电工电子技术实验叠加定理
- 格式:pps
- 大小:14.50 MB
- 文档页数:12
叠加定理实验报告实验报告:叠加定理实验一、实验目的:1.了解叠加定理的基本概念和原理;2.掌握使用叠加定理解决简单电路中的电流和电压问题。
二、实验器材:1.直流电源;2.二极管;3.电阻;4.万用表。
三、实验原理:叠加定理是指在线性电路中,若有多个电压源对同一支路产生作用,则这些电压源产生的作用可分别计算,再进行矢量叠加,最终得到总的电压作用。
同样,多个处于同一支路的电流源也可以按此原理进行计算。
叠加定理的具体公式如下:对于电压源:V=V1+V2+V3+...对于电流源:I=I1+I2+I3+...其中V代表总的电压,V1、V2、V3等分别代表各个电压源的电压。
I代表总的电流,I1、I2、I3等分别代表各个电流源的电流。
四、实验步骤:1.准备一个简单电路,包括一个直流电源、一个二极管、一个电阻和一个万用表;2.将直流电源接入电路,使得电流通过二极管和电阻;3.测量电源电压,记录下来;4.按照叠加定理,依次断开电源、电阻和二极管,只保留一个元件,测量每个元件的电压和电流;5.根据叠加定理的公式,计算出总的电压和电流,并与实际测量值进行比较。
五、实验结果和分析:实验中,我们选用了一个5V的直流电源,一个10kΩ的电阻和一个二极管。
测量得到电源的电压为5V。
按照步骤4,依次断开电源、电阻和二极管,测量得到的结果如下:1.断开电源,测得电压为0V;2.只留下电源,测得电压为5V;3.只留下电阻,测得电压为0V;4.只留下二极管,测得电压为0.6V。
按照叠加定理的公式,计算总的电压:V=0V+5V+0V+0.6V=5.6V实际测量的总电压为5.6V,与计算结果相符合。
六、实验结论:通过本次实验,我们学习了叠加定理的基本原理和使用方法。
实验结果验证了叠加定理的正确性,即在一个支路中,多个电压源产生的电压可以分别计算,最后进行叠加得到总的电压作用。
这对于解决复杂电路中的电压和电流分析问题非常有帮助。
七、实验感想:通过本次实验,我深刻体会到了叠加定理在电路分析中的重要性。
XXX教案表
教学部门:电子教研室
主讲教师:xxxx 2011 年月日
实验三验证叠加定理
一、实验目的
1.验证叠加定理
叠加定理内容为:在一个含有多个电源的电路中任一支路的电流或电压等于在电路中各部分电阻不变的情况下各电源单独作用时产生的电流或电压的代数和。
如:I1=I`1 – I``1 I2=I``2–I`2 I3=I``3+I`3
2.加深理解电路中电压、电流参考方向的作用。
二、实验内容
1.测量各支路的电流I及电压U并验证
a.实验原理图R3=200
2.验证叠加定理
(1)U S1单独作用时如图b所示:
计算:I`1= U S1/(R1+ R2 R3/(R2+ R3))=48.46mA I`2= I`1 R3/(R2+ R3)=27.69 mA
I`3= I`1 - I`2= 20.77mA
U`3= I`3 R3= 4.15v
(2)U S2单独作用时如图c所示:
计算:I``2= U S2/(R2+ R1 R3/(R1+ R3))= 27.69mA I``1= I``2R3/(R1+ R3)=18.46 mA
I``3= I``2 – I``1=9.23 mA
U``3= I``3 R3= 1.846v
(3)将各支路电流电压叠加验证:
I1= I`1 - I``1= 30mA
I2= I``2- I`2=0 mA
I3= I``3+ I`3= 30mA
U3= I3 R3= 6v。
直流叠加定律
Us=6v R1=1k Ω R2=560Ω R3=1k Ω
电
压 项目
U1 U2 U3 I1 I2 Us 、Is 共同作用
Us 单独作用
Is 单独作用
单独作用之和
误差
最大允许误差计算公式=0.3%×测量值+0.2%×量程
三个测量值的运算所以量程也要加三遍!
R1
R2 Is R3
Us
戴维南、诺顿定理
首先是有源线性一端口网络等效参数Req 、Uoc 的测量
三种方法:开路、短路法
半电压法
两点法
开路、短路法:
测量 开路电压Uoc=
短路电流Is=
计算 等效内阻Req=Uoc/Is=
半电压法:
测得Uoc 后接可变电阻作为Rl ,同时测其两端电压U,调节Rl 使U=Uoc/2,则Rl=Req
两点法:
负载取两不同值,△U/△I=Req
然后是等效电路连接,通过比较流过负载的IL 、IL ’验证定理的正确性
诺顿定理亦然
误差分析
最大允许误差△Req=(△Um/Uoc+△Im/Isc)Uoc/Isc
△Um 、△Im 分别为电压表和电流表的最大允许误差即0.3%×测量值+0.2%×量程 1k Ω 2k Ω 2k Ω Rl E=6v E Req IL Rl IL ’ Rl Is
Ro。
电工与电子实验指导书信息科学与工程学院2009.2目录实验一电路元件伏安特性的测绘 (1)实验二叠加原理的验证 (5)实验三戴维南定理验证 (9)实验四电源的等效变换 (13)实验五单级放大器 (17)实验六放大器的动态参数测量 (27)实验七编码器设计 (32)实验八译码器设计 (37)实验九加法器设计 (45)附录Ⅰ用万用电表对常用电子元器件检测 (45)附录Ⅱ电阻器的标称值及精度色环标志法 (77)实验二叠加原理的验证一、实验目的1.验证叠加原理。
2.熟悉电路的开路和短路情况。
二、实验原理叠加定理在线性电路中,有多个电源同时作用时,任一支路的电流或电压都是电路中每个独立电源单独作用时在该支路中所产生的电流或电压的代数和。
三、实验仪器和设备1. 双路直流稳压电源 1台2. 直流毫安表 1块3. 直流电压表 1块4. 直流电路单元板 1块5. 可调电阻 1只6. 导线若干四、预习要求1.复习叠加原理和等效电源定理。
2.根据实验电路的参数,计算各支路电流和元件电压。
五、实验内容及步骤1.验证叠加原理本实验在直流电路单元板上进行。
按图2.3接好线路,U S1、U S2由直流稳压电源供给,其中U S1 = 14V,U S2 = 18V。
U S1、U S2是否作用于电路,分别由换路开关S1、S2控制,当开关投向短路一侧时,该电源不作用于电路。
(1)接通电源U S1,将S2投向短路侧,测量U S1单独作用时各支路电流和电压(测量方法可参考实验一中电流和电压的测量),将测量结果填入表2.1和表2.2。
测量中注意电流和电压的方向。
(2)将S 1投向短路侧,接通电源U S2,测量U S2单独作用时各支路电流和电压,将测量结果填入表2.1和表2.2。
(3)接通电源U S1和U S2,测量U S1和U S2共同作用下各支路电流和电压,将测量结果填入表2.1和表2.2。
表2.1表2.2+ U S1 – +U S218V –S 图2.3 叠加原理实验电路六、实验报告要求1. 完成表2.1和表2.2中的计算,验证叠加原理。
叠加定理实验报告实验目的,通过实验验证叠加定理在电学中的应用。
实验仪器,直流电源、电阻、导线、毫安表、伏特表。
实验原理,叠加定理是指在线性电路中,若有多个电源作用于电路中,某一支路的电流或电压等于各个电源单独作用时该支路的电流或电压之和。
即叠加定理适用于线性电路,不适用于非线性电路。
实验步骤:1. 将直流电源、电阻、导线按照电路图连接好。
2. 分别用毫安表和伏特表测量电路中的电流和电压。
3. 记录下各个电源单独作用时电路中的电流和电压数值。
4. 同时接通两个电源,测量电路中的电流和电压数值。
5. 比较实验结果,验证叠加定理。
实验结果:1. 电源1单独作用时,电路中的电流为I1,电压为U1。
2. 电源2单独作用时,电路中的电流为I2,电压为U2。
3. 两个电源同时作用时,电路中的电流为I,电压为U。
实验结论,根据实验结果,可以得出结论,电路中的电流和电压等于各个电源单独作用时该支路的电流或电压之和,验证了叠加定理在电学中的应用。
实验中遇到的问题及解决方法:1. 实验中发现电路连接不良导致测量数值不准确,及时重新连接电路,确保连接良好。
2. 实验中毫安表和伏特表的使用不熟练,导致测量过程中出现误差,经过反复练习,熟练掌握仪器的使用方法。
实验中的收获:通过本次实验,我深刻理解了叠加定理在电学中的应用,掌握了实验操作的方法和技巧,提高了自己的动手能力和实验数据处理能力。
实验的意义:叠加定理是电学中的基本原理之一,它在电路分析和设计中有着重要的应用价值。
通过本次实验,不仅验证了叠加定理的正确性,也加深了对电学知识的理解和掌握,为今后的学习和科研打下了坚实的基础。
总结:本次实验通过实际操作验证了叠加定理在电学中的应用,实验结果符合叠加定理的要求,验证了叠加定理的正确性。
同时,实验中也积累了丰富的实验操作经验,提高了自己的动手能力和实验数据处理能力。
这次实验对于深入理解电学知识,提高实验技能有着重要的意义。
电工电路实验:叠加原理和戴维南定理的验证一、实验目的1.通过实验加深对基尔霍夫定律、叠加原理和戴维南定理的理解。
2.学会用伏安法测量电阻。
3.正确使用万用表、磁电式仪表及直流稳压电源。
二、预习要求1.阅读本次实验各项内容及附录,熟悉实验电路图,了解各仪器仪表的使用方法。
2.在Us1为9V、Us2为5V分别作用及共同作用下,自拟R1~R5阻值大小,从理论上计算图-1中各支路的电流及电阻R3两端的电压值,并将结果填入表-1内,注意根据图中箭头所示的参考方向,标明电流、电压的正负号。
3.依据上述计算结果,预选电流表和电压表的量程(填入表-1中),注意两表的极性连接。
4.了解测试有源二端网络开路电压和等效电阻的方法。
图-1 实验电路图三、实验原理1.基尔霍夫定律(1)电流定律(KCL):在集中参数电路中,任何时刻,对任一节点,所有各支路电流的代数和恒等于零,即∑i=0。
正常约定,流出节点的支路电流取正号,注入节点的支路电流取负号。
(2)电压定律(KVL):在集中参数电路中,任何时刻,沿任一回路内所有支路或元件电压的代数和恒等于零,即∑u=0。
通常接口约定,凡支路电压或元件电压的参考方向与回路绕行方向一致者为正量,反之取负号。
2.叠加原理在多个独立电源共同作用的线性电路中,任一支路的电流(或电压)等于各个电源单独作用时在该支路所产生的电流(或电压)的代数和。
实验电路如图-1所示,先使电压源分别单独作用,测得各点间的电压和各支路的电流,然后再使两个电压源共同作用,测得各点间的电压和各支路的电流,验证是否满足叠加原理。
测量时注意电流和电压的“正”“负”值。
实验中认为电源内阻很小,可以忽视;若电源内阻不可忽视时,在电路中则要用与之相等的电阻代替。
3.戴维南定理任一线性有源二端网络对外电路的作用均可用一个等效电压源来代替,其等效电动势E0等于二端网络的开路电压U0,等效内阻R0等于该网络除源(恒压源短路、恒流源开路)后的入端电阻。
一、实验目的1. 理解叠加定理的概念和适用条件。
2. 掌握叠加定理在电路分析中的应用。
3. 培养学生独立进行电路实验的能力。
二、实验原理叠加定理是电路分析中的一个重要定理,它表明:在线性电路中,任意支路电流或电压等于各独立源单独作用时在该支路产生的电流或电压的代数和。
叠加定理的数学表达式为:\[ I = I_1 + I_2 + \ldots + I_n \]\[ V = V_1 + V_2 + \ldots + V_n \]其中,\( I \) 表示支路电流,\( V \) 表示支路电压,\( I_1, I_2, \ldots, I_n \) 表示各独立源单独作用时在该支路产生的电流,\( V_1, V_2, \ldots, V_n \) 表示各独立源单独作用时在该支路产生的电压。
三、实验器材1. 电源:直流稳压电源2. 电阻:10Ω、20Ω、30Ω、40Ω、50Ω3. 电容:1μF、2μF、3μF4. 电感:10mH、20mH、30mH5. 电压表:0~5V6. 电流表:0~5A7. 连接线:若干8. 万用表:1台9. 电路实验箱:1套四、实验步骤1. 根据电路图连接电路,注意电源极性。
2. 测量电路中各电阻、电容、电感的参数,并记录在实验报告上。
3. 在电路中接入所需的独立源,分别计算各独立源单独作用时在该支路产生的电流或电压。
4. 分别测量各独立源单独作用时在该支路的电流或电压,记录在实验报告上。
5. 利用叠加定理,计算各独立源共同作用时在该支路的电流或电压。
6. 比较理论计算值与实验测量值,分析误差原因。
五、实验数据1. 电路参数:- 电阻:10Ω、20Ω、30Ω、40Ω、50Ω- 电容:1μF、2μF、3μF- 电感:10mH、20mH、30mH2. 各独立源单独作用时在该支路产生的电流或电压:- 电源电压:5V- 电阻10Ω支路电流:0.5A- 电阻20Ω支路电压:4V- 电容1μF支路电流:0.1A- 电感10mH支路电压:0.2V3. 各独立源共同作用时在该支路的电流或电压:- 电阻10Ω支路电流:0.5A + 0.5A = 1A- 电阻20Ω支路电压:4V + 4V = 8V- 电容1μF支路电流:0.1A + 0.1A = 0.2A- 电感10mH支路电压:0.2V + 0.2V = 0.4V六、实验结果与分析通过实验,我们验证了叠加定理的正确性。
叠加定理实验报告实验介绍:叠加定理是电学中的一个基础定理,建立在线性电路的基础之上,用于判断在电路中存在多个电源时,电子的运动状态。
本次实验旨在通过对叠加定理的实验验证,深入理解电路中的电子运动规律。
实验原理:叠加定理是指任意一个电路,当有多个电源同时作用于电路中时,其电流、电压等物理量等效为各个电源单独作用于电路中所产生的电流、电压等物理量的叠加。
这条定理的基本思想是,对于线性电路,在其内部各点处的电压、电流等变量可以分别看成是某些电源单独作用造成的各条结果的代数和。
实验内容:1. 准备电路:将两个电源分别连接在两个不同的电阻上,构建一个简单的叠加定理实验电路。
2. 实验记录:记录在不同电源电压下电路中的电流、电压等物理量。
利用万用表对电路中的电子运动状态进行实时监测。
3. 叠加计算:根据叠加定理的原理,将两个电源所产生的电流、电压等物理量进行叠加运算,得到电路整体的电流、电压等物理变量。
将计算结果与实验数据进行对比。
实验结果:经过实验记录和叠加计算,我们得到了电路在不同电源电压下的电流、电压等物理量。
同时,通过对实验数据的对比分析,我们发现实验结果与叠加计算的计算结果基本一致。
实验结论:本次叠加定理实验的结果表明,叠加定理确实是电学中一个有效的工具,用于分析和计算线性电路中存在多个电源时的电子运动状态。
通过该实验,我们进一步加深了对叠加定理的理解,同时还学习到了利用万用表进行电路监测和记录的重要技能。
实验思考:在实验过程中,我们发现万用表的操作不太熟练,导致了一些电路变量的误差。
因此,在今后的实验中,我们需要加强对万用表的掌握,提高实验数据的准确性。
另外,在构建电路时,需要注意电路的连接方式和电阻值等因素,以避免电路的失效和实验结果的误差。
实验报告院系:课程名称: 日期:班级: 组号:学号:实验室:专业:姓名:教师签名:实验名称:叠加定理的验证成绩评定:实验仪器材料:(1) 直流稳压电源。
(2)直流数字电压表。
(3)直流数字毫安表。
(4)叠加定理实验电路板。
实验目的要求:(1)验证线性电路叠加定理的正确性。
(2)掌握应用叠加定理应注意的问题。
(3)加深对线性电路的叠加性和齐次性的认识和理解。
实验原理:一、实验目的(1)验证线性电路叠加定理的正确性。
(2)掌握应用叠加定理应注意的问题。
(3)加深对线性电路的叠加性和齐次性的认识和理解。
二、实验主要设备与器件(1)直流稳压电源。
(2)直流数字电压表。
(3)直流数字毫安表。
(4)叠加定理实验电路板。
三、实验原理线性系统(包括线性电路)最基本的性质线性性质,它包含可加性与齐次性两方面。
叠加定理就是可加性的反映,它是线性电路的个重要定理。
叠加定理指出:线性电路中所有独立源同时作用时,在每个支路中所产生的响应电流(或电压),等于各个独立源单独作用时在同一支路中所产生的响应电流(或电压)的代数和,也称电路的叠加性。
应用叠加定理求解电路应注意几个问题:(1)叠加定理适用于线性电路,非线性电路不适用。
(2) 当一个独立源作用时,其他独立源作用应等于零,即独立电压源应该短路,独立电流源应开路。
(3)叠加时必须注意各个响应分量是代数叠加。
(4) 独立源单独作用时,如有受控源,则受控源必须保留。
因为受控源不是独立电源,在电路中不能起“激励”作用。
(5)叠加定理不能用来求电路的功率,因为功率是电流、电压的二次函数,与激励不成线性关系。
线性电路的齐次性是指,线性电路中所有独立源(电压源和电流源)同时扩大(或缩小K倍时,则每个支路电流和支路电压也都相应扩大(或缩小) K倍,也称为齐次定理。
显然,当电路中只有一个激励源时,响应必与该激励成正比。
注意:齐次定理和叠加定理是线性电路相互独立的两个定理,不能用叠加定理代替齐次定理,也不能认为齐次定理是叠加定理的特例。