1
∠ 的对边 =
= .
2
斜边
A
可得 AB=2BC=70m,即需要准备70m长的水管.
C
知识讲解
1.正弦
如图,任意画一个Rt△ABC,使∠C=90°,∠A=45°,计
算∠A的对边与斜边的比
A
BC
AB
,你能得出什么结论?
即在直角三角形中,当一个锐角等于45°
时,不管这个直角三角形的大小如何,这
数形结合,构造直角三角形).
2.sinA,cosA,tanA各是一个完整的符号,分别表示∠A的正弦
、余弦和正切,记号中习惯省去“∠”;
3.sinA,cosA,tanA分别是一个比值.注意比的顺序,且在直角
三角形中sinA,cosA,tanA均大于0,无单位.
4.sinA,cosA,tanA的大小只与∠A的大小有关,而与直角三角
切比3,分子根号别忘添.
30°,45°,60°角的正切值可以看成是 3, 9 , 27.
当A、B为锐角时,
若A≠B,则
sinA≠sinB,
cosA≠cosB,
tanA≠tanB.
知识讲解
注意
1.从函数角度理解∠A的锐角三角函数:把∠A看成自
变量,其取值范围是0°<∠A<90°,sinA,cosA,
在Rt△ABC中,如果锐角A确定,
那么∠ A 的对边与斜边的比、邻
边与斜边的比都是一个定值.
B
斜
边
A
∠A的邻边
∠A的对边
┌
C
知识讲解
归纳:
在有一个锐角相等的所有直角三角形中,这个锐角的邻边与斜
边的比值是一个常数,与直角三角形的大小无关.