键参数,而他们都能通过相关光通信技术得到很大改善。
二、相干光通信系统的组成及基本原理相干光通信系统的基本结构如下图所示。
图中的光载波经调制器受数字信号调制后形成已调信号光波。
在相干光通信中主要利用了相干调制和外差检测技术,所谓相干调制,就是利用要传输的信号来改变光载波的频率、相位和振幅,这就需要光信号有确定的频率和相位,即应是相干光.激光就是一种相干光.所谓外差检测,就是利用一束本机振荡产生的激光与输人的信号光在光混频器中进行混频,得到与信号光的频率、相位和振幅按相同规律变化的中频信号。
在光发射端用外光调制方式将信号以调幅、调相或调频的方式调制到光载波上,再经过光匹配器送入光纤中进行传输,当信号光传输到光接收端时,先用一束本振光信号与之进行相干混合,然后用探测器检测.相干光通信根据本振光信号频率与接收到的信号光频率是否相等,可分为外差检测相干光通信和零差检测相干光通信.外差检测相干光通信经光电检波器获得的是中频信号,还需要进行二次解调才能被转换成基带信号。
光纤通信技术研究论文4篇第一篇:光纤通信技术的特点和发展趋势随着密集波分复用技术的提升,光纤通信技术已成为下一代电信网的重要基础特征。
光纤的种类繁多,根据不同的需求,性能也有所差异。
光纤通信在中国的发展史上极其迅速,1991年底,光缆的铺设在全球就有563万km,后期随着宽带业务的发展,光缆的销售量从城市至农村,呈现着稳定上升的发展阶段。
光纤利用其体积小、损耗率低的特点,成为未来宽带市场斗争史上的主角。
1光纤简介光纤是一种由内芯和包层组合而成的产品,内芯是一种比头发丝还要细的物质,其体积只有几十甚至几微米;而包层是外面包住内芯的物质,其作用是保护光纤。
光纤多分为两种传输模式:单模光纤和多模光纤[1]。
单模光纤的内芯比较细,一般为9~10μm,只可传一种模式的光,模间色散小,应用于远程通讯;而多模光纤的内芯较粗,一般为50~62.5μm,可以传输多种光,模间色散比单膜的要大,因此传输的距离也较近,一般只有几公里。
光纤的主要材质是玻璃材料做成的,因为是电气绝缘体,所以不必担心其接地回路问题。
光纤的占地体积非常小,因而节省了很多空间。
2光纤通信技术的特点分析2.1抗电磁干扰能力强光纤一般会用石英这种材料来制作而成,石英光纤的折射率高,是用纯石英玻璃材质为内芯,用这种材质的理由是其具有良好的绝缘性,而且还具有抗电磁干扰的作用,不受到外界任何环境的影响,且机械强度高、弯曲性能好,因此不仅在超强电领域中独占鳌头,在军事应用上也发挥了其独特的作用。
2.2损耗率低光纤的损耗一般是由光纤的固有损耗以及光纤制成后由于使用而造成的附加损耗。
通过研究发现,石英光纤的损耗率低于0~20dB/km,这种损耗率目前是任何一种传输介质都无法相比的,在长途传输的过程中,利用其特有的能力为我们降低了许多成本。
2.3密封性无串音干扰由于电磁波的传播是用电波传播,保密性非常差,导致某些信息极易泄露。
光纤是由光波传播,灵敏度高,不受电磁的影响,绝缘、耐高压、耐高温、耐腐蚀,不但密封性强,串联的情况也极少发生[2]。
浅谈光纤通信及光中继器朱晓君湖南大学物理与微电子科学学院电子科学与技术08级电科一班20081120126 摘要: 研究光纤通信系统的基本原理及发展现状,分析光纤系统的传输特性、针对各种传输特性的解决方法。
光中继器原理及其未来发展趋势。
关键词:光纤通信基本原理传输特性解决方法光中继器1966年7月,英籍华人高锟博士在PIEE杂志上发表了一篇十分著名的文章《用于光频的光纤包面波导》。
科学的预言了制造通信用的超低耗光纤的可能性,即加强原材料提纯,加入适当的掺杂剂,可把光纤的衰减系数从当时的1000dB/km减低到20dB/km以下,以实现通信。
光纤通信发展很快,经历了五个阶段,得到巨大的发展。
现在世界上许多国家都将光纤通信系统技术引入了公用电信网、中继网和接入网中,光纤通信的应用越来越广泛。
(注:现在,人们生活中的主流是电子产品。
但或许,到了半个世纪,一个世纪以后,光子产品将主宰未来的世界)在光纤通信系统中,作为载波的光波频率比电波频率高得多,而作为传输介质的光纤又比同轴电缆的损耗低得多,因此相对于电缆和微波通讯,光纤通信具有许多独特的特点:频带宽、通信容量大;损耗低、中继距离长;保密性能好;抗电磁干扰;体积小、质量小、便于施工和维护。
(正是由于光纤所具有这些特点,而电子通信中却远不及,所以光纤通讯取代电子通讯将更具可能性,更具理论的说明性)光纤通信系统由电端机、光发送机、光纤光缆、光中继器与光接收机5部分组成,如下图。
电端机:电端机的作用是对来自源的信号进行处理,如模/数变换、多路复用处理,是一般的电通信设备。
光发送机:光发送机的功能是把输入电信号转换成光信号,并用耦合技术把光信号最大限度地注入光纤线路。
光纤光缆:光纤光缆作为线路,其功能的把来自光发送机的光信号以尽可能小的失真和衰减输到光接收机,其性能主要由缆内光纤的传输特性决定。
(此处的传输特性主要由损耗的色散,要求它们越小越好,同时还要保持机械和环境的稳定性,以确保输出特性的稳定)光中继器:将经过长距离光纤衰减和畸变后的微弱光信号经放大、整形、再生成一定强度的光信号,继续送向前方保证良好的通信质量。
光纤通信系统
一、光纤通信系统的概述
光纤通信系统是以光为载波,利用纯度极高的玻璃拉制成极细的光导纤维作为传输媒介,通过光电变换,用光来传输信息的通信系统。
随着国际互联网业务和通信业的飞速发展,信息化给世界生产力和人类社会的发展带来了极大的推动。
光纤通信作为信息化的主要技术支柱之一,必将成为21世纪最重要的战略性产业。
二、光纤通信的发展历史
1966年出生在中国上海的英籍华人高锟,发表论文《光频介质纤维表面波导》,提出用石英玻璃纤维(光纤)传送光信号来进行通信,可实现长距离、大容量通信。
1970年损失为20db/km的光纤研制出来了。
据说康宁公司花费3000万美元,得到30米光纤样品,认为非常值得。
这一突破,引起整个通信界的震动,世界发达国家开始投入巨大力量研究光纤通信。
1976年,美国贝尔实验室在亚特兰大到华盛顿间建立了世界第一条实用化的光纤通信线路,速率为45Mb/s,采用的是多模光纤,光源用的是发光管LED,波长是0.85微米的红外光。
在上世纪70年代末,大容量的单模光纤和长寿命的半导体激光器研制成功。
1996年WDM技术取得突破,贝尔实验室发展了WDM技术,美国MCI公司在1997年开通了商用的WDM线路。
光纤通信系统的速率从单波长的2.5Gb/s 和10Gb/s爆炸性地发展到多波长的Tb/s(1Tb/s=1000Gb/s)传输。
当今实验室光系统速率已达10Tb/s,几乎是用之不尽的,所以它的前景辉煌。
三、光纤通信系统的组成部分
(1)光发信机:光发信机是实现电/光转换的光端机。
它由光源、驱动器和调制器组成。
其功能是将来自于电端机的电信号对光源发出的光波进行调制,成为已调光波,然后再将已调的光信号耦合到光纤或光缆去传输。
电端机就是常规的电子通信设备。
(2)光收信机:光收信机是实现光/电转换的光端机。
它由光检测器和光放大器组成。
其功能是将光纤或光缆传输来的光信号,经光检测器转变为电信号,然后,再将这微弱的电信号经放大电路放大到足够的电平,送到接收端的电端汲去。
(3)光纤或光缆:光纤或光缆构成光的传输通路。
其功能是将发信端发出的已调光信号,经过光纤或光缆的远距离传输后,耦合到收信端的光检测器上去,完成传送信息任务。
(4)中继器:中继器由光检测器、光源和判决再生电路组成。
它的作用有两个:一个是补偿光信号在光纤中传输时受到的衰减;另一个是对波形失真的脉冲近行政性。
(5)光纤连接器、耦合器等无源器件:由于光纤或光缆的长度受光纤拉制工艺和光缆施工条件的限制,且光纤的拉制长度也是有限度的(如1Km)。
因此一条光纤线路可能存在多根光纤相连接的问题。
于是,光纤间的连接、光纤与光端机的连接及耦合,对光纤连接器、耦合器等无源器件的使用是必不可少的。
四、光纤通信系统对社会发展的影响
光纤通信技术和计算机技术是信息化的两大核心支柱,计算机负责把信息数字化,输入网络中去;光纤则是担负着信息传输的重任。
当代社会和经济发展中,信息容量日益剧增,为提高信息的传输速度和容量,光纤通信被广泛的应用于信息化的发展,成为继微电子技术之后信息领域中的重要技术。
光纤通信系统大力地推动了信息高速公路的建设,为人们的生活提供了更多的便利。
五、光纤通信今后如何发展
FTTH(光纤到家庭)是光纤通信进一步发展的方向,它被公认为理想的宽带接入网。
目前,发达国家FTTH建设普遍开展,日本、韩国和美国比较发达,采用各种无源光网PON和以太网技术。
中国的运营商和房地产开发商已对FTTH 进行了试点。
近来出现了所谓的网络电视(IPTV),电信运营商提出IPTV的初衷是考虑到有计算机的人少而有电视机的人多。
提出的IPTV是采用专用的机顶盒连接电视机可直接浏览电信网的内容,而不要计算机。
IPTV具有常规电视并兼有点播和时移电视的功能,可能会取代常规电视。
由于IPTV的发展,影响光纤接入网和FTTH的构建。
另外,也产生电信运营商和广播运营商的利益冲突。
尽管有限制发牌照政策以保护广播运营商,但大势所趋,不可阻挡。
实际上,许多广播运营商也开始改造其广播网为数字双向,也具备了发展IPTV的功能。
广播运营商和电信运营商的界限开始有些模糊。
由于宽带业务的不断发展,现有的城域网、接入网的容量不足。
对于运营商而言,最根本和实际有效的办法是对城域网和接入网扩容。
事实上,采用WDM 技术扩容,投资不很大,而可适应今后宽带业务的继续发展。
光纤通信需要发展光交换——采用电缆通信的网是金属网,传输的是电信号,在网络节点采用电子交换机进行交换。
现在,光纤通信的网是光纤网,传输的是光信号,在网络节点目前还没有全光交换机,在网络上只好采用“光-电-光”方式进行交换,即先把来自光纤网的光信号转变为电信号,用电子交换机进行交换,之后,又把电信号转变为光信号,再进入光纤网。
这种方法是不经济的,需要开发可把光信号直接交换的光交换机。
目前已经有小规模的光交换,它是作光线路保护的。
通常这种光交换的通路是固定而不是可改变的,对于线路的调度不利。
现正在开发具有自动交换的光网络称为ASON。
ASON的关键技术是可重组光分插复用器ROADM,使线路可方便地调度。
ASON不但可作光线路的保护,还可满足线路调度和今后发展出租电路的需要。
现在的通信网正在从SDH网向IP网过渡,交换机也要IP化。
发展光网络还要考虑IP化,还要进一步发展光路由器,其中需要解决光地址的取存和光缓存技术。
由于网络的速率不断提高,目前单波长电子速率为40Gbps的光通信系统已
经商用,速率为160Gbps的电子系统在试验室开发。
因此,光电子器件要与之相适应,包括高速调制激光器等需要开发。
实现ROADM需要发展波长可调的光滤波器、波长可调激光器和光开关等,其中有许多可创新的空间。
把许多分立的光电子器件集成在一起成为集成的光电子器件,其优点是功能丰富、体积小、速度高、可靠。
目前已经有小规模集成的光电子器件,需要开发更大规模的光电子集成器件。
混合集成可降低难度,提高成品率。
混合集成的关键技术是平面光波导线路PLC,它是一块具有光波导的线路板,可把分立的光器件安装在上面。
目前商用的光电子集成器件有8波长激光器模块、100波长以上的AWG光滤波器、AWG+光衰减器和32×32光开关等。
光集成器件的工艺有单片集成和混合集成两种。
光纤通信具有容量大、衰减小、体积小、重量轻、防干扰性能好、扩容便捷等优点,它的使用为社会节约了大量的铜、铅或铝等有色金属。
由于它具有这些优点,所以它成为了理想的通信系统。
光纤通信系统在二十一世纪将得到迅猛的发展。