沪教版六年级数学下全册精品讲义
- 格式:doc
- 大小:7.96 MB
- 文档页数:248
章知识点整理(word版可编辑修改)沪教版六年级下学期数学各章知识点整理(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(沪教版六年级下学期数学各章知识点整理(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为沪教版六年级下学期数学各章知识点整理(word版可编辑修改)的全部内容。
章知识点整理(word版可编辑修改)沪教版六年级下学期数学知识点梳理第五章有理数5.1有理数的意义1。
相反意义的量收入与支出;增加与减少;上升与下降;零上与零下;高于海平面与低于海平面;前进与后退;盈利与亏损;……任意规定一方为正,则另一方为负。
2.正数与负数5。
2数轴1。
数轴的概念与画法数轴是规定了原点、正方向和单位长度的直线;数轴画法:一直线 + 三要素章知识点整理(word版可编辑修改)2.数轴的性质数轴上表示的两个数,右边的数总比左边的数大;正数都大于零,负数都小于零,正数大于一切负数。
3。
相反数只有符号不同的两个数互为相反数,其中一个数是另一个数的相反数;0的相反数是0。
正数的相反数是负数;负数的相反数是正数;零的相反数是它本身。
4.相反数的几何意义数轴上,表示互为相反数的两个点,它们分别位于原点的两侧,而且与原点的距离相等。
5。
3绝对值3.有理数的大小比较两个负数,绝对值大的反而小;章知识点整理(word版可编辑修改)对于任意有理数的大小比较应采用:正数都大于零,负数都小于零,正数大于负数.比较两个数的大小,还可以用“作差法",即:5.4.有理数加法1。
有理数加法及加法法则把两个有理数合成一个有理数的运算,叫做有理数的加法。
有理数的运算数的概念是随着生产和生活的需要不断发展的,因而我们的运算也要随之拓展。
本讲主要是讲我们的加减乘除运算扩充到有理数范围,另外还要初步接触乘方运算。
学了本讲内容,我们需要掌握有理数运算法则,并能熟练地进行运算,这是今后学习其他数学的基础知识和基本技能。
知识梳理1.有理数的加减法有理数的加法有理数的加法法则:●同号两数相加,取相同的符号,并把绝对值相加.●异号两数相加,绝对值相等时和为0(即互为相反数的两数相加得0);绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值.●一个数同0相加,仍得这个数.巧记:同号相加一边倒;异号相加“大”减“小”,符号跟着大的跑;绝对值相等“零”正好。
加法的法则指出,两个有理数相加的结果由两部分构成:1.先确定和的符号,再确定两数的绝对值相加或相减,以得到和的绝对值.2.在加法运算中,最容易错的就是符号问题,运算时要特别注意符号问题.有理数加法的运算律:交换律:结合律:2、有理数的减法有理数减法法则:减去一个数等于加上这个数的相反数。
a-b=a+(-b)知识梳理2.有理数的乘除有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘,任何数同零相乘,都得零。
乘法的运算律:①乘法交换律,即ab=ba;②乘法结合律,即(ab)c=a(bc);③乘法分配律,即a(b+c)=ab+ac。
倒数的概念:乘积为1的两个有理数互为倒数。
由于任何一个有理数与0的积为0,不可能是1,所以0没有倒数。
除法的运算法则:法则一:除以一个数等于乘上这个数的倒数,即:a÷b=a•(b≠0)法则一表明了有理数的除法和乘法可以互相转化,由于0没有倒数,所以除数不能为0.法则二:两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,得0.关于运算律因为除法可以转化成乘法,所以乘法的运算律有的在除法中适用,但是乘法的交换律和结合律在除法中是不适用的,如6÷5≠5÷6,(6÷2)÷3≠6÷(2÷3)知识梳理3.乘方及混合运算有理数的乘方求几个相同因数积的运算叫做乘方。
六年级下册第五章有理数知识点1、正数:大于0的数叫做正数、2、负数:在正数前面加上负号“-"的数叫做负数。
3、0既不是正数也不是负数。
零是正数和负数的分界、4、有理数:整数和分数统称为有理数、有理数:正数:正整数、零、负整数分数:正分数、负分数5、数轴:规定了原点、正方向、单位长度的直线叫做数轴、数轴上的点从左到右依次增大,正数大于零,零大于负数,正数大于负数。
6、相反数:绝对值相等,只有负号不同的两个数叫做互为相反数。
7、绝对值:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。
记做|a|。
由绝对值的定义可得:|a-b|表示数轴上a点到b点的距离。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0、8、有理数加法法则加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变。
表达式:a+b=b+a。
加法结合律:有理数的加法中,三个数相加,先把前两个数相加或者先把后两个数相加,和不变。
表达式:(a+b)+c=a+(b+c)9、有理数减法法则减去一个数,等于加这个数的相反数。
表达式:a-b=a+(-b)10、有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0、乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。
表达式:ab=ba乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
表达式:(ab)c=a(bc)乘法分配律:一般地,一个数同两个的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
表达式:a(b+c)=ab+ac注意:几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正;几个数相乘,有因数为零,积就为零。
也就是说,在积的各个因数中,只有一个负号,积为负;有两个负号,积为正;有三个负号,积为负;有四个负号,积为正;有零时积就是零。
沪教版六年级数学第一章数的整除1.1整数和整除的意义零和正整数统称为自然数。
正整数、零、负整数统称为整数。
整数a除以整数b,如果除得的商是整数而余数为零,我们就说a能被b整除;或者说b能整除a。
注意整除的条件:1、除数、被除数都是整数2、被除数除以除数,商是整数而余数为零。
1.2因数和倍数整数a能被整数b整除,a就叫做b的倍数,b就叫a的因数(也称为约数)倍数和因数是相互依存的注意:1、一个数的因数的个数是有限的,其中最小的因数是 1,最大的因数是它本身2、一个数的倍数的个数是无限的,其中最小的倍数是它本身1.3能被2,3,5整除的数个位上是0,2,4,6,8的整数都能被2整除。
能被2整除的数叫做偶数,不能被2整除的数叫做奇数。
个位上是0或5的整数都能被5整除。
将一个整数的各位数字相加,如果得到的和能被3整除,那么这个数就能被3整除。
注意:1、在正整数中(除 1 外),与奇数相邻的两个数是偶数2、在正整数中,与偶数相邻的两个数是奇数3、0 是偶数1.4素数、合数与分解素因数一个正整数,如果只有1和它本身两个因数,这样的数叫做素数,也叫做质数;如果除了1和它本身以外还有别的因数,这样的数叫做合数。
1既不是素数,也不是合数。
这样,正整数又可以分为1、素数、合数三类。
(依据:因数的个数)每个合数都可以写成几个素数相乘的形式,其中每个素数都是这个合数的素因数。
把一个合数用素因数相乘的形式表示出来,叫做分解素因数。
用短除法分解素因数的步骤如下:1、先用一个能整除这个合数的素数(通常从最小的开始)去除2、得出的商如果是合数,再按照上面的方法继续除下去,知道得出的商是素数为止。
3、然后把各个除数和最后的商按从小到大的顺序写成连乘的形式。
1.5公因数和最大公因数几个数公有的因数,叫做这几个数的公因数,其中最大的一个叫做这几个数的最大公因数。
如果两个整数只有公因数1,那么称为这两个数互素。
两个整数中,如果某个数是另一个数的因数,那么这个数就是这两个数的最大公因数。
数学六年级(下)沪教版(一元一次方程的应用B)教师版数学学科教师指导讲义年级:预初指导科目:数学课时数:3课时课题一元一次方程的应用B1.会运用题目中等量关系列出方程;教课目标2.娴熟掌握一元一次函数在实质生活中的应用.教课内容【知识梳理】列方程解决实质问题的一般步骤①审题:弄清题意及题目中的数目关系.②设元:用字母表示题目中的一个未知数.③列方程:依据题目中的等量关系列方程.④解方程;求出未知数.⑤查验:查验所求解能否切合题意.⑥作答.2.利率问题利息=本金×利率×期数本利和=本金十利息=本金×(1+利率×期数)利息税=利息×税率税后利息=利息一利息税=利息×(1-税率)税后本利和=本金+税后利息折扣问题收益额=成本价×收益率售价=成本价+收益额新售价=原售价×折扣4.行程问题解行程问题的重点是抓住时间关系或行程关系,借助草图剖析来解决问题.行程=速度×时间相遇行程=速度和×相遇时间追及行程=速度差×追实时间5.工程问题解工程问题时,常将工作总量看作整体“1”.基本关系为:工作效率×工作时间=1(工作总量)【典型种类解说】题型一:按比率分派问题【点拨】此类问题,我们常常设一重量为未知数,即如已知两个量之比为a:b,则设这两个量分别为ax和bx,再依据“各部重量之和”或“各部重量之差”等等量关系来列方程求解.1/8数学六年级(下)沪教版(一元一次方程的应用B)教师版【例1】某一服饰师做成一件衬衣,一条裤子,一件外衣所用的时间之比为1:2:3.他用20个工时能做2件衬衣、3条裤子和4件上衣,那么他做一件衬农、一条裤子、一件外衣分别需要几个工时?【剖析】题目中出现了比率“1:2:3”,故可设未知数分别为x、2x、3x,则做2件衬衣用2x个工时,做3条裤子用(32x)个工时,做4件外衣用(43x)个工时,而后依据做这些服饰的总工时成立等量关系,列出方程.【答案】设服饰师做一件衬衣需 x个工时,则他做一条裤子、一件外衣所用的工时分别为22x和3x,依据题意,得2x 3 2x 4 3x2020x 20x1所以,他做成一件衬衣需1个工时,做成一条裤子需2个工时,做成一件外衣需3个工时.【小题大做】1.在第25届、第26届奥运会上,中国代表团共获取了60枚金牌,这两届奥运会中国获取的金牌数之比是7:8,问第25届运动会上中国代表团共获取多少枚金牌.【答案】28枚.题型二:利率问题【点拨】若利率是年利率,期数以“年”为单位计数,假如月利率,则期数以“月”为单位计数,解题时要注意.【例2】某人把若干元按三年期的按期积蓄存入银行,假定年利率为 3.69%,到期支取时扣除所得税实得利息2103.3元,求存入银行的本金.(利息税为5%)【剖析】利息=本金×利率×期数×利息税【答案】设存入银行的本金为x元,依据题意,得x 33.69%15%2103.3x 0.1051652103.3x 20000,所以,存入银行的本金是20000元.【小题大做】1.小明的妈妈在银行里存入人名币5000元,国家规定存款利息的纳税方法是:利息税=利息×20%,储户存款时由银行代扣代收.存期一年,到期可得人名币5090元,求这项积蓄的年利率是多少?【答案】50005000x11205090x2.25.题型三:折扣问题【例3】小丽和小明相约去书城买书,请你依据他们的对话内容(如图),求出小明上一次所买书本的原价.2/8数学六年级(下)沪教版(一元一次方程的应用B)教师版图641【剖析】设小明上一次购置书本的原价是x元,由题意,得0.8x 20 x12,解得x160.所以,小明上一次所买书本的原价是160元,【答案】160元.【小题大做】1.一家商铺将某种服饰按成本价涨价40%作为标价,又以8折(即按标价的80%)优惠卖出,结果每件服饰仍可获利15元,问这种服饰每件的成本价是多少元?【答案】125元.题型四:行程问题【例4】小杰和小丽分别在400米环形跑道上联系跑步与竞走,小杰每分钟跑320米,小丽每分钟走120米,两人同时由同一同点同向出发,问几分钟后小丽与小杰第一次相遇.【剖析】因为小杰、小丽在环形跑道上同时同地同向出发,所以小丽与小杰第一次相遇,一定是小杰比小丽多跑一圈,获取的等式是:小杰所跑的行程—小丽所走的行程=400.因为“速度×时间=行程”,所以三个量中只需已知此中两个量就能够获取第三个量.【答案】设x分钟后小丽与小杰第一次相遇.依据题意,得320 120x400解方程,得x2答:出发2分钟后小丽与小杰第一次相遇.【小题大做】1.小丽、小明在 400米环形跑道上练习跑步,小丽每分钟跑220米,小明每分钟跑280米,两人同时由同一同点反向而跑,几分钟此后小丽与小明第一次相遇?【答案】0.8分钟.题型五:工程问题【例5】一项工程甲做40天达成,乙做50天达成,此刻先由甲做,半途甲有事离开,由乙接着做,共用46天达成.问甲、乙各工作了多少天?3/8数学六年级(下)沪教版(一元一次方程的应用B)教师版【剖析】由题意知,甲每日达成所有工作量的1,乙每日达成1,设甲工作了x天,则乙工作了(46x)天,x46x 4050依据题意,得1.解得x16,则461630(天).4050故甲工作了16天,乙工作了30天.【答案】甲工作16天,乙工作30天.【小题大做】1.某工程由甲独做需18天达成,由乙独做需12天达成,此刻乙先做2天,再甲、乙两人合作,合作几日可达成这件工程?【答案】6天.【随堂练习】1.活期积蓄月息是0.12%,假如积蓄5000元,5个月后可得的税后利息是____元.(利息税为5)2.某同学把积攒的零用钱100元存人银行,假如月利率是0.15%,那么x个月后,连本带利可取回元钱.3.一列快车和一列慢车从相距300千米的两站同时开出,相向而行,3小时相遇,若快车每小时走x千米,则慢车每小时行____千米.4.船在静水中的速度是每小时24千米,水流速度是每小时2千术,那么船顺流航行x小时行了____千米.5.某人从A地出发,先上山,再下山到B地共走0.4千米,再由B地顺原路返回,已知上山速度为m千米/时,下山速度为n千米/时,那么从A地到B地再回到A地所用时间是____小时.【答案】;2.1000.1425x;3.100x;26x;0.4 0.45..m n6.一项工程甲独做3天达成,乙独做7天达成,两人共同达成所有工程需多少天?若设两人合作共同达成所有工程需x天,可列方程().A.3x7x1B.11D.C.x137x x13 71 1x1 3 77.三个连续奇数的和比此中最小的奇数大128,则最小奇数是().A.69B.65C.63D.614/8数学六年级(下)沪教版(一元一次方程的应用B)教师版8.甲组有 40人,乙组有26人,如何调换才能使甲组人数是乙组人数的2倍?设从甲组调x人到乙组,列方程,得40 x 226 x,则x4,答案应是().A.无解B.从甲组调4人到乙组C从乙组调4人到甲组D.没法确立【答案】BDC.9.甲、乙、丙三个乡合修水利工程,依据得益土地的面积比3:2:4分担花费1440元,三个乡各分担多少元?【答案】三个乡个分担:480元、320元、640元.10.已知A、B两地相距120千米,乙的速度比甲每小时快1千米,甲先从A地出发2小时后,乙从B地出发,与甲相向而行经过10小时后相遇,求甲、乙的速度.【答案】甲的速度为5千米/小时,乙的速度是6千米/小时.11.天气转冷了,大明爸爸去为外公外婆买了一台空调,零售价为4400元,因为正当圣诞节,商铺搞促销活动,按零售价的80%降低销售,营业员说这样商铺盈余10%,问照此说法空调的进价是多少元?【答案】3200元.12.小丽的妈妈在银行里存入人民币10000元,存期一年,取款时银行代扣20%的利息税,实质取走10180元,求这项积蓄的年利率是多少?【答案】2.25.【讲堂总结】【课后作业】(一)基础复习稳固一、填空题:1.化简:8:6=______________;30:80=________________.2.已知:x:y2:3;y:z6:7,则x:y:z=__________________.3.已知三角形的三个内角的度数比是1:2:7,则这三个内角的度数分别是_________________.4.某同学买了一些80分邮票和1元邮票共花了16元,已知所买1元邮票2枚,80分邮票若干枚,设买了80分邮票x枚,则依据题意可列得方程________________________.5.利息=____________________;税前本利和=_________________.5/8数学六年级(下)沪教版(一元一次方程的应用 B )教师版6.某商品按原价的九折销售,买这种商品 2件需要126元,这件商品原价 _____________元.7.在银行里积蓄2000元,假如月利率为x ,那么一年后的本利和是 ______________(不计利息税).8.小杰和小丽分别在 400米环形跑道上练习跑步与竞走,小杰每分钟跑 320米,小丽每分钟走120米,两人同时由同一同点同向出发,问 ____分钟后,小杰与小丽第一次相遇 . 【答案】1.4:3;3:8;2.4:6:7 ;3.18°、36°、126°;4.2 1 80x 16;5本金×利率×期数;本金 +利息; 70元;20002000x ; 8.2分钟.二、选择题:9.一双皮鞋此刻售价为1OO 元,比原价降低了20%,原价为()A .80元B.125元C.120元D.145元10.有x 位学生疏派宿舍,如每间住 4人,最后剩余 1间,那么宿舍的间数是()A .x1B .x1 C .4x1D .x144411.第一小队有52人,第二小队有42人,从第一小队调人到第二小队,令人数相等,那么第一小队应调()A.2人B.3人 C.4人D.5人【答案】BBD.三、解答题:13.有银和铜的合金 200克,此中含银2份,含铜3份,此刻要改变合金成分,使它含银4份,含铜7份,应当加入铜多少克?【答案】设应当加入铜2 :2003x 克.2002x4:7.x202 3314.某班属羊的学生占全班的 80%,比属其余生肖的学生多 30人.这个班的学生人数是多少?【答案】设该班人数为 x .80 x180 30.x 50.长方形的长与宽的比为5:2,它的周长为56厘米,求这个长方形的面积.【答案】160cm 2.16.2000元人民币存入银行,按期2年,年利率为 x ,扣除20%的利息税后,到期获得本利和2086.4 元.求年利率6/8数学六年级(下)沪教版(一元一次方程的应用 B )教师版为多少?【答案】200012x1202086.4.x2.7.17. 某商场购进一种电器,进货的成本为每件 400元,元旦时期,该商场决定对这种电器按售价的 8折销售,此时 每卖出一件这种电器,商家只好获取 10%的收益.这种电器本来的售价是多少? 【答案】假定售价为 x 元.x80 400 40010 .x 550(元)18. 甲、乙两辆汽车从A 站出发,同向而行,甲每小时走 36千米,乙每小时走 48千米.若甲车比乙车早出发 2小时,则乙车经过多少时间才能追上甲车?【答案】设乙车经过 x 小时追上甲车.48x36x 2.x 6.19. 要加工200个部件,甲先独自加工了 5小时,而后又与乙一同加工了 4小时,达成了任务,假如甲每小时比乙 多加工2个部件,那么甲、乙每小时各加工多少个部件?【答案】设乙每小时加工 x 只部件.4x9x 2 200.x 14.x 216.二、综合能力提升 已知船在静水中的速度为10米/秒,若水速为2米/秒,求顺流、逆水速度;(2)若船顺流行驶了5小时以后,又沿原路返回行驶了7小时30分,问水速是多少?【剖析】解决这个问题,只需明确:顺流速度(或顺风速度) =静水速度(或无风速度)+水速(或风速),逆水速度(顶风速度)=静水速度(无风速度)-水速(风速),再由行程问题的基本公式svt 就能够进行求解.这种问题,对本例中(1)直接依据上述公式可求,对本例中 (2),因为去与回的行程同样,不过速度与所用时间不一样,则依据不一样状况也可列方程.【答案】(1)设顺流速度为x 米/秒,依据题意得x 102x 12y 米/秒设逆水速度为10 y2y8答:顺流速度12米/秒,逆水速度 8 米/秒.(2)设水速为x 米/秒,则顺流速度为 ( 10x )米/秒,逆水速度(10x )米/秒,依据题意得,510 x 30 10 x760解得,505x 15 1510 x2 27/8数学六年级(下)沪教版(一元一次方程的应用B)教师版25x 252x 2答:水速为2米/秒.【点拨】在解应用题时,所用的单位必定要一致,不然将会犯错.如本例中时间的单位有小时.有分钟,一致为同一单位后列方程才不会致使错误.8/8。
-------------长方体的再认识(★★★)1.了解构成长方体的元素;2.会用斜二测画法画长方体的直观图;3.掌握长方体中棱与棱、棱与面、面与面的位置关系;4.掌握棱与面、面与面的垂直及平行的验证方法;知识结构棱、面的三个特点:(1)长方体的每个面都是长方形构成长方体的三要素:点、棱、面(2)长方体的十二条棱可分为三组,每组中的四条棱相等(3)长方体的六个面可分为三组,每组中两个面的形状大小相同面与面的位置关系(1)平行.检验方法:棱与棱的位置关系:棱与平面的位置关系:长方形纸片(1)相交 (1)平行(2)垂直检验方法:(2)垂直.检验方法:(3)异面⑴铅垂线法⑵长方形纸片法(1)铅垂线(2)三角板法(3)合页型折纸(2)垂直检验方法:⑴铅垂线法⑵三角板法⑶合页型折纸1.本部分建议时长5分钟.2.请学生先试着自行补全上图,发现学生有遗忘时教师帮助学生完成.1.本部分建议时长20分钟.2.进行例题讲解时,教师宜先请学生试着自行解答.若学生能正确解答,则不必做过多的讲解;若学生不能正确解答,教师应对相关概念、公式进行进一步辨析后再讲解例题.3.在每一道例题之后设置了变式训练题,应在例题讲解后鼓励学生独立完成,以判断学生是否真正掌握了相关考点和题型.4.教师应正确处理好例题与变式训练题之间的关系,宜采用讲练结合的方式,切不可将所有例题都讲完后再让学生做变式训练题.例题1一个长方体中,有公共点的三条棱的长度的比为2:3:4,最小的一个面的面积为2162cm , (1)求这个长方体的所有棱长的总和;“典例精讲”这一部分的教学,可采用下面的策略:“知识结构”这一部分的教学,可采用下面的策略:(2)求这个长方体的表面积; (3)求这个长方体的体积。
(★★)答案:(1)216cm ;(2)18722cm ;(3)51843cm两条较短的棱为长和宽的长方形的面积,是最小的面积,又知三棱长之比,故可求得三棱长,进而可得其他所求。