物流运筹学——整数规划
- 格式:ppt
- 大小:249.00 KB
- 文档页数:15
运筹学中的整数规划问题分析运筹学是运用数学和定量分析方法,通过对系统的建模和优化,来解决实际问题的学科。
其中整数规划是运筹学中的一个重要分支,它在许多实际情况中得到广泛应用。
本文将对整数规划问题进行分析,并探讨其解决方法与应用领域。
一、整数规划问题定义及特点整数规划是一类线性规划问题的扩展,其目标函数和约束条件中的变量取值限定为整数。
通常,整数规划问题可以形式化表示为:Max/Min Z = c₁x₁ + c₂x₂ + ... + cₙxₙs.t.a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + a₂₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ∈ Z其中,Z为目标函数值,x₁, x₂, ..., xₙ为待求解的整数变量,c₁, c₂, ..., cₙ为目标函数的系数,aᵢₙ为约束条件的系数,b₁, b₂, ..., bₙ为约束条件的右端常数。
整数规划问题的特点在于整数约束条件的引入,使其解空间变得有限,增加了问题的复杂性。
与线性规划问题相比,整数规划问题更接近实际情况,能够更准确地描述和解决很多实际问题。
二、整数规划问题的解决方法解决整数规划问题的方法主要有以下几种:穷举法、剪枝法、分支定界法、动态规划法等。
具体使用哪种方法需要根据问题的规模和特点来确定。
1. 穷举法是最简单直观的方法,通过枚举搜索整数解空间中的每一个可能解来寻找最优解。
然而,由于整数解空间往往非常大,这种方法在实际问题中往往是不可行的。
2. 剪枝法是一种通过对解空间进行剪枝操作,减少搜索空间的方法。
通过合理选择剪枝条件,可以避免对明显无解的解空间进行搜索,从而提高求解效率。
3. 分支定界法是一种将整数规划问题不断分解为子问题,并对子问题进行界定的方法。
通过不断缩小问题规模,并计算上下界确定最优解的位置,可以有效地求解整数规划问题。
第五章 整数规划主要内容:1、分枝定界法; 2、割平面法; 3、0-1型整数规划; 4、指派问题。
重点与难点:分枝定界法和割平面法的原理、求解方法,0-1型规划模型的建立及求解步骤,用匈牙利法求解指派问题的方法和技巧。
要 求:理解本章内容,熟练掌握求解整数规划的方法和步骤,能够运用这些方法解决实际问题。
§1 问题的提出要求变量取为整数的线性规划问题,称为整数规则问题(简称IP )。
如果所有的变量都要求为(非负)整数,称之为纯整数规划或全整数规划;如果仅一部分变量要求为整数,称为混合整数规划。
例1 求解下列整数规划问题211020max x x z += ⎪⎪⎩⎪⎪⎨⎧≥≤+≤+为整数21212121,0,13522445x x x x x x x x 如果不考虑整数约束,就是一个线性规划问题(称这样的问题为原问题相应的线性规划问题),很容易求得最优解为:96max ,0,8.421===z x x 。
50用图解法将结果表示于图中画“+”号的点都是可行的整数解,为满足要求,将等值线向原点方向移动,当第一次遇到“+”号点(1,421==x x )时得最优解为1,421==x x ,最优值为z=90。
由上例可看出,用枚举法是容易想到的,但常常得到最优解比较困难,尤其是遇到变量的取值更多时,就更困难了。
下面介绍几种常用解法。
§2 分枝定界法分枝定界法可用于解纯整数或混合的整数规划问题。
基本思路:设有最大化的整数规划问题A ,与之相应的线性规划问题B ,从解B 开始,若其最优解不符合A 的整数条件,那么B 的最优值必是A 的最优值*z的上界,记为z;而A 的任意可行解的目标函数值是*z的一个下界z,采取将B 的可行域分枝的方法,逐步减少z 和增大z ,最终求得*z 。
现举例说明: 例2 求解A219040max x x z +=⎪⎪⎩⎪⎪⎨⎧≥≤+≤+为整数21212121,0,702075679x x x x x x x x 解:先不考虑条件⑤,即解相应的线性规划B (①--④),得最优解=1x 4.81, =2x 1.82, =0z 356(见下图)。