运筹学第四章整数规划和分配问题a
- 格式:ppt
- 大小:768.50 KB
- 文档页数:70
运筹学习题精选第一章线性规划及单纯形法选择1.在线性规划模型中,没有非负约束的变量称为……………………………………………………( C )A.多余变量 B.松弛变量 C.自由变量 D.人工变量2.约束条件为0AX的线性规划问题的可行解集b,≥=X 是………………………………………( B )A.补集 B.凸集 C.交集 D.凹集3.线性规划问题若有最优解,则一定可以在可行域的( C)上达到。
A.内点 B.外点 C.顶点 D.几何点4.线性规划标准型中bi(i=1,2,……m)必须是…………………………………………………( B)A.正数 B.非负数 C.无约束 D.非零的5.线性规划问题的基本可行解X对应于可行域D 的………………………………………………( D)A.外点 B.所有点 C.内点 D.极点6.基本可行解中的非零变量的个数小于约束条件数时,该问题可求得……………………………( B ) A.基本解 B.退化解 C.多重解 D.无解7.满足线性规划问题全部约束条件的解称为…………………………………………………( C )A.最优解 B.基本解 C.可行解 D.多重解8.线性规划一般模型中,自由变量可以用两个非负变量的(B )代换。
A.和 B.差 C.积 D.商9.当满足最优检验,且检验数为零的变量的个数大于基变量的个数时,可求得………………………( A )A .多重解B .无解C .正则解D .退化解 10.若线性规划问题有最优解,则必定存在一个( D )是最优解。
A .无穷多解 B. 基解 C. 可行解 D. 基可行解 填空计算 1. 某厂生产甲、乙、丙三种产品,已知有关数据如下表所示,求使该厂获利最大的生产计划。
2. 目标函数为max Z =28x4+x5+2x6,约束形式为“≤”,且x1,x2,x3为松弛变量,表中的解代入目标函数中得Z=14,求出a~g 的值,并判断是否→j c 0 0 0 28 1 2B C 基 b 1x 2x 3x 4x5x 6x 2 6x A 3 0 -14/3 0 1 1 0 2x 5 6 D 2 0 5/2 0 28 4x 0 0 E F 1 0 0 j j z c - B C 0 0 -1 G3. 某工厂生产A 、B 两种产品,已知生产A 每公斤要用煤6吨、电4度、劳动力3个;生产B 每公斤要用煤4吨、电5度、劳动力10个。
整数规划与分配问题第四章整数规划与分配问题§4.1整数规划的特点及作⽤⽤单纯形法求解线性规划的结果往往得到分数或⼩数解。
但在很多实际问题中,全部或部分变量的取值必须是整数,如⼈或者机器设备不可分割。
此外还有⼀些问题,如要不要在某地建设⼯⼚,可选⽤⼀个逻辑变量x ,令1x =表⽰在该地建⼚,0x =表⽰不在该地建⼚,逻辑变量也只允许取整数值的⼀类变量。
在⼀个整数规划中要求全部变量取整数值的,称纯整数线性规划或纯整数规划;只要求⼀部分变量取整数值的,称为混合整数(线性)规划;在纯整数规划问题中,若所有变量只允许取0,1两个值,则称其为0-1规划。
有⼈认为,对整数规划问题的求解可以先不考虑对变量的整数约束,作为⼀般线性规划问题来求解,当解为⾮整数时可⽤四舍五⼊或凑整数寻找最优解,其实这种⽅法是不可⾏的,原因有以下两点:⼀、⽤凑整的⽅法计算量很⼤,⽽况还不⼀定能找到最优解。
如某线性规划问题的最优解为()()12 4.6 5.5x x =,⽤凑整数的⽅法时需⽐较与12,x x 的上述数值最接近的四种组合:(4,5),(5,5),(4,6),(5,6)如果问题中有10个变量,就要⽐较1021024=个整数解组合,⽽且最优解还不⼀定在这些组合中。
⼆、放松约束也⽆法求出其最优解例12121212max 322314.0.5 4.5,0,z x x x x s t x x x x =++≤??+≤??≥?整数如果不考虑整数约束,称为上述线性规划问题的松弛问题,松弛问题的最优解为:123.25, 2.5x x ==取整以后123,2x x ==是可⾏解,但1212123,3;4,2;4,3x x x x x x ======都不是可⾏解,⽽123,2x x ==对应的⽬标函数值123213z x x =+=却不是最优解,然⽽最优解是12124,1,max 3214x x z x x ===+=。
直接对松弛问题进⾏求解都⽆法求得整数规划问题的最优解,这就需要对整数线性规划问题有特殊的求解⽅法。