三相异步电动机的制动控制线路(一)
- 格式:pdf
- 大小:98.77 KB
- 文档页数:3
1.工作原理:所谓能耗制动,就是在电动机脱离交流电源的瞬间,在定子绕组中通以直流电,产生静止磁场,与转子中感应电流相互作用,产生制动力矩,从而达到使异步电机迅速停转的一种制动方法。
试设计一套电机控制系统。
要求:能实现系统的自动能耗制动,有短路和过载保护,同时通过实验分析制动时间以及制动电流对于能耗制动的作用。
如图2-1,三相异步电动机的定子绕组断开三相交流电源而接入直流电时,定子绕组便产生一个恒定的磁场。
而转子由于惯性会继续旋转,从而切割恒定磁场产生感应电动势和感应电流,其方向可用右手定则判断。
同时,由于转子铁芯电流与磁场相互作用而产生同旋转方向相反的电磁制动转矩,使电动机迅速停车。
当电动机的转速下降到零时,转子感应电动势和感应电流均为零,此时制动过程结束。
图2-1能耗制动原理图对于容量较大的电动机,多采用有变压器全波整流能耗制动控制线路。
如图3-1所示的为有变压器全波整流单向启动能耗制动控制电路,该线路利用时间继电器进行自动控制。
其中直流电源有单向桥式整流器VC提供,TC是整流变压器,电阻R式用来调节直流电流的,从而调节制动强度,电阻R越大,电动机定子通过电流越小,转子切割磁感线产生的电磁转矩越小,制动时间越长;电阻R越小,电动机定子通过电流越大,转子切割磁感线产生的电磁转矩越大,制动时间越短。
主电路及控制电路图如下:图3-1主电路及控制电路控制线路的控制过程如下:合上电源开关QS,按下启动按钮SB1接触器KM1线圈通电,常开主触点和自锁触点闭合,电动机启动运行。
制动时,按下停止按钮SB2,接触器KM1断电释放,电动机脱离三相交流电源,同时接触器KM2与时间继电器KT通电,KT开始计时,KM2常开主触点和自锁触点闭合,电动机进入能耗制动。
经过一段延时后,电动机转速接近于零,时间继电器延时断开的常闭触点断开,使KM2断电释放,切断直流电源,KM2断电后,常开触点断开,使时间继电器KT断电释放,电动机能耗制动过程结束。
实验一三相异步电动机的正反转控制线路
一、实验目的
1.掌握三相异步电动机正反转的原理和方法。
2.掌握手动控制正反转控制、接触器联锁正反转、按钮联锁正反转控制线路的不同接法。
二、实验设备
三相鼠笼异步电动机、继电接触控制挂箱等
三、实验方法
1.接触器联锁正反转控制线路
(1) 按下“关”按钮切断交流电源, 按下图接线。
经指导老师检查无误后, 按下“开”按钮通电操作。
(2) 合上电源开关Q1, 接通220V三相交流电源。
(3) 按下SB1, 观察并记录电动机M的转向、接触器自锁和联锁触点的吸断情况。
(4) 按下SB3, 观察并记录M运转状态、接触器各触点的吸断情况。
(5) 再按下SB2, 观察并记录M的转向、接触器自锁和联锁触点的吸断情况。
220V
图1 接触器联锁正反转控制线路
3.按钮联锁正反转控制线路
(1)按下“关”按钮切断交流电源。
按图2接线。
经检查无误后, 按下“开”按钮通电操作。
(2) 合上电源开关Q1, 接通220V 三相交流电源。
(3) 按下SB1, 观察并记录电动机M 的转向、各触点的吸断情况。
(4) 按下SB3, 观察并记录电动机M 的转向、各触点的吸断情况。
(5) 按下SB2, 观察并记录电动机M 的转向、各触点的吸断情况。
四、分析题
1.接触器和按钮的联锁触点在继电接触控制中起到什么作用?
Q 1
220V。
三相异步电动机的制动方式
1. 电阻制动:在电动机的转子回转速度较高时,将一个电阻器串联在转子线圈中,形成一个阻性回路,使电流通过该回路从而产生制动转矩,使电机停转。
2. 反接制动:在线圈中交换两相电源的连接,使得转子的转向与定子磁通的转向相反,因而电动机产生制动转矩并停转。
3. 回馈制动:将电动机的两端接一段电阻,使电动机在运动中变为一个发电机,其产生的电磁功率由电阻转换成热能,从而产生制动转矩。
4. 机械制动:通过机械装置直接对电动机转子进行制动,例如手摇刹车,手摇轮等。
5. 内嵌制动:在电动机的转子内部设置了制动装置,当电机需要制动时,通过线路控制制动装置的启动,从而实现电动机的制动。
三相异步电动机的控制电路一、复习思路及要求1. 题型:选择题、技能题、简答题。
2. 必须熟练分析各种控制电路的工作原理,只有熟悉了工作原理才能正确绘制控制电路;补画控制电路;识别电路图中的错误;对故障进行正确分析处理;设计一些简单的控制电路;并且对PLC中简单的程序设计也有帮助。
3. 该部分容是非常重要的,要熟悉电路形式及控制形式:自锁、联锁的作用及连接方式;点动、连续运转;具有过载保护的连续运转控制电路是基础。
4. 需要掌握的控制电路有:⑴点动单向运转控制电路;⑵连续单向运转控制电路;⑶点动与连续混合控制电路;⑷接触器联锁双向运转控制电路;⑸按钮联锁双向运转控制电路;⑹接触器按钮双重联锁双向运转控制电路;(7)降压起动控制电路。
二、控制电路的分析1.单向点动转控制电路2.单向连续运转控制电路3.连续与点动混合控制电路(一)4.连续与点动混合控制电路(二)5.连续与点动混合控制电路(三)该电路中使用了中间继电器。
其电器符号是KA。
作用是:当其他继电器的触点数量不够时,可借助中间继电器来扩展触头数和触点容量,起到信号中继作用。
注:通过以上控制电路明确自锁的作用及其连接方式.......................。
6.多地控制电路该控制电路能实现电动机的两地控制。
起动按钮并联,停止按钮串联。
(图中如果SB1、SB2控制A地,则SB3、SB4控制B地。
)7.接触器联锁双向控制电路该电路采用了接触器联锁优点是工作安全可靠。
但电动机由正转变为反转时,必须先按下停止按钮,才能按反转按钮,否则由于接触器联锁作用,不能实现反转。
8.按钮联锁双向控制电路该线路的优点是操作方便,由正转变为反转时不必按下停止按钮,但容易产生电源两相短路故障。
9.接触器按钮双重联锁双向控制电路该线路工作安全可靠、操作方便。
注:通过以上三个线路要明确联锁的作用及连接方式.......................。
10.定子绕组串电阻降压起动控制线路(一)电动机从降压起动到全压运转是由操作人员操作按钮SB2来实现的。
三相异步电动机的接触器联锁正反转控制线路分析概述:接触器联锁正反转控制是三相异步电动机常见的控制方式之一,它通过联锁控制线路确保了正反转操作的正确性和安全性。
本文将详细介绍接触器联锁正反转控制线路的构成及工作原理。
一、接触器联锁控制线路的构成接触器联锁控制线路主要由接触器、继电器和辅助元件组成。
1.接触器接触器是控制线路中最关键的元件之一,它起到了控制电动机正反转的作用。
接触器上有三组主触点,用来实现电动机的正反转。
2.继电器继电器是接触器控制线路中的辅助元件,它的作用是放大信号和实现多次通断。
在接触器控制线路中,继电器发挥着重要的作用,可以有效地控制电动机的正反转。
3.辅助元件在接触器联锁正反转控制线路中,还需要使用一些辅助元件来确保控制的可靠性和安全性。
如热继电器、过载保护器、按钮开关等。
二、接触器联锁控制线路的工作原理接触器联锁控制线路的工作原理是通过联锁电路来实现电机的正反转。
1.正转工作原理(1)按下正转按钮,K1线圈通电,K1闭合,K1的NC触点打开,K1的NO触点闭合,通电,电机正转。
(2)电流通过K1的NO触点,继电器KM1的线圈通电,KM1闭合,KM1的NO触点闭合,继电器KM1的线圈通电,电机正转。
(3)电机正转过程中,K1保持闭合,继电器KM1保持闭合,电机一直正转。
2.反转工作原理(1)按下反转按钮,K2线圈通电,K2闭合,K2的NC触点打开,K2的NO触点闭合,通电,电机反转。
(2)电流通过K2的NO触点,继电器KM2的线圈通电,KM2闭合,KM2的NO触点闭合,继电器KM2的线圈通电,电机反转。
(3)电机反转过程中,K2保持闭合,继电器KM2保持闭合,电机一直反转。
3.可靠性和安全性保护在接触器联锁正反转控制线路中,采取了一些措施来确保其可靠性和安全性。
如热继电器和过载保护器的使用,可以在电机过载时切断电源,避免电机损坏。
按钮开关可以及时停止电机运行,保证操作的及时性。
PLC控制 Y-△降压启动能耗制动电路设计摘要:三相异步电动机Y-△降压启动能耗制电路是一种笼型电机的启动及制动控制方式,这种控制方式主要适用于大容量三角形接法电机。
本文将应用PLC 与继电控制线路相结合,来实现三相异步电机的降压和制动控制,以此来和传统继电控制线路做比较,突出PLC控制优越性!关键词:PLC;梯形图;I/O地址表;Y-△降压起动;能耗制动1 引言三相异步电动机因其价格低廉,结构简单,维修方便等优点得到广泛使用,但对于容量较大的电机来说由于直接启动时启动电流大,会拉低电网电压影响其他设备正常工作,同时大的启动电流会缩减电机使用寿命,所以必须对其采取降压启动来满足实际控制需要。
传统继电控制方式线路复杂,维修难,故障率高,而采用PLC控制可以有效把复杂的控制线路转化成简单的程序语句,来达到减少接线,增强线路稳定性,故障率低,并减少维修的目的[3]。
2 继电控制方式2.1 主电路图 1 Y-△降压启动能耗制动主电路Y-△降压启动能耗制动主电路如图1所示。
现分析主电路的工作原理:合上电源开关QS,电流会流经变压器T和KM1主触头,当KM1、KM3主触头闭合时,电机M接成Y形降压启动;当KM3主触头先断开,KM2主触头后闭合时,电机M接成△形全压运行;当KM1、KM2主触头先断开,KM3、KM4主触头后闭合时,电机M接入直流电源进行能耗制动[1]。
2.2 控制电路图 2 Y-△降压启动能耗制动控制电路Y-△降压启动能耗制动控制电路如图2所示。
现分析控制电路工作原理:按下启动按钮SB2,KM1线圈得电,KM1常开自锁触头闭合,使KM3、KT线圈得电,电机M接成Y形降压启动并开始计时,当KT时间继电器计时时间结束,KT延时断开常闭触头断开,KM3线圈失电,KM3常闭触头恢复闭合,解除互锁,而KT延时闭合常开触头闭合,KM2线圈得电,KM2常开自锁触头闭合,使电机M接成△形全压运行。
当按下制动按钮SB1时,首先SB1常闭触头先断开,KM1、KM2线圈失电,电机M主电源断开,然后SB1常开触头后闭合,KM1常闭触头恢复闭合,解除互锁,KM4线圈得电,KM4常开触头闭合,KM3线圈得电,使电机M接入直流电源进行能耗制动,当电机M迅速停转后,再松开制动按钮SB1,SB1常开触头恢复断开,KM4、KM3线圈失电,直流电源断开。
《电力拖动控制线路与技能训练》教学大纲及复习习题库版本:中国电力出版社主编:程建龙定价:29.80元适用班级:13电大二代课人:田芳于长超出题人:田芳于长超制定时间:2014年审核人:电力拖动》教学大纲第一章异步电动机的基本控制线路及常用低压电器掌握:低压电器的使用维护、型号命名、选择、安装。
掌握手动、点动、连续等常规电路的原理、分析方法。
重难点:低压电器的范围及应用、低压电器的分类、常用低压配电电器及其使用注意事项、常用低压控制电器及其使用注意事项,电路原理分析。
第二章直流、同步电动机基本控制线路及控制线路设计方法了解:直流电动机的结构与原理重难点:他励直流电动机的基本控制线路删除:并励直流电动机的基本控制线路、串励直流电动机的基本控制线路第三章常用机械的电气控制线路了解:常用控制线路电路分析、生产机械电器控制设备的维护及检修方法。
重难点:生产机械电器控制设备的原理分析。
第四章电动机的自动调速及其调试与维修概述(删除)电力拖动试题库重点部分绪论一、填空1、电源分交流电源和()。
二、名词解释2、电力拖动三、简答3、电力拖动装置一般由哪几部分组成?4、电力拖动装置中电动机的作用是什么?5、按电动机的组合数量来分,电力拖动的发展经历了哪几个阶段?第一章异步电动机的基本控制线路及常用低压电器第一节三相异步电动机的手动正转控制线路一、填空6、低压断路器类型品种很多,常用的有()、框架式、()、漏电保护式。
7、低压熔断器广泛用于低压配电系统和控制系统中,主要用作()保护。
8、低压熔断器在使用时()联在被保护的电路中。
9、负荷开关分为()负荷开关和封闭式负荷开关两种。
10、负荷开关一般在照明电路和功率小于()KW的电动控制线路中。
11、低压断路器又称()。
13、低压控制电器依靠人力操作的控制电器称为( ) 。
14、低压控制电器根据信号能自动完成动作的称为( ) 。
15、断路器的文字符号是( ) 。
17、熔断器文字符号是()。
授课时间授课班级上课地点 教学单元名称三相异步电动机的反接制动 课时数 0.4 教学目标 1.三相异步电动机的反接制动几种方式。
2.培养学生分析问题、解决问题的能力。
教学重点 反接制动几种方式教学难点反接制动几种方式 目标群体 普专教学环境 实训室教学方法 项目驱动、讲练结合等时间安排 教学过程设计1. 转速反向反接制动(或称倒拉反向反接制动)图4-36电动机转速反向反接制动电路图转速反向反接制动如图4-36,异步电机转子串接较大电阻接通电源,起动转矩方向与重物G 产生的负载转矩的方向相反,而且T st <T L ,在重物G 的作用下,迫使电机反T st 的方向旋转,并在重物下放的方向加速。
其转差率s 为1)(11>--=n n n s (4-12) 随|-n|的增加,s 、I 2及T em 都增大,直到满足T=T L (图4-37B 点),电机转速为-n 2稳定运行,重物匀速下放。
图4-38中所示机械特性的第四象限(实线部分),即为异步电机转速反向反接制动的机械特性。
图4-37转速反向反接制动时的异步电机特性转速反向反接制动适用于低速匀速下放重物。
电动机工作在反接制动状态时,它由轴上输入机械功率,定子又通过气隙向转子输送电功率,这两部分功率都消耗在转子电路的总电阻上。
2. 定子两相反接的反接制动图4-38 异步电机定子两相反接的电路图与机械特性(a)电路图;(b)机械特性设异步电动机带反抗性负载原来稳定运行于电动状态如图4-38)的A 点,为了迅速停车或反转,可将定子两相反接,并同时在绕线式异步电动机转子回路中接电阻R f ,如图4-38)所示,由于定子相序的改变,使旋转磁场的方向发生改变,从而使异步电动机的工作点从原来电动机运行机械特性上的A 点,转移到新的机械特性(通过-n 1的特性)上的B 点。
此时,由于转子切割磁场的方向与电动状态时相反,则感应电动势的方向也改变。
此时的转差率为1n n n n n n s 111>+=---= (4-13)由上式可知,s>1是反接制动的特点(含转速反向和两相反接两种制动)。
三相异步电动机正反转控制线路1.课题引入:(1)接触器联锁正反转控制线路的优点是工作安全可靠,缺点是操作不便。
因为电动机从正转变为反转时,必须先按下停止按钮后,才能按反转启动按钮,否则由于接触器的联锁作用,不能实现反转。
按钮联锁控制线路的缺点是容易产生电源两相短路故障。
例如:当正转接触器KMl发生主触头熔焊或被杂物卡住等故障时,即使KMl线圈失电,主触头也分断不开,这时若直接按下反转按钮SB2,KM2得电动作,触头闭合,必然造成电源两相短路故障。
所以采用此线路工作有一定的不安全隐患。
因此在实际工作中,经常采用的是按钮、接触器双重联锁的正反转控制线路。
按钮联锁控制线路原理图接触器联锁控制线路原理图(2)双重联锁控制线路的工作原理:1)双重联锁的定义:第一重是交流接触器常闭触头与对方的线圈相串联而构成的联锁。
另一重是复合按钮的常闭触头串联在对方的电路中而构成的联锁。
2)工作原理分析: 先合上电源开关QS :正转控制按下SB1SB1 常闭触头先分断对KM2联锁(切断反转控制电路)SB1常开触头后闭合线圈得电KM1自锁触头闭合自锁KM1主触头闭合KM1联锁触头分断对KM2联锁(切断反转控制电路)电动机M 启动连续正转11反转控制按下SB2SB2常闭触头先分断KM1线圈失电KM1自锁触头分断解除自锁KM1主触头分断电动机M 失电KM1联锁触头恢复闭合KM2线圈得电SB2常开触头后闭合KM2自锁触头闭合自锁KM2主触头闭合KM2联锁触头分断对KM1联锁(切断正转控制电路)若要停止,按下停止按钮SB3,整个控制电路失电,主触头分断,电动机 M 失电停转.电动机M 启动连续反转2233双重联锁控制线路原理图(3)双重联锁控制线路的自检步骤:安装完毕的控制线路板,必须经过认真检查以后,才允许通电试车,以防止错接、漏接造成不能正常运转或短路事故的发生。
1)按电路图或接线图从电源端开始,逐段核对接线及接线端子处线号是否正确,有无漏接、错接之处。
摘要生产机械往往要求运动部件可以实现正反两个方向的起动,这就要求拖动电动机能作正、反向旋转。
由电机原理可知,改变电动机三相电源的相序,就能改变电动机的转向。
本文设计系统的控制是采用PLC的编程语言——梯形图,梯形语言是在可编程控制器中的应用最广的语言,因为它在继电器的基础上加进了许多功能,使用灵活的指令,使逻辑关系清晰直观,编程容易,可读性强,所实现的功能也大大超过传统的继电器控制电路,可编程控制器是一种数字运算操作的电子系统,它是专为在恶劣工业环境下应用而设计,它采用可编程序的存储器,用来在内部存储执行逻辑运算,顺序控制,定时,计数和算术等操作的指令,并采用数字式,模拟式的输入和输出,控制各种的机械或生产过程。
关键词:三相异步电动机;PLC;可编程控制;梯形图目录摘要 (I)引言 (1)1PLC基础的知识 (2)1.1关于PLC的定义 (2)1.2PLC的工作原理 (2)1.3PLC的应用领域 (3)1.4PLC的发展趋势 (4)2三相异步电动机的PLC控制 (5)2.1三相异步电动机正反转控制电路的特点 (5)2.1.1三相异步电动机正反转控制电路的主控制电路 (5)2.1.2按钮接触器联锁的正反转控制电路特点及应用分析 (5)2.2交流接触器的正反转自动控制线路工作过程 (6)2.3PLC的选择 (7)2.4三相异步电动机使用PLC控制优点 (7)2.5输入输出定义 (7)2.6输入输出接线图 (8)参考文献 (10)引言电动机的正反转控制大量应用于工业生产当中,而快速准确安全的控制更能够保证生产的安全可靠和产品的品质。
PLC控制三相异步电动机实现正反转,其运行性能更好,且在满足上述需要的前提下还可节省各种材料。
生产中许多机械设备往往要求运动部件能向正反两个方向运动。
如机床工作台的前进与后退起重机的上升与下降等,这些生产机械要求电动机能实现正反转控制。
改变通入电动机定子绕组的三相电源相序,即把接入电动机的三相电源进线中的任意两根对调,电动机即可反转。
三相异步电动机的制动控制线路(一)
许多机床,如万能铣床、卧式镗床、组合机床等,都要求能迅速停车和准确定位。三相异步电动机从
切断电源到安全停止旋转,由于惯性的关系总要经过一段时间,这样就使得非生产时间拖长,影响了劳动
生产率,不能适应某些生产机械的工艺要求。在实际生产中,为了保证工作设备的可靠性和人身安全,为
了实现快速,准确停车,缩短辅助时间,提高生产机械效率,对要求停转的电动机采取措施,强迫其迅速
停车,这就叫“制动”。制动停车的方式有两大类:即机械制动和电气制动。机械制动有电磁抱闸制动、电
磁离合器制动等;电气制动有反接制动、能耗制动、回馈制动等,它实质是使电动机产生一个与原来转子的
转动方向相反的制动转矩。机床中经常应用的电气制动是反接制动和能耗制动。
一、机械制动控制线路
1、电磁抱闸制动线路
电磁抱闸制动是机械制动,其设计思想是利用外加的机械作用力,使电动机迅速停止转动。由于这个
外加的机械作用力,是靠电磁制动闸紧紧抱住与电动机同轴的制动轮来产生的,所以叫做电磁抱闸制动。
电磁抱闸制动又分为两种,即断电电磁抱闸制动和通电电磁抱闸制动。
(1) 断电电磁抱闸制动 制动闸平时一直处于“抱住”状态。
图1 断电电磁抱闸制动控制线路
图1是断电电磁抱闸制动的控制线路原理图。图中1是电磁铁,2是制动闸,3是制动轮,4是弹簧。
制动轮通过联轴器直接或间接与电动机主轴相连,电动机转动时,制动轮也跟着同轴转动。
线路工作原理为:
•
合上电源开关QS。
•
按下起动按钮SB,接触器KM1得电吸合,电磁铁绕组接入电源,电磁铁芯向上移动,抬起制动
闸,松开制动轮。
•
KM1得电后,KM2顺序得电,吸合,电动机接入电源,起动运转。
•
按下停止按钮SB1,接触器KM1、KM2失电释放,电动机和电磁铁绕组均断电,制动闸在弹簧作
用下紧压在制动轮上,依靠磨擦力使电动机快速停车。
•
由于在电路设计时是使接触器KM1和KM2顺序得电,使得电磁铁线圈YA先通电,待制动闸松开
后,电动机才接通电源。这就避免了电动机在起动前瞬时出现的“电动机定子绕组通电而转
子被掣住不转的短路运行状态”。这种断电抱闸制动的结构形式,在电磁铁线圈一旦断电或
未按通时电动机都处于制动状态,故称为断电抱闸制动方式。
•
这种控制线路不会因网络电源中断或电气线路故障而使制动的安全性和可靠性受影响。但电动
机制动时,其转轴不能转动,也不便调整;而当电机正常运转时,KM1和电磁线圈长期通电。
(2)通电电磁抱闸制动 制动闸平时一直处于“松开”状态。图2是通电电磁抱闸制动控制线路原理
图。
图2通电电磁抱闸制动控制线路
线路工作原理为:
•
按下起动按钮SB2,接触器KM1线圈得电吸合,电动机起动运行。
•
按停止按钮SB1,接触器KM1失电复位,电动机脱离电源。
•
接触器KM2线圈得电吸合,电磁铁线圈通电,铁芯向下移动,使制动闸紧紧抱住制动轮,同时
时间继电器KT得电。
•
当电动机惯性转速下降至零时,时间继电器KT的常闭触点经延时断开,使KM2和KT线圈先后
失电,从而使电磁铁绕组断电,制动闸又恢复了“松开”状态。
电磁抱闸制动的优点是制动力矩大,制动迅速,安全可靠,停车准确。其缺点是制动愈快,冲击振动
就愈大,对机械设备不利。由于这种制动方法较简单,操作方便,所以在生产现场得到广泛应用,电磁抱
闸制动装置体积大,对于空间位置比较紧凑的机床一类的机械设备来说,由于安装困难,故采用较少。至
于选用哪种电磁抱闸制动方式,要根据生产机械工艺要求决定。一般在电梯、吊车、卷扬机等一类升降机
械上,应采用断电电磁抱闸制动方式;象机床一类经常需要调整加工件位置的机械设备,往往采用通电电
磁抱闸制动方式。
2、电磁离合器制动线路
图3是电磁离合器制动控制线路。电磁离合器YC的线圈接入控制线路。
图3 电磁离合器制动控制线路
线路工作原理为:
•
当按下SB2或SB3,电动机正向或反向起动, 由于电磁离合器的线圈YC没有得电,离合器不工
作。
•
按下停止按钮SB1,SB1的常闭触点断开,将电动机定子电源切断,SB1的常开触点闭合使电磁
离合器YC得电吸合,将磨擦片压紧,实现制动,电动机惯性转速迅速下降。
•
松开按钮SB1时,电磁离合器线圈断电,结束强迫制动,电动机停转。
电磁离合器的优点是体积小,传递转矩大,操作方便,运行可靠,制动方式比较平稳且迅速,并易于
安装在机床一类的机械设备内部。