双孔箱涵框架配筋计算
- 格式:xls
- 大小:24.00 KB
- 文档页数:3
框架梁的钢筋配筋率是根据设计要求和构件尺寸计算出来的,下面是一个简单的实例:假设有一个宽度为400毫米、高度为600毫米的矩形截面框架梁,长度为5米,设计要求承受最大荷载为100吨。
假定采用HRB400级别的钢筋,则可以按如下步骤计算梁的钢筋配筋率:1. 计算梁的截面面积:截面面积=宽度×高度=0.4m×0.6m=0.24平方米。
2. 根据设计要求计算梁的弯矩:最大弯矩=M=100吨×5米×10=5000kN·m。
3. 假设采用直径为20毫米的HRB400钢筋进行配筋,则单根钢筋的抗弯能力为Asfy=π×(20毫米/2)²×275MPa≈1539.38mm²。
4. 确定钢筋的配筋率:As/A=5000kN·m/(0.24m²×275MPa)=76.32%。
5. 对于钢筋的层间距离,根据混凝土结构设计规范的相关规定,可按照以下公式计算:h0=0.45×min(h, b)≈0.45×400毫米≈180毫米。
6. 计算钢筋的数量:As=As/A×A=0.76×0.24平方米×1539.38mm²≈281.67mm²。
因此,需要配筋的钢筋根数N≈281.67mm²/1539.38mm ²≈0.183根。
7. 将钢筋等分到每层中,计算每层的钢筋根数:每层钢筋根数=N/2≈0.09根。
8. 按照设计要求和规范要求确定钢筋的位置、间距和弯曲半径等参数。
需要注意的是,上述计算仅为示例,实际的梁的钢筋配筋率需要根据具体的设计要求和结构尺寸进行计算。
席家泵站涵洞结构计算书一、已知条件堤顶至顶板填土高度H d=1.08m填土内摩擦角φ=25°洞身每孔净宽B=2m洞身每孔净高H=2m底板厚d1=0.4m顶板厚d2=0.4m侧墙厚d3=0.4m中隔板厚d4=0.3m过流量Q=5.50m3/s混凝土强度等级C25工况为洞内无水0.2*0.2二、荷载计算1、作用于洞顶的均布垂直土压力q t2H d /B 1=1.08/5.1=0.02,查表得K s =1.0。
q t2=1.20×K s γH d =1.20×1.0×18×1.08=23.33kN/m 2、作用于侧墙水平分布土压力q t3、q t4 q t3=1.20×γ(H d +d 2)tan 2(45-2φ)=1.20×18×(1.08+0.4)tan 2(45°-2250)=12.97kN/mq t4=1.20×γ(H d +d 2+H)tan 2(45-2φ)=1.20×18×(1.08+0.4+2.0)tan 2(45°-2250)=30.51kN/m作用于侧墙的荷载无水压力,则 q 3=q t3=12.97 kN/m ,q 4=q t4=30.51 kN/m 3、洞顶承受的车辆荷载Q Q=A P=()()4.230tan 26.130tan 219600++d d H H =()()4.230tan 08.126.130tan 08.121960+⨯⨯+⨯⨯=18.87 kN/m 3、作用于顶板的垂直均布荷载总和q 2q 2=q t2+1.05×γc d 2+1.2×Q=23.33+1.05×25×0.4+1.2×18.87=56.47kN/m 4、作用于底板底面的垂直均布荷载总和q 1 q 1=q 2+143)2(05.1B d d H c +γ=56.47+1.05×25×2×(2×0.4+0.3)/5.1 =67.79 kN/m 二、固端弯矩计算M FAC =-12212L q =-1235.247.562⨯=-25.99kN·mM F CA =- M F AC =25.99kN·mM FBD =12211L q =1235.279.672⨯=31.20kN·mM F DB =- M F BD =-31.20kN·mM F AB =()30122234223Lq q L q -+=()304.297.1251.30124.297.1222⨯-+⨯=9.59kN·mM FBA =()20122234223L q q L q --- =()204.297.1251.30124.297.1222⨯--⨯-=-11.28kN·m三、抗弯劲度系数K AC =132124L d =35.2124.043⨯⨯=0.00908K BD =131124L d =35.2124.043⨯⨯=0.00908K AB =K BA =233124L d =4.2124.043⨯⨯=0.00889四、杆端弯矩分配系数 μAC =AB AC AC K K K +=00889.000908.000908.0+=0.505μAB =AB AC AB K K K +=00889.000908.000889.0+=0.495μBA =BD BA BA K K K +=00908.000889.000889.0+=0.495μBD =BD BA BD K K K +=00908.000889.000908.0+=0.505五、杆端弯矩传递系数各杆件向远端传递系数均为1/2。
小型涵洞钢筋计算公式在道路建设中,小型涵洞是一种常见的结构,用于解决道路交叉、河流穿越等问题。
小型涵洞的设计和施工需要考虑到各种因素,包括地质条件、水流情况、交通流量等等。
其中,钢筋的计算是小型涵洞设计中非常重要的一部分。
本文将介绍小型涵洞钢筋计算的相关公式和方法。
首先,我们需要了解小型涵洞的结构和受力情况。
小型涵洞通常由墩柱、拱肋和顶板组成,承受着来自地表和水流的压力。
在设计小型涵洞的钢筋时,需要考虑到这些受力情况,以保证结构的安全和稳定。
钢筋的计算涉及到钢筋的截面积、受力情况和混凝土的强度等因素。
在小型涵洞设计中,常用的钢筋计算公式包括以下几种:1. 钢筋截面积计算公式。
钢筋截面积的计算公式为,As = (M / (f d)) 1000。
其中,As为钢筋截面积,M为弯矩,f为混凝土的抗压强度,d为截面高度。
这个公式用于计算钢筋的截面积,以满足结构的强度要求。
2. 钢筋屈服弯矩计算公式。
钢筋屈服弯矩的计算公式为,Mf = As fy (d a)。
其中,Mf为钢筋的屈服弯矩,As为钢筋截面积,fy为钢筋的屈服强度,d为截面高度,a为受压区高度。
这个公式用于计算钢筋的屈服弯矩,以确定钢筋的数量和布置方式。
3. 钢筋配筋率计算公式。
钢筋配筋率的计算公式为,ρ = (As / bd) 100%。
其中,ρ为钢筋配筋率,As为钢筋截面积,b为截面宽度,d为截面高度。
这个公式用于计算钢筋的配筋率,以确定结构的受力性能。
以上公式是小型涵洞钢筋计算中常用的公式,通过这些公式可以计算出小型涵洞结构中钢筋的数量、截面积和布置方式,以满足结构的强度和稳定性要求。
除了以上公式外,还需要考虑到小型涵洞的实际情况,包括地质条件、水流情况、交通流量等因素。
在实际设计中,需要根据这些因素进行综合考虑,以确定钢筋的具体参数和布置方式。
在实际施工中,还需要对钢筋进行验收和监控,以确保钢筋的质量和安全性。
同时,还需要对结构进行定期检测和维护,以保证结构的安全和可靠性。
一. 设计资料地下通道净跨径L0=6m ,净高h0=3.5m ,箱顶填土厚为3m ,土的内摩擦角φ为30°,填土的密度γ1=20KN/m3。
箱涵主体结构混凝土强度等级为C30,箱涵基础垫层混凝土强度等级为C15,纵向受力钢筋采用HRB335钢筋。
地基为强风化砂岩。
汽车荷载等级为城-A 级。
二. 设计计算 (一)尺寸拟定顶板、底板厚度δ=50cm 侧墙厚度t=50cm故计算长度 m t L l 5.65.060=+=+=m H h 0.45.05.30=+=+=δ(二)荷载计算 1.恒载竖向恒载标准值 221/5.725.025320m KN H q v =×+×=•+•=δγγ水平恒载标准值顶板处22121/20320)23045()245(m KN tg H tg q h =××−=••−=oooγφ底板处22122/50)5.43(20)23045()()245(m KN tg h H tg q h =+××−=++••−=oooδγφ2.活载一个汽车后轮荷载横向扩散长度28.103.230326.0fo =×+tg ,故两辆车相邻车轴由荷载重叠;一个汽车后轮荷载纵向扩散长度2.626.386.1303225.0p f o =×+tg 。
按两辆车相邻计算车轴荷载扩散面积横向分布长m tg a 96.83.12)8.130326.0(=+×+×+=o 。
纵向分布长分两种情况,第一种情况考虑1、2、3轴荷载重叠,此时纵向分布长m tg b 52.82.16.32)303225.0(=++××+=o ;第二种情况只考虑4轴荷载,此时纵向分布长m tg b 72.32)303225.0(=××+=o 。
车辆荷载垂直压力,按纵向分布第一种情况计算,2/91.852.896.8)14014060(2m KN q v =×++×=车;按纵向分布第二种情况计算,2/0.1272.396.82002m KN q v =××=车。
(一)孔径及净空净跨径L 0 = 6.00m 净高h 0 = 3.00m(二)设计安全等一级结构重要性系数r 0 =1.1(三)汽车荷载荷载等级公路 —Ⅰ级(四)填土情况涵顶填土高度H = 1.5m 土的内摩擦角Φ =35°填土容重γ1 =19kN/m 3地基容许承载力[σ0] =260kPa(五)建筑材料普通钢筋种类HRB335主钢筋直径22mm 钢筋抗拉强度设计值f sd =280MPa 钢筋弹性模量E s =200000MPa涵身混凝土强度等级C30涵身混凝土抗压强度设f cd =13.8MPa 涵身混凝土抗拉强度设f td = 1.39MPa 钢筋混凝土重力密度γ2 =25kN/m 3基础混凝土强度等级C20混凝土重力密度γ3 =24kN/m 3(一)、截面尺寸拟顶板、底板厚度δ =0.5m C 1 =0.15m 侧墙厚度t =0.5m C 2 =0.15m 横梁计算跨径L P = L 0+t= 6.5m L = L 0+2t=7m 侧墙计算高度h P = h 0+δ= 3.5m h = h 0+2δ =4m 基础襟边 c =0.1m 基础高度 d =0.1m 基础宽度B =7.2m图 L-01(一)恒载恒载竖向压力p 恒 = γ1H+γ2δ =41.00kN/m 2恒载水平压力顶板处e P1 = γ1Htan 2(457.72kN/m 2底板处e P2 = γ1(H+h)tan228.32kN/m 2钢 筋 混 凝 土 箱 涵 结 构 设 计一 、 设 计 资 料二 、 设 计 计 算三 、 荷 载 计 算(二)活载汽车后轮着地宽度一个汽车后轮横向分布> 1.3/2 m > 1.8/2 m故车轮压力扩散线相重 a =(0.6/2+Ht3.100m同理,纵向,汽车后0.2/2+Htan30°=0.966 m > 1.4/2 m故 b =(0.2/2+Ht 1.400m ∑G =140kN 车辆荷载垂直压力q 车 = ∑G/(a×b)32.26kN/m 2车辆荷载水平压力e 车 = q 车tan 2(45°8.74kN/m 2(一)构件刚度比K =(I 1/I 2)×0.54(二)节点弯矩和1、a种荷载作用下 (图涵洞四角节点弯矩M aA = M aB = M aC =-1/(K+1)·pL P 2/12横梁内法向力N a1 = N a2=0侧墙内法向力N a3 = N a4=pL P /2恒载p = p 恒 =41.00kN/m 2M aA = M aB= M aC =-93.83kN ·m N a3 = N a4=133.25kN 车辆荷载p = q 车 =32.26kN/m 2M aA = M aB= M aC =-73.82kN ·m 图 L-02N a3 = N a4=104.84kN2、b种荷载作用下 (图M bA = M bB = M bC =-K/(K+1)·ph P 2/12N b1= Nb2=ph P/2N b3 = N b4=0恒载p = e P1 =7.72kN/m 2M bA = M bB= M bC =-2.76kN ·m N b1 = N b2=13.52kN3、c种荷载作用下 (图图 L-03M cA = M cD =-K(3K+8)/[M cB = M cC =-K(2K+7)/[N c1 =ph P/6+(McA-M cB )/h P N c2 =ph P /3-(M cA -N c3 = N c4=0恒载p = e P2-e P1 =20.60kN/m 2M cA = M cD =-4.00kN ·m M cB= M cC=-3.36kN ·m N c1 =11.83kN N c2 =24.21kN图 L-044、d种荷载作用下 (图1.17 m0.6/2+Htan30°=四 、 内 力 计 算M dA =-[K(K+3)/[M dB =-[K(K+3)/[M dC =-[K(K+3)/[M dD =-[K(K+3)/[N d1 =(M dD-M dC )/h P N d2 =ph P -(M dD -M dC )/h P N d3 = N d4=-(M dB -M dC )/L P车辆荷载p = e 车 =8.74kN/m 2M dA =-16.68kN ·m M dB =10.09kN ·m M dC =-13.21kN ·m M dD =13.56kN ·m 图 L-05N d1 =7.65kN N d2 =22.95kN N d3 = N d4=-3.59kN5、节点弯矩、轴力计算(1)按《公路桥涵设计(2)按《公路桥涵设计(3)按《公件内力计1、顶板 (图L-06)x =L P /2P = 1.2p 恒+1.4q 车 =94.36kN N x = N 1 =46.19kN M x=M B +N 3x-271.64kN·m V x = Px-N 3=5.02kN2、底板 (图L-07)ω1 =1.2p 恒+1.4(q 车-=83.72kN/m 2ω2 =1.2p 恒+1.4(q 车=105.01kN/m 2x =L P /2N x = N 2 =84.94kN M x =M A +N 3x-ω1·x 2/2-=270.75kN ·m V x =ω1x+x 2(ω2-ω=-12.28kN3、左侧墙(图L-08)ω1 =1.4e P1+1.4e 车=23.05kN/m 2ω2 =1.4e P2+1.4e 车51.88kN/m 2x =h P /2N x = N 3 =301.65kNM x =M B +N 1x-ω1·x 2/2-=-172.20kN ·m V x =ω1x+x 2(ω2-ω=6.76kN 4、右侧墙(图L-09)ω1 =1.4e P1 =10.81kN/m 2ω2=1.4e P2 =39.65kN/m 2x =h P /2N x = N 4 =301.65kN图 L-08图 L-09图 L-06图 L-07M x =M C +N 1x-ω1·x 2/2-=-186.09kN ·m V x =ω1x+x 2(ω2-ω=-14.66kN5、构件内力汇总表(1)承载能(一)承载能力极1、顶板 (B-C)钢筋按左、右对称,用(1)跨中l 0 =6.50mh =0.50ma =0.05m h 0 =0.45mb =1.00mM d =271.64 kN ·m ,N d =46.19 kN , V d=5.02 kNe 0 = M d /N d=5.881i =h/121/2=0.144m五 、 截 面 设 计(3)采用上述计算方法,以及《公路桥涵设计通用规范》(JTG D60—2004)第4.1.7条规定,可得构件在正常使用极限状态下长期组合如下表:(2)采用上述计算方法,以及《公路桥涵设计通用规范》(JTG D60—2004)第4.1.7条规定,可得构件在正常使用极限状态下短期组合如下表:长细比l 0/i =45.03> 17.5由《公路钢筋混凝土及ξ1 =0.2+2.7e 035.483> 1.0 ,取ξ1 =1.00ξ2=1.15- 1.020> 1.0 ,取ξ2 =1.00η =1+(l 0/h)2ξ1ξη = 1.009由《公路钢筋混凝土及e = ηe 0+h/2-a 6.135mr 0N d e =f cd bx(h 0-x/2)311.73 =13800x(0.45-x/2)解得x =0.053 m≤ξb h 0 =0.56×0.45 =0.252 m 故为大偏心受压构件。
框架梁配筋计算上部贯通筋长度=各跨长之和-左支座内侧-右支座内侧+锚固+搭接长度 端支座锚固长度的判别条件:1、当支座宽度-保护层>=Lae且>=0.5hc+5d时,锚固长度=max(Lae,0.5hc+5d)2、支座宽度-保护层<Lae时,锚固长度=支座宽度-保护层+15*D端支座负筋上排钢筋长度=Ln/3+锚固下排钢筋长度=Ln/4+锚固(注:Ln为梁净跨长,锚固同梁上部贯通筋端锚固)中间支座负筋上排钢筋长度=2*Ln/3+支座宽度下排钢筋长度=2*Ln/4+支座宽度架立筋架立筋长度=Ln/3+2*搭接(现在平法中搭接是150MM)下部钢筋框架梁下部钢筋=净跨长度+2*锚固(或0.5Hc+5D)注:HC指柱宽,D指钢筋直径梁侧面钢筋(以通长为例)梁侧面钢筋长度=各跨长之和-左支座内侧-右支座内侧+锚固+搭接长度(当为梁侧面构造时,搭接与锚固长度为15*D;当为梁侧面受扭纵向钢筋时,锚固长度同框架梁下部钢筋)拉筋长度=梁宽-2*保护层+2*11.9d+d拉筋根数=(梁跨净长-50*2)/箍筋非加密间距*2+1)箍筋长度=2*(梁高-2*保护层+梁宽-2*保护层)+(11.9*2+4)d 根数计算=2*[(加密区长度-50)/加密间距+1]+(非加密区长度/非加密间距-1)注:当为一级抗震时,箍筋加密长度为Max(2*梁高,500) 当为二~四级抗震时,箍筋加密长度为Max(1.5*梁高,500)吊筋和次梁加筋吊筋长度=2*20D(锚固长度)+2*斜段长度+次梁宽度+2*50 注:当梁高≤800时,斜段长度=(梁高-保护层*2)/sin(45°) 当梁高>800时,斜段长度=(梁高-保护层*2)/sin(60°)关于现浇板板内钢筋常见的主要有:(1)板水平受力底筋,竖向受力底筋(板中间层筋),(2)板水平受力面筋,竖向受力面筋(3)支座非贯通纵筋(边支座与中间支座)(4)分布筋板受力底筋:受力钢筋长度=板跨净长+两端锚固(在梁宽/2,5*D中取大值) 受力钢筋根数=(板跨净长-2*50)/布置间距+1板受力面筋:受力钢筋长度=板跨净长+两端锚固(La)受力钢筋根数=(板跨净长-2*50)/布置间距+1板受力面筋在端支座的锚固有三种构造:(1)直接取La(2)梁宽+板厚-2*保护层(3)梁宽/2+板厚-2*保护层板负筋及分布筋(一) 板边支座负筋板边支座负筋长度=左标注/(右标注)+左弯折/(右弯折)+锚固(同面筋的锚固取值)(二)板中间支座负筋板边中间支座负筋长度=左标注+右标注+左弯折+右弯折+支座宽度分布筋长度为=L净跨-两侧负筋的标注之和+2*300分布筋根数:(左标注-50)/分布筋间距+1+(右标注-50)/分布筋间距+1。
)203(45h)tg (H e 21p2-+γ=可编辑修改精选全文完整版箱涵结构计算一、设计资料净跨径L 0为4.5m ,净高位2m ,箱涵填土高H 为0.7m ,土的摩擦角ϕ为30,土的容重γ1=19KN/m ³,设箱涵采用C20砼和HRB335钢筋。
二、设计计算(一)截面尺寸拟定(见图1) 顶板、底板厚度δ=40cm (C 1=15cm )侧墙厚度 t=36cm (C 2=15cm ) 故 L p =L 0+t=4.5+0.36=4.86mh p =h o +δ=2.0+0.4=2.4m(二)荷载计算 1.恒载 恒载竖向压力P =γ1 H+γ2δ=19×0.7+25×0.4 = 23.2 KN/㎡ 恒载水平压力 顶板处=19×0.7×tg ²30º=4.43 KN/㎡底板处:=19 ×(0.7+2.8)×tg ²30 =22.16 KN/㎡2.活载公里-Ⅱ级车辆荷载由《公路桥涵设计通用规范》(JTG D60-2004)第4.3.4条计算 一个汽车后轮横向分布宽>1.32m 0.62+0.7tg30°=0.704m <1.82m 故,两列车相邻车轴有荷载重叠,应按如下计算横向分布宽度a=(0.62+0.7tg30°)×2+1.3=2.708 m 同理,纵向:0.22+0.7tg30°=0.504<1.4/2m 故b=(0.22+ 0.7tg30°)×2=1.008m车辆荷载垂直压力q 车= 1402.708×1.008= 51.29 KN/㎡车辆荷载水平压力e 车=51.29tg ²30°=17.10 KN/㎡ )203(45h)tg (H e 21p2-+γ=三、 内力计算 1 .构件刚度比677.086.44.236.011214.01121I e 22121p1=⨯⨯⨯⨯⨯=⨯=p L h I2 .节点弯矩和轴向力计算 (1)α种荷载作用下(图2) 涵洞四角节和弯矩: M aA =M aB =M aC =M aD = - 1K+1 · PLp²12N a1=N a2=0 N a3= N a4= PLp2恒载(p=P )M aA = -10.677+1 · 23.3×4.86²12 = -27.351 KN ·mN a3= 23.3×4.862 = 56.62KN车辆荷载(p=q 车)M aA = -10.677+1 · 51.29×4.86²12 = 60.56 KN ·mN a3= 51.29×4.862 = 124.63KN(2)b 种荷载作用下(图3) M aA =M aB =M aC =M aD = -K K+1 · Php²12N b1=N b2= Php2N a3= N a4=0 恒载(p=eP1) M bA = -0.6770.677+1 ·4.43×2.4²12=-0.858 KN ·mN b1= 4.43×2.42 =5.316KN(3)C 种荷载作用下(图4)60Ph )3K )(1K ()8K 3(K M M 2p cD cA •+++-== 60Ph )3K )(1K ()7K 2(K M M 2p cC cB •+++-== p cBcA p 1h M M 6Ph Nc -+=pcBcA p 2h M M 3Ph Nc --=恒载(p=ep2-ep1=22.16-4.43=17.73 KN )604.273.17)3677.0)(1677.0()8677.03(677.0M M 2cD cA ⨯⨯+++⨯-== = -1.875 KN ·m604.273.17)3677.0)(1677.0()7677.02(677.0M M 2cC cB ⨯⨯+++⨯-== = -1.561 KN ·mKN 96.64.2561.1875.164.273.17Nc 1=+-+⨯=KN 315.144.2561.1875.134.273.17Nc 2=+--⨯=(4)d 种荷载作用下(图5)4Ph ]5K 152K 10)3K 4K (6)3K (K [M 2p 2dA ⋅++++++-= 4Ph ]5K 153K 5)3K 4K (6)3K (K [M 2p 2dB ⋅++-+++-= 4Ph ]5K 153K 5)3K 4K (6)3K (K [M 2p 2dC ⋅++++++-= 4Ph ]5K 152K 10)3K 4K (6)3K (K [M 2p 2dA⋅++-+++-= pDCdD d1h M M N -=pDCdD p d2h M M Ph N -=-车辆荷载(P=e 车=17.10 KN/m ²)0673.05677.0153677.05)3677.04677.0(6)3677.0(677.05K 153K 5)3K 4K (6)3K (K 22=+⨯+⨯++⨯++=++++++5797.05677.0152677.0105K 152K 10=+⨯+⨯=++4213.05677.0153677.055K 153K 5=+⨯+⨯=++m KN 932.1544.210.17)5297.00673.0(M 2dA ⋅-=⨯⨯+-=m KN 717.844.210.17)4213.00673.0(M 2dB ⋅=⨯⨯--=m KN 113.2544.210.17)4213.00673.0(M 2dC ⋅-=⨯⨯+-=pCdB d4d3h M d M N N --==m KN 617.1244.210.17)5297.00673.0(M 2dA ⋅=⨯⨯--=KN 72.154.2113.25617.12N d1=+=KN 32.2572.154.210.17N d2=-⨯=KN 96.686.4113.25717.8N N d4d3-=+-==(5)节点弯矩和和轴力计算汇总表(6)荷载效应组合。
1、孔径及净空净跨径L 0 = 4.00m 净高h 0 =4.00m2、设计安全等级一级结构重要性系数r 0 = 1.13、汽车荷载荷载等级公路 —Ⅰ级4、填土情况涵顶填土高度H =7.2m 土的内摩擦角Φ =35°填土容重γ1 =19kN/m 3地基容许承载力[σ0] =260kPa5、建筑材料普通钢筋种类HRB335主钢筋直径25mm 钢筋抗拉强度设计值f sd =280MPa涵身混凝土强度等级C40涵身混凝土抗压强度设计值f cd =18.4MPa 涵身混凝土抗拉强度设计值f td = 1.65MPa 钢筋混凝土重力密度γ2 =25kN/m 3基础混凝土强度等级C10混凝土重力密度γ3 =24kN/m 3(一)截面尺寸拟定 (见图L-01)顶板、底板厚度δ =0.4m C 1 =0.05m 侧墙厚度t =0.4m C 2 =0.05m 横梁计算跨径L P = L 0+t = 4.4m L = L 0+2t = 4.8m 侧墙计算高度h P = h 0+δ =4.4m钢 筋 混 凝 土 箱 涵 结 构 设一 、 设 计 资 料二 、 设 计 计 算h = h 0+2δ =4.8m 基础襟边 c =0.2m 基础高度 d =0.2m 基础宽度 B =5.2m(二)荷载计算1、恒载恒载竖向压力p 恒 = γ1H+γ2δ =146.80kN/m 2恒载水平压力顶板处e P1 = γ1Htan 2(45°-φ/2) =37.07kN/m 2底板处e P2 = γ1(H+h)tan 2(45°-φ/2) =61.79kN/m 22、活载汽车后轮着地宽度0.6m,由《公路桥涵设计通用规范》(JTG D60—2004)第4.3.4条规定,按30°角向一个汽车后轮横向分布宽> 1.3/2 m > 1.8/2 m故车轮压力扩散线相重叠,应按如下计算横向分布宽度a = (0.6/2+Htan30°)×2+1.3 =3.100m同理,纵向,汽车后轮着地长度0.2m0.2/2+Htan30°= 4.257 m > 1.4/2 m故b = (0.2/2+Htan30°)×2 =1.400m ∑G =140kN 车辆荷载垂直压力q 车 = ∑G /(a×b) =32.26kN/m 2车辆荷载水平压力e 车 = q 车tan 2(45°-φ/2) =8.74kN/m 2(三)内力计算1、构件刚度比K = (I 1/I 2)×(h P /L P ) =1.002、节点弯矩和轴向力计算(1)a种荷载作用下 (图L-02)涵洞四角节点弯矩M aA = M aB = M aC = M aD =-1/(K+1)·pL P 2/12横梁内法向力N a1 = N a2 =0侧墙内法向力N a3 = N a4 =pL P /2恒载p = p 恒 =146.80kN/m 2M aA = M aB = M aC = M aD =-118.42kN ·m N a3 = N a4 =322.96kN 车辆荷载p = q 车 =32.26kN/m 20.6/2+Htan30°=4.46 mM aA = M aB = M aC = M aD =-26.02kN·mN a3 = N a4 =70.97kN(2)b种荷载作用下 (图L-03)M bA = M bB = M bC = M bD =-K/(K+1)·ph P2/12N b1 = N b2 =ph P/2N b3 = N b4 =0恒载p = e P1 =37.07kN/m2M bA = M bB = M bC = M bD =-29.90kN·mN b1 = N b2 =81.56kN(3)c种荷载作用下 (图L-04)M cA = M cD =-K(3K+8)/[(K+1)(K+3)]·ph P2/60M cB = M cC =-K(2K+7)/[(K+1)(K+3)]·ph P2/60N c1 =ph P/6+(M cA-M cB)/h PN c2 =ph P/3-(M cA-M cB)/h PN c3 = N c4 =0恒载p = e P2-e P1 =24.71kN/m2M cA = M cD =-10.96kN·mM cB = M cC =-8.97kN·mN c1 =17.67kNN c2 =36.70kN(4)d种荷载作用下 (图L-05)M dA =-[K(K+3)/[6(K2+4K+3)]+(10K+2)/(15K+5)]·ph P2/4M dB =-[K(K+3)/[6(K2+4K+3)]-(5K+3)/(15K+5)]·ph P2/4M dC =-[K(K+3)/[6(K2+4K+3)]+(5K+3)/(15K+5)]·ph P2/4M dD =-[K(K+3)/[6(K2+4K+3)]-(10K+2)/(15K+5)]·ph P2/4N d1 =(M dD-M dC)/h PN d2 =ph P-(M dD-M dC)/h PN d3 = N d4 =-(M dB-M dC)/L P车辆荷载p = e车 =8.74kN/m2M dA =-28.91kN·mM dB =13.40kN·mM dC =-20.45kN·mM dD =21.86kN·mN d1 =9.62kNN d2 =28.85kNN d3 = N d4 =-7.69kN(5)节点弯矩、轴力计算及荷载效应组合汇总表按《公路桥涵设计通用规范》(JTG D60—2004)第4.1.6条进行承载能力极限状态效应组3、构件内力计算(跨中截面内力)(1)顶板 (图L-06)x =L P/2P = p恒+0.7q车 =169.38kNN x = N1 =105.96kNM x = M B+N3x-Px2/2 =231.92kN·mV x = Px-N3 = 5.38kN(2)底板 (图L-07)ω1 =p恒+0.7(q车-3e车H P2/L P2)=151.02kN/m2ω2 =p恒+0.7(q车+3e车H P2/L P2)=187.74kN/m2x =L P/2N x = N2 =138.45kNM x =M A+N3x-ω1·x2/2-x3(ω2-ω1)/6L P=229.93kN·mV x =ω1x+x2(ω2-ω1)/2L P-N3=-14.81kN(3)左侧墙 (图L-08)ω1 =0.7e P1+0.7e车=32.07kN/m2ω2 =0.7e P2+0.7e车49.37kN/m2x =h P/2N x = N3 =367.25kNM x =M B+N1x-ω1·x2/2-x3(ω2-ω1)/6h P=-17.61kN·mV x =ω1x+x2(ω2-ω1)/2h P-N1=-25.89kN(4)右侧墙 (图L-09)ω1 = 0.7e P1 =25.95kN/m2ω2 = 0.7e P2 =43.25kN/m2x =h P/2N x = N4 =367.25kNM x =M C+N1x-ω1·x2/2-x3(ω2-ω1)/6h P=-26.49kN·mV x =ω1x+x2(ω2-ω1)/2h P-N1=-39.35kN(5)短期组合下构件内力汇总表(四)截面设计1、顶板 (B-C)钢筋按左、右对称,用最不利荷载计算。
水利技术监督 2005年第1期·16· 多孔钢筋混凝土箱涵计算程序林志文(东莞市水利勘测设计院,广东 东莞 523109)摘要:根据有关计算规范与规定,分析比较箱涵内力的各种计算方法,并根据箱涵的受力情况及应用条件,结合工程实际,推荐箱涵内力的计算方法,并将该法计算内容编制成应用程序,成功地应用于各类箱涵的结构设计中。
关键词:箱涵超静定内力计算配筋计算1 前 言钢筋混凝土箱涵是水利工程中广泛应用的一种污工建筑物,它具有结构简单,造价低廉,施工方便等特点。
且由于箱涵属于箱形框架,是一种超静定结构,其受力特性极好,能适应各种不同的地质条件,其变形、沉降量都很小,特别适应于沿海淤泥软弱地基条件。
2 计算方法比较由于箱涵是一种超静定结构,其内力计算十分复杂,以前采用手工计算,对一至二孔箱涵还能应付得了,对三孔甚至更多孔箱涵则往往力不从心,况且多孔箱涵超静定次数太多,手工计算费时费力,且易出错,必须采用机算才能提高工作效率。
参阅《水利水电工程微机通用程序集》,可见到计算箱涵的程序共有3个,分别是G-13(多孔涵洞内力的有限元分析及配筋计算程序),H-12(弹性地基上框架内力计算程序—两跨),H-13(弹性地基上框架内力计算程序—三跨),纵观这三个程序,发现存在以下几个问题:(1) 计算前期准备工作量太大,使人觉得程序使用很难入手,特别是涵洞各种荷载需人工预先计算求出,再作为原始数据填入数据文件中,加重了设计人员负担,也增加了数据出错率。
另外,这几个程序均无考虑汽车荷载作用;(2) G-13程序,虽然能计算各种孔数涵洞,但各孔计算跨度需相同,不符合工程实际情况;(3) H-12、H-13只能计算单一的二、三跨箱涵,使用极不方便,不适应水工建筑物多变的特性。
为此,本人根据工程的实际情况,编写了TXH.EXE程序,较好地解决了多孔钢筋混凝土箱涵的结构计算、配筋问题。
程序自1995年7月完成至今,已应用于几十宗的工程实例中(其中最大的箱涵为单孔净宽9.25m,共两孔),所有工程均运行正常,取得较好的经济效益。
箱涵配筋计算方法比较
摘要:箱涵广泛应用在市政、道路、水利等工程中,是常见的构筑物,其计算和配筋方法也是多种多样的,不同的计算方法各有优缺点,设计人员通常依据自己喜好或习惯选用不同的计算方法。
本文从不同方法的计算过程、适用条件等方面简述了不同计算方法的计算要点和优缺点,应用不同方法分析了一个箱涵的受力情况,通过对结果的分析比较也验证了各个方法的准确性。
1概述
查表法可用于单孔、对称双孔和三孔箱涵,在假定简化边界条件下其具有准确、便捷等特点,公式通常采用结构力学方法进行推导。
但在不对称多孔箱涵或复杂荷载情况下,公式的推导存在难度,应采用其它计算方法对箱涵的受力进行分析计算。
弯矩迭代法和弯矩分配法可以在简化的边界条件下分析复杂荷载作用下多孔非对称箱涵的应力,适用范围广。
对于简单的箱涵,计算量是可以接受的,而对于复杂的箱涵,计算量非常大。
这种方法要求设计者具有较高的结构力学基础,计算过程复杂,在实际工程设计中存在许多不足。
随着计算机计算的发展,有限元法得到了大规模的应用,地下工程、建筑工程、航天工程等都能找到有限元软件的身影。
同样,我们也可利用有限元软件来计算箱涵的受力情况,以用来配筋。
1.1查表法
查表法、力矩分配和迭代法其实都是根据结构力学原理进行的,不过查表法可利用已有的分析成果来简化计算的步骤,节约时间投入,加快设计过程。
根据查表法所列公式,用excel建立表格来进行日常的计算配筋是很方便的。
因此在各种设计方法高速发展的今天,这种传统的设计方法依旧广泛的应用在各个设计院,发挥着它的作用。
2-5.0mx2.5m 钢筋混凝土箱涵结构计算书一 、 设 计 资 料 1、孔径及净空 净跨径 L 0 = h 0 = 5 m m净高 孔数2.5 m= 2 2、设计安全等级 结构重要性系数 一级1.1r 0 =3、汽车荷载 荷载等级 城— A 级 2.34、填土情况 涵顶填土高度 H = m 土的内摩擦角 填土容重 Φ = 30 18 ° kN/m 3 γ = 1地基容许承载力 [σ ] =0 150 kPa5、建筑材料 普通钢筋种类 HRB335主钢筋直径20 mm 钢筋抗拉强度设计值 f =sd280 MPa 涵身混凝土强度等级C30 涵身混凝土抗压强度设计值 f = cd13.8 MPa 涵身混凝土抗拉强度设计值 钢筋混凝土重力密度 f = td 1.39 25 MPa γ =2 kN/m3 基础混凝土强度等级 混凝土重力密度 C15 26γ =3kN/m 3二 、 设 计 计 算(一)截面尺寸拟定 (见图L-01) 顶板、底板厚度δ = C 1 = 0.4 m m 0.15 侧墙厚度 t = 0.4 m m C 2 =0.15 横梁计算跨径L P = L +t = 5.4 11.2 2.9 m m m m 0 L = 2L +3t =侧墙计算高度 h P = h +δ = 0 h = h +2δ =0 3.3基础襟边 基础高度 基础宽度 c = d = B =0.2 0.2 m m m11.6(二)荷载计算 1、恒载 恒载竖向压力 p 恒 = γ H+γ δ = 51.40 kN/m 2 1 2恒载水平压力顶板处 2 kN/m 2 kN/m 2e P1 = γ Htan (45°-φ/2) = 13.80 图 L-0112底板处 e P2 = γ (H+h)tan (45°-φ/3) = 33.60 12、活载汽车后轮着地宽度0.6m ,由《公路桥涵设计通用规范》(JTG D60—2004)第4.3.4条规定,按30°角向下分布。
配筋计算公式钢筋混凝土是一种常用的结构材料,它具有很好的强度和韧性。
在建筑、道路、桥梁等建筑工程中,钢筋混凝土广泛应用。
而钢筋则是钢筋混凝土中承受拉力的主要部件,配筋计算就是为了确定钢筋数量和配筋方式。
下面就为大家介绍配筋计算公式及其具体操作方法。
一、配筋计算公式1. 正常配筋的计算公式钢筋混凝土构件中,钢筋的截面面积要满足设计荷载的要求,可以通过以下公式计算得出:As = αs * b * h / fy其中,As为所需钢筋面积,αs为钢筋的配筋率(根据负荷强度等级和构件计算非等级确定),b和h分别为构件的宽和高,fy为钢筋的抗拉强度。
2. 剪力配筋的计算公式剪力配筋是指在构件的截面中,加入足够的横向钢筋,以增强其抗剪性能。
剪力配筋的计算公式为:Asw = V * C / (0.87 * fy * d)其中,Asw为横向剪力钢筋的面积,V为构件所受剪力,C为剪力系数,d为构件的有效深度,fy为钢筋的抗拉强度。
二、配筋计算的操作方法1. 计算所需钢筋的面积首先,要确定构件的尺寸和荷载数据,然后根据设计荷载和材料性能要求,选择合适的配筋率。
根据所选取的配筋率和构件宽高,可计算得出所需钢筋的面积。
2. 确定钢筋的直径和数量钢筋的直径和数量应当合理搭配,以满足整体结构的需求。
通常情况下,可以根据钢筋的直径及间距计算出所需的钢筋数量。
3. 定义钢筋的位置和布置方式钢筋的位置和布置方式应当考虑到结构的受力特点,使其能够承受设计荷载,并且不会产生大的变形和裂缝。
通常情况下,采用对角、垂直或水平排布方式进行钢筋布置。
4. 完成构件的设计和计算在以上步骤完成之后,就可以进行构件的设计和计算。
在设计过程中,应当注意结构的稳定性、耐久性和安全性等方面,保证整个工程的质量和可靠性。
总之,配筋计算是钢筋混凝土工程设计的重要环节和技术难点。
掌握配筋计算公式和操作方法,可以有效地提高工程设计的精度和实用性,为工程施工和使用提供有力的保障。
已知计算条件:涵洞的设计安全等级为三级,取其结构重要性系数:.9涵洞桩号= K1+417.00设计荷载等级=城-A 验算荷载等级(兼容老规范)=汽车10级箱涵净跨径= 6米箱涵净高= 4米箱涵顶板厚= .5米箱涵侧板厚= .5米板顶填土高= 1.95米填土容重= 18千牛/立方米钢筋砼容重= 25千牛/立方米混凝土容重= 22千牛/立方米水平角点加厚= .3米竖直角点加厚= .3米涵身混凝土强度等级= C30钢筋等级= III级钢筋填土内摩擦角= 30度基底允许应力= 250千牛/立方米顶板拟定钢筋直径= 22毫米每米涵身顶板采用钢筋根数= 8根底板拟定钢筋直径= 22毫米每米涵身底板采用钢筋根数= 8根侧板拟定钢筋直径= 22毫米每米涵身侧板采用钢筋根数= 4根荷载基本资料:土系数 K = 1.111712恒载产生竖直荷载p恒=51.62千牛/平方米恒载产生水平荷载ep1=11.73千牛/平方米恒载产生水平荷载ep2=41.73千牛/平方米汽车产生竖直荷载q汽=17.47千牛/平方米挂车产生竖直荷载q挂=10.63千牛/平方米挂车产生竖直荷载eq挂=3.54千牛/平方米汽车产生水平荷载eq汽=5.82千牛/平方米计算过程重要说明:角点(1)为箱涵左下角,角点(2)为箱涵左上角,角点(3)为箱涵右上角,角点(4)为箱涵右下角构件(1)为箱涵顶板,构件(2)为箱涵底板,构件(3)为箱涵左侧板,构件(4)为箱涵右侧板1>经过箱涵框架内力计算并汇总,结果如下(单位为:千牛.米):a种荷载(涵顶填土及自重)作用下:涵洞四角节点弯矩和构件轴力:MaA = MaB = MaC = MaD = -1 / (K + 1) * P * Lp^2 / 12 = -107.3954kN.m Na1 = Na2 = 0kNNa3 = Na4 = P * Lp / 2 = 167.7656kNa种荷载(汽车荷载)作用下:MaA = MaB = MaC = MaD = -1 / (K + 1) * P * Lp^2 / 12 = -36.35641kN.m Na1 = Na2 = 0kNNa3 = Na4 = P * Lp / 2 = 56.79344kNb种荷载(侧向均布土压力)作用下:涵洞四角节点弯矩和构件轴力:MbA = MbB = MbC = MbD = -K / (K + 1) * P * hp^2 / 12 = -8.097502kN.m Nb1 = Nb2 = P * Lp / 2 = 26.39186kNNb3 = Nb4 = 0kNc种荷载(侧向三角形土压力)作用下:涵洞四角节点弯矩和构件轴力:McA = McD = K *(3K + 8) / ((K + 1)*(K + 3)) * P * hp^2 / 60 = -11.30433kN.mMcB = McC = K *(2K + 7) / ((K + 1)*(K + 3)) * P * hp^2 / 60 = -9.405895kN.mNc1 = P * hp / 6 + (McA - McB) / hp = 22.07813kNNc2 = P * hp / 3 - (McA - McB) / hp = 45.42188kNNc3 = Nc4 = 0kNd种荷载(侧向汽车压力)作用下:涵洞四角节点弯矩和构件轴力:MdA = -(K * (K + 3) / 6(K^2 + 4K +3) + (10K + 2) / (15K + 5)) * P * hp^2 / 4 = -19.11417kN.mMdB = -(K * (K + 3) / 6(K^2 + 4K +3) - (5K + 3) / (15K + 5)) * P * hp^2 / 4 = 10.37473kN.mMdC = -(K * (K + 3) / 6(K^2 + 4K +3) + (5K + 3) / (15K + 5)) * P * hp^2 / 4 = -14.39594kN.mMdD = -(K * (K + 3) / 6(K^2 + 4K +3) - (10K + 2) / (15K + 5)) * P * hp^2 / 4 = 15.09295kN.mNd1 = (MdD - MdC) / hp = 6.553089kNNd2 = P * hp - (MdD - MdC) / hp = 19.65927kNNd3 = Nc4 = -(MdB - MdC) / Lp = -3.810873kN角点(1)在恒载作用下的的总弯矩为:-126.8角点(1)在汽车作用下的的总弯矩为:-55.47角点(1)在挂车作用下的的总弯矩为:-33.74角点(1)在混凝土收缩下的的弯矩为:30.09角点(1)在温度变化下的的总弯矩为:30.09构件(1)在恒载作用下的的总轴力为:48.47构件(1)在汽车作用下的的总轴力为:6.55构件(1)在挂车作用下的的总轴力为:3.99构件(1)在混凝土收缩下的的轴力为:0构件(1)在温度变化下的的总轴力为:0角点(2)在恒载作用下的的总弯矩为:-124.9角点(2)在汽车作用下的的总弯矩为:-25.98角点(2)在挂车作用下的的总弯矩为:-15.8角点(2)在混凝土收缩下的的弯矩为:-30.09角点(2)在温度变化下的的总弯矩为:-30.09构件(2)在恒载作用下的的总轴力为:71.81构件(2)在汽车作用下的的总轴力为:19.66构件(2)在挂车作用下的的总轴力为:11.96构件(2)在混凝土收缩下的的轴力为:0构件(2)在温度变化下的的总轴力为:0角点(3)在恒载作用下的的总弯矩为:-124.9角点(3)在汽车作用下的的总弯矩为:-50.75角点(3)在挂车作用下的的总弯矩为:-30.87角点(3)在混凝土收缩下的的弯矩为:-30.09角点(3)在温度变化下的的总弯矩为:-30.09构件(3)在恒载作用下的的总轴力为:167.77构件(3)在汽车作用下的的总轴力为:52.98构件(3)在挂车作用下的的总轴力为:32.23构件(3)在混凝土收缩下的的轴力为:0构件(3)在温度变化下的的总轴力为:0角点(4)在恒载作用下的的总弯矩为:-126.8角点(4)在汽车作用下的的总弯矩为:-21.26角点(4)在挂车作用下的的总弯矩为:-12.93角点(4)在混凝土收缩下的的弯矩为:30.09角点(4)在温度变化下的的总弯矩为:30.09构件(4)在恒载作用下的的总轴力为:167.77构件(4)在汽车作用下的的总轴力为:60.6构件(4)在挂车作用下的的总轴力为:36.86构件(4)在混凝土收缩下的的轴力为:0构件(4)在温度变化下的的总轴力为:02>荷载组合计算角点(1) 正常使用极限状态效应组合短期组合(M恒 + 0.7 * M活) = -165.6266 角点(1) 正常使用极限状态效应组合长期组合(M恒 + 0.4 * M活) = -148.9855 角点(1) 承载能力极限状态 (1.2 * M恒 + 1.4 * M活) = -229.8155角点(2) 正常使用极限状态效应组合短期组合(M恒 + 0.7 * M活) = -143.086 角点(2) 正常使用极限状态效应组合长期组合(M恒 + 0.4 * M活) = -135.2915 角点(2) 承载能力极限状态 (1.2 * M恒 + 1.4 * M活) = -186.2529角点(3) 正常使用极限状态效应组合短期组合(M恒 + 0.7 * M活) = -160.4254 角点(3) 正常使用极限状态效应组合长期组合(M恒 + 0.4 * M活) = -145.1997 角点(3) 承载能力极限状态 (1.2 * M恒 + 1.4 * M活) = -220.9318角点(4) 正常使用极限状态效应组合短期组合(M恒 + 0.7 * M活) = -141.6816角点(4) 正常使用极限状态效应组合长期组合(M恒 + 0.4 * M活) = -135.3026角点(4) 承载能力极限状态 (1.2 * M恒 + 1.4 * M活) = -181.9255构件(1) 正常使用极限状态效应组合短期组合(N恒 + 0.7 * N活) = 53.05714构件(1) 正常使用极限状态效应组合长期组合(N恒 + 0.4 * N活) = 51.09122构件(1) 承载能力极限状态 (1.2 * N恒 + 1.4 * N活) = 67.3383构件(2) 正常使用极限状态效应组合短期组合(N恒 + 0.7 * N活) = 85.57523构件(2) 正常使用极限状态效应组合长期组合(N恒 + 0.4 * N活) = 79.67744构件(2) 承载能力极限状态 (1.2 * N恒 + 1.4 * N活) = 113.6995构件(3) 正常使用极限状态效应组合短期组合(N恒 + 0.7 * N活) = 204.8534构件(3) 正常使用极限状态效应组合长期组合(N恒 + 0.4 * N活) = 188.9586构件(3) 承载能力极限状态 (1.2 * N恒 + 1.4 * N活) = 275.4943构件(4) 正常使用极限状态效应组合短期组合(N恒 + 0.7 * N活) = 210.1886构件(4) 正常使用极限状态效应组合长期组合(N恒 + 0.4 * N活) = 192.0073构件(4) 承载能力极限状态 (1.2 * N恒 + 1.4 * N活) = 286.16483>将箱涵框架分解为四根独立构件,求其跨中内力并进行效应组合。