运筹学第四章 整数规划和分配问题(新)a
- 格式:ppt
- 大小:1.00 MB
- 文档页数:69
第4章 整数规划判断:用分枝定界法求解一个极大化的整数规划问题,任何一个可行解的目标函数值是该问题目标函数值的下界;指派问题数学模型的形式同运输问题十分相似,故也可以用表上作用法求解;效率矩阵的任一行(或列)减去(或加上)任一常数,指派问题最优解不会受到影响; 匈牙利法只能用于平衡分配问题;对于极大化问题,匈牙利法不能直接求解。
整数规划问题解的目标函数值优于其相应的线性规划问题的解的目标函数。
用割平面法求解整数规划问题,构造的割平面有可能切去一些不属于最优解的整数解。
用分枝定界法求解一个极大化的整数规划问题时,当得到多于一个可行解时,通常可任取其中一个作为下界值,在进行比较剪枝。
分配问题的每个元素都加上同一个常数k ,并不会影响最优分配方案。
分配问题的每个元素都乘上同一个常数k ,并不会影响最优分配方案。
分配问题域运输问题的数学模型结构形式十分相似,故也可以用表上作业法求解。
隐枚举法也可以用来求解分配问题简答试述分枝定界法求解问题的主要思想。
试述隐枚举法的步骤。
试讲述割平面方法的基本原理. 试例举三种应该剪枝的情况。
计算题分枝定界法用分枝定界法求解下列整数规划问题12max Z x x =+1212129511414123,x x x x x x +≤-+≤≥0且为整数用分枝定界法求解下列整数规划问题12max 32Z x x =+121212231429,x x x x x x +≤+≤≥0且为整数用分枝定界法求解下列整数规划问题12max 2010Z x x =+1232312312324434323,,x x x x x x x x x x x ++≤≤+≤≥---0且为整数用分枝定界法求解下列整数规划问题12max 79Z x x =+121212136735,x x x x x x x +≤+≤≥-0,且为整数用分枝定界法求解下列整数规划问题123max 33Z x x x =++123231231231324432323,,,x x x x x x x x x x x x x ++≤≤+≤≥---0,且为整数用分枝定界法解下列整数规划问题:1212121212232478188..3219,0MaxZ x x x x x x s t x x x x =+-+≤⎧⎪+≤⎪⎨+≤⎪⎪≥⎩且为整数用分枝定界法解下列整数规划问题1212121212250..6221,0MaxZ x x x x x x s t x x x x =++≤⎧⎪-+≤⎪⎨+≤⎪⎪≥⎩且为整数用分枝定界法解下列整数规划问题12312121225231050..7228,0,MaxZ x x x x x s t x x x x x =-+-+≤⎧⎪-≤⎨⎪≥⎩为整数用分枝定界法解下列整数规划问题12312341234345272222..0,1,2,3,4,5,j MaxZ x x x x x x x x x x x s t x j x x =-+-⎧-+-+=⎪⎪⎪-++=⎨⎪≥=⎪⎪⎩为整数用分枝定界法求解下列整数规划模型12max 23z x x =+121257354936x x x x +≤+≤12,0x x ≥且为整数有如下整数规划问题12max z x x =+12129511414123x x x x +≤-+≤12,0x x ≥且为整数试用分枝定界法求其最优解。
第四章整数规划第一节整数规划的数学模型及解的特点第二节解纯整数规划的割平面法第三节分支定界法第四节0-1型整数规划第五节指派问题整数规划的数学模型及解的特点一、整数规划数学模型的一般形式要求一部分或全部决策变量必须取整数值的规划问题称为整数规划( integer programming,简记IP )。
不考虑整数条件,由余下的目标函数和约束条件构成的规划问题称为该整数规划问题的松弛问题(slack problem)。
若松弛问题是一个线性规划,则称该整数规划问题为整数线性规划( integer liner programming )。
本章仅讨论整数线性规划。
∑==nj jj x c z 1min)max(或⎪⎪⎩⎪⎪⎨⎧=≥=≥=≤∑=中部分或全部取整数j j n j i j ij x n j x m i b x a ),,1(0),,1(),(1 ∑==nj jj x c z 1min)max(或⎪⎩⎪⎨⎧=≥=≥=≤∑=),,1(0),,1(),(1n j x m i b x a j nj i j ij 松弛问题为1. 纯整数线性规划(pure integer liner programming ):指全部决策变量都必须取整数值的整数线性规划。
有时,也称为全整数规划。
2. 混合整数线性规划(mixed integer liner programming):指决策变量中有一部分必须取整数值,另一部分可以不取整数值的整数线性规划。
3. 0-1型整数线性规划( zero-one integer liner programming):指决策变量只能取值0 或1 的整数线性规划。
例:某服务部门各时段(每2小时为一时段)需要服务员人数见表,按规定服务员连续工作8小时(即四个时段)为一班。
现在要求安排服务员的工作时间,使服务部门服务员总数最少。
时段12345678服务员最少数目10891113853设在第j 时段开始上班的服务员人数为x j 。