专题19 最值问题
- 格式:doc
- 大小:155.00 KB
- 文档页数:4
专题19 概率最值问题例1. 某芯片代工厂生产某型号芯片每盒12片,每批生产若干盒,每片成本1元,每盒芯片需检验合格后方可出厂.检验方案是从每盒芯片随机取3片检验,若发现次品,就要把全盒12片产品全部检验,然后用合格品替换掉不合格品,方可出厂;若无次品,则认定该盒芯片合格,不再检验,可出厂.(2)若每片芯片售价10元,每片芯片检验费用1元,次品到达组装工厂被发现后,每片须由代工厂退赔10元,并补偿1片经检验合格的芯片给组装厂.设每片芯片不合格的概率为<<(01)p p ,且相互独立. ①若某箱12片芯片中恰有3片次品的概率为()f p ,求()f p 的最大值点0p ;【解析】(1)设“该盒芯片经一次检验即可出厂”的事件为A 则()==393122155C P A C 答:该盒芯片可出厂的概率为2155.(2)①某箱12片芯片中恰有3片次品的概率 ()()+++-⨯⎛⎫=-≤= ⎪⎝⎭129333123121212333(1)91131[]2712274p p p p f p C p pC C 当且仅当=-31p p ,即=14p 时取“=”号故()f p 的最大值点=014p .②由题设知,==014p p设这箱芯片不合格品个数为n 则⎛⎫~ ⎪⎝⎭,1124n B 故()=⨯=11234E n 则()=---⨯=12012303272E X ∴这箱芯片最终利润X 的期望是72元.例2. 绿水青山就是金山银山.近年来,祖国各地依托本地自然资源,打造旅游产业,旅游业正蓬勃发展.景区与游客都应树立尊重自然、顺应自然、保护自然的生态文明理念,合力使旅游市场走上规范有序且可持续的发展轨道.某景区有一个自愿消费的项目:在参观某特色景点入口处会为每位游客拍一张与景点的合影,参观后,在景点出口处会将刚拍下的照片打印出来,游客可自由选择是否带走照片,若带走照片则需支付20元,没有被带走的照片会收集起来统一销毁.该项目运营一段时间后,统计出平均只有三成的游客会选择带走照片.为改善运营状况,该项目组就照片收费与游客消费意愿关系作了市场调研,发现收费与消费意愿有较强的线性相关性,并统计出在原有的基础上,价格每下调1元,游客选择带走照片的可能性平均增加0.05,假设平均每天约有5000人参观该特色景点,每张照片的综合成本为5元,假设每个游客是否购买照片相互独立.【解析】解:(1)当收费为20元时,照片被带走的可能性为0.3,不被带走的概率为0.7, 设每个游客的利润为1Y 元,则1Y 是随机变量,其分布列为:115035071=⨯-⨯=()..E Y (元),则5000个游客的平均利润为5000元,当收费为10元时,照片被带走的可能性为030051008+⨯=...,不被带走的概率为0.2, 设每个游客的利润为2Y ,则2Y 是随机变量,其分布列为:25085023=⨯-⨯=()..E Y (元),则5000个游客的平均利润为5000315000⨯=(元),该项目每天的平均利润比调整前多10000元.(2)设降价x 元,则015<x ,照片被带走的可能性为03005+..x , 不被带走的可能性为07005-..x ,设每个游客的利润为元,则是随机变量,其分布列为:21503005507005005697=-⨯+-⨯-=--()()(..)(..).[()]E Y x x x x ,当7=x 时,()E Y 有最大值3.45元,∴当定价为13元时,日平均利润取最大值为500034517250⨯=.元.例3. 一年之计在于春,一日之计在于晨,春天是播种的季节,是希望的开端.某种植户对一块地的∈(*)n n N 个坑进行播种,每个坑播3粒种子,每粒种子发芽的概率均为12,且每粒种子是否发芽相互独立,对每一个坑而言,如果至少有两粒种子发芽,则不需要进行补播种,否则要补播种.(2)当4=n 时,用X 表示要补播种的坑的个数,求X 的分布列与数学期望.【解析】解:(1)对于一个坑而言,要补种的概率为3133111222+=()()C .有3个坑需要补种的概率为:312⨯()n n C ,要使312⨯()n n C 最大,只须323411221122⎧≥⎪⎪⎨⎪≥⎪⎩()()()()n n n n n nn n C C C C ,解得57≤≤n , ∈*n N ,故5=n ,6,7.35353556711513522162128==>=()()()C C C , 所以当n 为5或6时,有3个坑要补播种的概率最大.最大概率为516. (2)4=n 时,要补播种的坑的个数X 的所有的取值分别为0,1,2,3,4,142~(,)X B ,044110216===()()P X C ,14411124===()()P X C ,24413228===()()P X C , 34411324===()()P X C ,444114216===()()P X C .所以X 的数学期望1422=⨯=()E X . 例4. 为实现有效利用扶贫资金,增加贫困村民的收入,扶贫工作组结合某贫困村水质优良的特点,决定利用扶贫资金从外地购买甲、乙、丙三种鱼苗在鱼塘中进行养殖试验,试验后选择其中一种进行大面积养殖,已知鱼苗甲的自然成活率为0.8,鱼苗乙、丙的自然成活率均为0.9,且甲、乙、丙三种鱼苗是否成活相互独立.(1)试验时从甲、乙、丙三种鱼苗中各取一尾,记自然成活的尾数为X ,求X 的分布列和数学期望;【解析】解:(1)随机变量X 的所有可能取值为0,1,2,3, 则00201010002==⨯⨯=()....P X ,10801020209010201090044==⨯⨯+⨯⨯+⨯⨯=()..........P X , 20809010801090209090306==⨯⨯+⨯⨯+⨯⨯=()..........P X , 30809090648==⨯⨯=()....P X .(2)根据已知乙种鱼苗自然成活的概率为0.9,依题意知一尾乙种鱼苗最终成活的概率为090105095+⨯=...., ∴一尾乙种鱼苗的平均收益为10095200594⨯-⨯=...元.设购买n 尾乙种鱼苗,()F n 为购买n 尾乙种鱼苗最终可获得的利润, 则94376000=≥().F n n ,解得40000≥n .所以需至少购买40000尾乙种鱼苗,才能确保获利不低于37.6万元.例5. 为了引导居民合理用水,某市决定全面实施阶梯水价.阶梯水价原则上以住宅(一套住宅为一户)的月用水量为基准定价,具体划分标准如表:从本市随机抽取了10户家庭,统计了同一月份的月用水量,得到如图茎叶图:(Ⅰ)现要在这10户家庭中任意选取3户,求取到第二阶梯水量的户数X 的分布列与数学期望;(Ⅰ)用抽到的10户家庭作为样本估计全市的居民用水情况,从全市依次随机抽取10户,若抽到k 户月用水量为一阶的可能性最大,求k 的值.【解析】(Ⅰ)由茎叶图可知抽取的10户中用水量为一阶的有3户,二阶的有5户,三阶的有2户.第二阶段水量的户数X 的可能取值为0,1,2,3,()0355*******C C P X C ===,()12553105112C C P X C ===,()21553105212C C P X C ===,()30553101312C C P X C ===,所以X 的分布列为X 的数学期望()0123121212122E X =⨯+⨯+⨯+⨯=. (Ⅰ)设Y 为从全市抽取的10户中用水量为一阶的家庭户数,依题意得310,10Y B ⎛⎫~ ⎪⎝⎭,()()1010370,1,2,3, (101010)kk P X k C k -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,由1019110101011111010373710101010373710101010k k k kk k k k k kk k C C C C -+-+----⎧⎛⎫⎛⎫⎛⎫⎛⎫≥⎪ ⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎨⎛⎫⎛⎫⎛⎫⎛⎫⎪≥ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎩,解得23331010k ≤≤,又*k N ∈,所以当3k =时概率最大. 即从全市依次随机抽取10户,抽到3户月用水量为一阶的可能性最大.例6. 已知A ,B 两个投资项目的利润率分别为随机变量1X 和2X .根据市场分析, 1X 和2X 的分布列如下.(1)在A ,B 两个项目上各投资100万元,1Y 和2Y 分别表示投资项目A 和B 所获得的利润,求()1D Y 和()2D Y ;(2)将x ()0100x ≤≤万元投资A 项目,100x -万元投资B 项目,()f x 表示投资A 项目所得利润的方差与投资B 项目所得利润的方差之和.求()f x 的最小值,并指出x 为何值时,()f x 取到最小值.【解析】(1)15%1000.810%1000.26,EY =⨯⨯+⨯⨯=221(5%1006)0.8(10%1006)0.24DY =⨯-⨯+⨯-⨯= 22%1000.28%1000.512%1000.38,EY =⨯⨯+⨯⨯+⨯⨯=2222(2%1008)0.2(8%1008)0.5(12%1008)0.312DY =⨯-⨯+⨯-⨯+⨯-⨯=(2)221212100100()()()()()()()100100100100x x x x f x D Y D Y D Y D Y --=+=+22222244[3(100)](46003100)100100x x x x =+-=-+⨯, 当75x =时,()f x 取最小值3.例7. 某地有种特产水果很受当地老百姓欢迎,但该种水果只能在9月份销售,且该种水果只能当天食用口感最好,隔天食用口感较差。
专题19解三角形大题综合考点十年考情(2015-2024)命题趋势考点1求面积的值及范围或最值(10年7考)2024·北京卷、2023·全国甲卷、2023·全国乙卷2022·浙江卷、2019·全国卷、2017·全国卷2016·全国卷、2015·浙江卷、2015·全国卷2015·山东卷掌握正弦定理、余弦定理及其相关变形应用,会用三角形的面积公式解决与面积有关的计算问题,会用正弦定理、余弦定理等知识和方法解决三角形中的综合问题,会利用基本不等式和相关函数性质解决三角形中的最值及范围问题本节内容是新高考卷的必考内容,一般给以大题来命题、考查正余弦定理和三角形面积公式在解三角形中的应用,同时也结合三角函数及三角恒等变换等知识点进行综合考查,也常结合基本不等式和相关函数性质等知识点求解范围及最值,需重点复习。
考点2求边长、周长的值及范围或最值(10年8考)2024·全国新Ⅱ卷、2024·全国新Ⅰ卷、2023·全国新Ⅱ卷、2022·全国新Ⅱ卷、2022·全国乙卷、2022·北京卷、2022·全国新Ⅰ卷、2020·全国卷、2020·全国卷、2018·全国卷、2017·全国卷、2017·山东卷2017·全国卷、2016·全国卷、2015·浙江卷2015·山东卷考点3求角和三角函数的值及范围或最值(10年10考)2024·天津卷、2023·天津卷、2022·天津卷、2021·天津卷、2021·全国新Ⅰ卷、2020·天津卷2020·浙江卷、2020·江苏卷、2019·江苏卷2019·北京卷、2019·全国卷、2018·天津卷2017·天津卷、2017·天津卷、2016·四川卷2016·浙江卷、2016·浙江卷、2016·天津卷2016·北京卷、2016·山东卷、2016·四川卷2016·江苏卷、2015·江苏卷、2015·天津卷2015·四川卷、2015·湖南卷、2015·湖南卷2015·全国卷考点4求三角形的高、中线、角平分线及其他线段长(10年几考)2023·全国新Ⅰ卷、2018·北京卷、2018·全国卷2015·安徽卷、2015·全国卷考点5三角形中的证明问题(10年4考)2022·全国乙卷、2021·全国新Ⅰ卷、2016·四川卷2016·浙江卷、2016·山东卷、2016·四川卷2015·湖南卷考点01求面积的值及范围或最值1.(2024·北京·高考真题)在ABC 中,内角,,A B C 的对边分别为,,a b c ,A ∠为钝角,7a =,sin 2cos B B =.(1)求A ∠;(2)从条件①、条件②、条件③这三个条件中选择一个作为已知,使得ABC 存在,求ABC 的面积.条件①:7b =;条件②:13cos 14B =;条件③:sin c A =注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.2.(2023·全国甲卷·高考真题)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知2222cos b c aA+-=.(1)求bc ;(2)若cos cos 1cos cos a B b A ba Bb A c--=+,求ABC 面积.3.(2023·全国乙卷·高考真题)在ABC 中,已知120BAC ∠=︒,2AB =,1AC =.(1)求sin ABC ∠;(2)若D 为BC 上一点,且90BAD ∠=︒,求ADC △的面积.4.(2022·浙江·高考真题)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知34,cos 5a C ==.(1)求sin A 的值;(2)若11b =,求ABC 的面积.5.(2019·全国·高考真题)ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知sin sin 2A Ca b A +=.(1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围.6.(2017·全国·高考真题)ABC ∆的内角,,A B C 的对边分别为,,,a b c 已知sin 0,22A A a +===.(1)求角A 和边长c ;(2)设D 为BC 边上一点,且AD AC ⊥,求ABD ∆的面积.7.(2016·全国·高考真题)ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知2cos (cos cos )C a B b A c +=.(1)求角C ;(2)若7c =332ABC S ∆=ABC ∆的周长.8.(2015·浙江·高考真题)在ABC ∆中,内角A ,B ,C 所对的边分别为,,a b c .已知tan()24A π+=.(1)求2sin 2sin 2cos AA A+的值;(2)若,34B a π==,求ABC ∆的面积.9.(2015·全国·高考真题)已知,,a b c 分别是ABC ∆内角,,A B C 的对边,2sin 2sin sin B A C =.(1)若a b =,求cos ;B (2)若90B = ,且2,a =求ABC ∆的面积.10.(2015·山东·高考真题)设()2sin cos cos 4f x x x x π⎛⎫=-+ ⎪⎝⎭.(Ⅰ)求()f x 的单调区间;(Ⅱ)在锐角ABC ∆中,角,,A B C 的对边分别为,,a b c ,若0,12A f a ⎛⎫== ⎪⎝⎭,求ABC ∆面积的最大值.考点02求边长、周长的值及范围或最值1.(2024·全国新Ⅱ卷·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 32A A +=.(1)求A .(2)若2a =2sin sin 2b C c B =,求ABC 的周长.2.(2024·全国新Ⅰ卷·高考真题)记ABC 的内角A 、B 、C 的对边分别为a ,b ,c ,已知sin 2C B =,2222a b c ab+-=(1)求B ;(2)若ABC 的面积为33c .3.(2023·全国新Ⅱ卷·高考真题)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知ABC 3D 为BC 中点,且1AD =.(1)若π3ADC ∠=,求tan B ;(2)若228b c +=,求,b c .4.(2022·全国新Ⅱ卷·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S ,已知123123S S S B -+==.(1)求ABC 的面积;(2)若sin sin 3A C =,求b .5.(2022·全国乙卷·高考真题)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A -=-.(1)证明:2222a b c =+;(2)若255,cos 31a A ==,求ABC 的周长.6.(2022·北京·高考真题)在ABC 中,sin 2C C =.(1)求C ∠;(2)若6b =,且ABC 的面积为ABC 的周长.7.(2022·全国新Ⅰ卷·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B=++.(1)若23C π=,求B ;(2)求222a b c +的最小值.8.(2020·全国·高考真题)ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150°.(1)若a,b ,求ABC 的面积;(2)若sin A C,求C .9.(2020·全国·高考真题)ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C .(1)求A ;(2)若BC =3,求ABC 周长的最大值.10.(2018·全国·高考真题)在平面四边形ABCD 中,90ADC ∠= ,45A ∠= ,2AB =,5BD =.(1)求cos ADB ∠;(2)若DC =,求BC .11.(2017·全国·高考真题)△ABC 的内角、、A B C 的对边分别为a b c 、、,已知△ABC 的面积为23sin a A(1)求sin sin B C ;(2)若6cos cos 1,3,B C a ==求△ABC 的周长.12.(2017·山东·高考真题)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知b =3,6AB AC ⋅=-,S △ABC =3,求A 和a .13.(2017·全国·高考真题)△ABC 的内角,,A B C 的对边分别为,,a b c ,已知2sin()8sin 2B AC +=.(1)求cos B ;(2)若6a c +=,△ABC 的面积为2,求b .14.(2016·全国·高考真题)ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知2cos (cos cos )C a B b A c +=.(1)求角C ;(2)若c =ABC S ∆=ABC ∆的周长.15.(2015·浙江·高考真题)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知4A π=,22b a -=122c .(1)求tan C 的值;(2)若ABC ∆的面积为3,求b 的值.16.(2015·山东·高考真题)ABC 中,角A B C ,,所对的边分别为,,a b c .已知cos ()B A B ac =+==求sin A 和c 的值.考点03求角和三角函数的值及范围或最值1.(2024·天津·高考真题)在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知92cos 5163a Bbc ===,,.(1)求a ;(2)求sin A ;(3)求()cos 2B A -的值.2.(2023·天津·高考真题)在ABC 中,角,,A B C所对的边分别是,,a b c .已知2,120a b A ==∠= .(1)求sin B 的值;(2)求c 的值;(3)求()sin B C -的值.3.(2022·天津·高考真题)在ABC 中,角A 、B 、C 的对边分别为a ,b ,c.已知12,cos 4a b c A ===-.(1)求c 的值;(2)求sin B 的值;(3)求sin(2)A B -的值.4.(2021·天津·高考真题)在ABC ,角 ,,A B C所对的边分别为,,a b c ,已知sin :sin :sin 2:1:A B C =b =.(I )求a 的值;(II )求cos C 的值;(III )求sin 26C π⎛⎫- ⎪⎝⎭的值.5.(2021·全国新Ⅰ卷·高考真题)记ABC 是内角A ,B ,C 的对边分别为a ,b ,c .已知2b ac =,点D 在边AC 上,sin sin BD ABC a C ∠=.(1)证明:BD b =;(2)若2AD DC =,求cos ABC ∠.6.(2020·天津·高考真题)在ABC 中,角,,A B C所对的边分别为,,a b c .已知5,a b c ===(Ⅰ)求角C 的大小;(Ⅱ)求sin A 的值;(Ⅲ)求sin 24A π⎛⎫+ ⎪⎝⎭的值.7.(2020·浙江·高考真题)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2sin 0b A =.(I )求角B 的大小;(II )求cos A +cos B +cos C 的取值范围.8.(2020·江苏·高考真题)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,45a c B ==︒.(1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ∠=-,求tan DAC ∠的值.9.(2019·江苏·高考真题)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b ,cos B =23,求c 的值;(2)若sin cos 2A Ba b=,求sin(2B π+的值.10.(2019·北京·高考真题)在△ABC 中,a =3,b −c =2,cos B =12-.(Ⅰ)求b ,c 的值;(Ⅱ)求sin (B –C )的值.11.(2019·全国·高考真题)ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-.(1)求A ;(22b c +=,求sin C .12.(2018·天津·高考真题)在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c.已知sin cos 6b A a B π⎛⎫=- ⎪⎝⎭.(1)求角B 的大小;(2)设a =2,c =3,求b 和()sin 2A B -的值.13.(2017·天津·高考真题)在ABC 中,内角,,A B C 所对的边分别为,,a b c .已知sin 4sin a A b B =,222)ac a b c =--.(I )求cos A 的值;(II )求sin(2)B A -的值.14.(2017·天津·高考真题)在ABC 中,内角,,A B C 所对的边分别为,,a b c .已知a b >,5,6a c ==,3sin 5B =.(Ⅰ)求b 和sin A 的值;(Ⅱ)求πsin(2)4A +的值.15.(2016·四川·高考真题)在 ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且.(Ⅰ)证明:sinAsinB=sinC ;(Ⅱ)若,求tanB .16.(2016·浙江·高考真题)在 ABC 中,内角A B C ,,所对的边分别为a ,b ,c .已知b+c =2ac os B .(Ⅰ)证明:A =2B ;(Ⅱ)若cos B =23,求cos C 的值.17.(2016·浙江·高考真题)在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知2cos b c a B +=.(1)证明:2A B =;(2)若ABC ∆的面积24a S =,求角A 的大小.18.(2016·天津·高考真题)在ABC 中,内角所对的边分别为a,b,c ,已知sin 2sin a B A =.(Ⅰ)求B ;(Ⅱ)若1cos 3A =,求sinC 的值.19.(2016·北京·高考真题)在△ABC 中,222a c b +=+(1)求B 的大小;(2)A +cos C 的最大值.20.(2016·山东·高考真题)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c.已知2(tan A +tan B)=tan tan cos cos A BB A+.(1)证明:a +b =2c ;(2)求cos C 的最小值.21.(2016·四川·高考真题)在△ABC 中,角A,B,C 所对的边分别是a,b,c,且cos cos sin A B Ca b c+=.(Ⅰ)证明:sin sin sin A B C =;(Ⅱ)若22265b c a bc +-=,求tan B .22.(2016·江苏·高考真题)在ABC 中,AC=6,4cos .54B C π==,(1)求AB 的长;(2)求(6cos A π-的值.23.(2015·江苏·高考真题)在中,已知.(1)求的长;(2)求的值.24.(2015·天津·高考真题)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,已知ABC 的面积为12,cos 4b c A -==-.(1)求a 和sin C 的值;(2)求cos(2)6A π+的值.25.(2015·四川·高考真题)如图,A ,B ,C ,D 为平面四边形ABCD 的四个内角.(1)证明:(2)若求的值.26.(2015·湖南·高考真题)设ABC ∆的内角,,A B C 的对边分别为,,,tan a b c a b A =.(Ⅰ)证明:sin cos B A =;(Ⅱ)若3sin sin cos 4C A B -=,且B 为钝角,求,,A B C .27.(2015·湖南·高考真题)设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,tan a b A =,且B 为钝角.(1)证明:2B A π-=;(2)求sin sin A C +的取值范围.28.(2015·全国·高考真题)△ABC 中D 是BC 上的点,AD 平分∠BAC,BD=2DC .(Ⅰ)求sin sin BC∠∠;(Ⅱ)若60BAC ∠= ,求B ∠.考点04求三角形的高、中线、角平分线及其他线段长1.(2023·全国新Ⅰ卷·高考真题)已知在ABC 中,()3,2sin sin A B C A C B +=-=.(1)求sin A ;(2)设5AB =,求AB 边上的高.2.(2018·北京·高考真题)在ABC 中,17,8,cos 7a b B ===-.(1)求A ∠;(2)求AC 边上的高.3.(2018·全国·高考真题)在平面四边形ABCD 中,90ADC ∠= ,45A ∠= ,2AB =,5BD =.(1)求cos ADB ∠;(2)若DC =,求BC .4.(2015·安徽·高考真题)在ABC 中,3,6,4A AB AC π===点D 在BC 边上,AD BD =,求AD 的长.5.(2015·全国·高考真题)ABC ∆中,D 是BC 上的点,AD 平分∠BAC ,ABD ∆面积是ADC ∆面积的2倍.(1)求sin sin BC;(2)若AD =1,DC BD 和AC 的长.考点05三角形中的证明问题1.(2022·全国乙卷·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知()()sin sin sin sin C A B B C A -=-.(1)若2A B =,求C ;(2)证明:2222a b c =+2.(2021·全国新Ⅰ卷·高考真题)记ABC 是内角A ,B ,C 的对边分别为a ,b ,c .已知2b ac =,点D 在边AC 上,sin sin BD ABC a C ∠=.(1)证明:BD b =;(2)若2AD DC =,求cos ABC ∠.3.(2016·四川·高考真题)在 ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且.(Ⅰ)证明:sinAsinB=sinC ;(Ⅱ)若,求tanB .4.(2016·浙江·高考真题)在 ABC 中,内角A B C ,,所对的边分别为a ,b ,c .已知b+c =2ac os B .(Ⅰ)证明:A =2B ;(Ⅱ)若cos B =23,求cos C 的值.5.(2016·山东·高考真题)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c.已知2(tan A +tan B)=tan tan cos cos A BB A+.(1)证明:a +b =2c ;(2)求cos C 的最小值.6.(2016·四川·高考真题)在△ABC 中,角A,B,C 所对的边分别是a,b,c,且cos cos sin A B Ca b c+=.(Ⅰ)证明:sin sin sin A B C =;(Ⅱ)若22265b c a bc +-=,求tan B .7.(2015·湖南·高考真题)设ABC ∆的内角,,A B C 的对边分别为,,,tan a b c a b A =.(Ⅰ)证明:sin cos B A =;(Ⅱ)若3sin sin cos 4C A B -=,且B 为钝角,求,,A B C .。
专题19 最值问题例1 24 提示:,2,3a c b c d c =-==,原式324c .例2 B 提示:()24422222219212248a ab b a b a b ab a b ab ab ++=+-+=-+=--+⎛⎫ ⎪⎝⎭. 因为2221ab a b ≤+=,所以1122ab -≤≤,从而311444ab -≤-≤,故2190416ab ≤-≤⎛⎫ ⎪⎝⎭因此219902488ab ≤--+≤⎛⎫ ⎪⎝⎭,即44908a ab b ≤++≤.例3 设12345x x x x x ≤≤≤≤,则23451345124512351234454545544545131111111111=x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x =++++++≤++++于是得到45453x x x x ≤--.即()()45141x x -≤-.若41x =,则12341x x x x ====,与题设等式为554x x +=矛盾;若41x >,则514x -≤,即55x ≤,当55x =时,容易找到满足条件的数组(1,1,1,2,5),所以5x 的最大值是5.例4 由1234x y z x y z +-=++=⎧⎨⎩,得5234x z y z=-=-⎧⎨⎩,由520340x z y z =-≥=-≥⎧⎨⎩得2354z ≤≤,则()()323522348x y z z z z z ω=++=-+-+=,当25z =时,ω有最小值165;当34z =时,ω有最大值6.例5 提示:显然运送次数越少,所行驶的路程越短,所需邮费越少,因此,18根电线杆运送5次行驶路程较短,这5次有两种运送方法:(1)四次个4根,一次2根;(2)三次各4根,二次各3根. (1)考虑先送2根,后送4根;先送4根,后送2根. ①先送2根,再送4根,二次共走行驶:()()10001002110040025200+⨯++⨯=米;②先送4根,再送2根,二次共行驶:()()10003002130020025600+⨯++⨯=米;(2)两次各送3根时,所行路程为()()10002002120030025400+⨯++⨯=米.故先送2根所行驶路程最短,最短总行程为:()()()()()10001002110040021500400219004002230040019000+⨯++⨯++⨯++⨯++=米故所用最少油费为19000100019mn mn ÷=元例6 如图所示,在△ABC 中,∠C =90°,BC =5,AB =13.点P 到BC ,CA ,AB 的距离分别为123,,d d d ,连接PA ,PB ,PC ,由三角形的面积公式知:1231111512135122222d d d ⨯+⨯+⨯=⨯⨯. 即 1235121360d d d ++=.显然有()()12312312355121313d d d d d d d d d ++≤++≤++. 故()123601213d d d ≤++≤. 当230d d ==时,有12312d d d ++=,即123d d d ++取最大值时,P 与A 重合;当120d d ==时,有1236013d d d +++=,即123d d d ++取最小值时,P 与C 重合.A 级 1.27 原式=()()2222327a b c a b c ++-++≤2.63.15° 提示:()()()39023266A AB BC αααα︒-+-+-++=≤()270901566A B C ︒︒︒-++=== 4. 122c a -<<- 提示:,b a c a c b =----<,∴2,2ca c a>->-,又把b a c =--代入b c >中,得a c c --<,∴12c a <-.故122c a -<<-. 5.D 6.B 7.A 8.B 9.设123234x y z k ---===,则21,32,43x k y k z k =+=-+=+. ∴,,x y z 均为非负实数. ∴2103204k+30k k +≥⎧⎪-+≥⎨⎪≥⎩,解得:1223k -≤≤.故()()()3453214325431426x y z k k k k ω=++=++-+++=+. ∴1214261426142623k -⨯+≤+≤⨯+,即119353ω≤≤, 所以ω的最小值是19,最大值是1353.10.20套. 1800元.提示:设生产L 型号的童装套数为x ,则生产M 型号的童装为()50x -套,所得利润()453050151500S x x x =+-=+.由()()0.50.950380.25026x x x x +-≤⎧⎪⎨+-≤⎪⎩得17.520x ≤≤,18,19,20x =.11.最小表面积的打包方式为2×3.最小表面积为179522mm ,图略. B 级 1.27 当2,25b a ==时,a b +的值最大. 2.102 提示:()1998,19980m n n n =--≥. 3.1157 提示:5864,,8525b b ba c d ===. 4.B ,D ,E 93.62百元5.13800元 提示:设由甲库调运x 吨粮食到B 市,总运费为y 元,则()()()()56600680096002138000600y x x x x x x =+-+-++=+≤≤6.C 提示:a b c da b c d a b c d a b c d a b c d+++<++++++++++++a b c d M a b a b c d c d<+++++++. 故12M <<.7.B 提示:设AOD S x ∆=,则36BOC S x∆=.故36361313225S x x x x =++≥+=四边形ABCD . 8.(1)()2222122002122002220122a a a a a a m m +++=++++=+.()212200220122a a a m +++-=.当1220021a a a ====或1-时,m 取最大值2003001.当122002,,,a a a 中恰有1001个1,1001个1-时,m 取最小值1001-.(2)因为大于2002的最小完全平方数为2452025=,且122002a a a +++必为偶数,所以12200246a a a +++=或46-;即122002,,,a a a 中恰有1024个1,978个1-或1024个1-,978个1时,m 取得最小值()21462002572-=. 9.由条件得:2005222221211200620050,44,,44a a a a a a a ==++=++,以上各式相加,得()212200520064420050a a a a ++++⨯=≥,故1220052005a a a +++≥-.由已知122005,,,a a a 都是偶数,因此1220052004a a a +++≥-.另一方面,当1320050a a a ====,2420042a a a ====-时,符合条件,且使上式等号成立,故所求的最小值是2004-.10.仓库地址应选在C 处,假定仓库另选一地O ,设,,,,AB c BC a CA b AO x ====BO y CO z ==,(单位:千米),又假定A 厂产量为2m ,B 厂产量为3m ,C 厂产量为5m ,(单位:吨).仓库在O 处的总运费可表示为235mx my mz ++;仓库在C 处的总运费可表示为2mb +3ma .由于x +z ≥b ,y +z ≥a ,因此2mx +2mz ≥2mb ,3my +3mz ≥3ma ,两式相加得2mx +3my +5mz ≥2mb +3ma ,当且仅当O 与C 重合时等号成立,所以公用仓库选在C 处总运费最省.11.设巡逻车行到途中B 处用了x 天,从B 到最远处用y 天,则有2[3(x +y )+2x ]=14×5,即5x +3y =35.又由题意知,x >0,y >0,且14×5-(5+2)x ≤14×3,即x ≥4,从而问题的本质即是在约束条件5335,4x yxy+=⎧⎪≥⎨⎪>⎩,下,求y的最大值,显然y=5,这样200×(4+5)=1800千米,即为其他三辆车可行进的最远距离.7、我们各种习气中再没有一种象克服骄傲那麽难的了。
2019中考数学专题复习二次函数与线段最值问题含解析二次函数与线段最值问题一.填空题1.如图,P是抛物线y=﹣x2+x+2在第一象限上的点,过点P分别向x轴和y轴引垂线,垂足分别为A,B,则四边形OAPB周长的最大值为 .二.解答题2.已知函数y=(m+2)x2+kx+n.(1)若此函数为一次函数;①m,k,n的取值范围;②当﹣2≤x≤1时,0≤y≤3,求此函数关系式;③当﹣2≤x≤3时,求此函数的最大值和最小值(用含k,n的代数式表示);(2)若m=﹣1,n=2,当﹣2≤x≤2时,此函数有最小值﹣4,求实数k的值.3.如图,二次函数y=﹣x2+2(m﹣2)x+3的图象与x、y轴交于A、B、C三点,其中A(3,0),抛物线的顶点为D.(1)求m的值及顶点D的坐标;(2)当a≤x≤b时,函数y的最小值为,最大值为4,求a,b应满足的条件;(3)在y轴右侧的抛物线上是否存在点P,使得三角形PDC是等腰三角形?如果存在,求出符合条件的点P的坐标;如果不存在,请说明理由.4.已知点A(t,1)为函数y=ax2+bx+4(a,b为常数,且a≠0)与y=x图象的交点.(1)求t;(2)若函数y=ax2+bx+4的图象与x轴只有一个交点,求a,b;(3)若1≤a≤2,设当x≤2时,函数y=ax2+bx+4的最大值为m,最小值为n,求m﹣n的最小值.5.已知y关于x的函数y=nx2﹣2(m+1)x+m+3(1)若m=n=﹣1时,当﹣1≤x≤3时,求函数的最大值和最小值;(2)若n=1,当m取何值时,抛物线顶点最高?(3)若n=2m>0,对于任意m的值,当x<k时,y随x的增大而减小,求k的最大整数;(4)若m=2n≠0,求抛物线与x轴两个交点之间的最短距离.6.如图,二次函数y=﹣x2+2(m﹣2)x+3的图象与x,y轴交于A,B,C三点,其中A(3,0),抛物线的顶点为D.(1)求m的值及顶点D的坐标.(2)连接AD,CD,CA,求△ACD外接圆圆心E的坐标和半径;(3)当x≤n时,函数y所取得的最大值为4,最小值为1,求n的取值范围.7.如图,抛物线y=ax2+bx+2与x轴交于A、B两点,点A的坐标为(﹣1,0),抛物线的对称轴为直线.点M为线段AB上一点,过M作x轴的垂线交抛物线于P,交过点A的直线y=﹣x+n于点C.(1)求直线AC及抛物线的解析式;(2)若,求PC的长;(3)过P作PQ∥AB交抛物线于点Q,过Q作QN⊥x轴于N,若点P在Q左侧,矩形PMNQ的周长记为d,求d的最大值.8.如图,抛物线y=ax2+bx+2与x轴交于A、B两点,点A的坐标为(﹣1,0),抛物线的对称轴为直线x=1.5,点M为线段AB上一点,过M作x轴的垂线交抛物线于P,交过点A的直线y=﹣x+n于点C.(1)求直线AC及抛物线的解析式;(2)M位于线段AB的什么位置时,PC最长,并求出此时P点的坐标;(3)若在(2)的条件下,在x轴上方的抛物线上是否存在点Q,使,求点Q的坐标.9.如图,抛物线y=﹣x2﹣2x+3 的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求A、B、C的坐标;(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PMNQ的周长最大时,求△AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F 作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2DQ,求点F的坐标.10.如图,抛物线y=﹣x2+bx+c的图象交x轴于A(﹣2,0),B(1,0)两点.(1)求抛物线的解析式;(2)点M为线段AB上一点(点M不与点A,B重合),过点M作x轴的垂线,与抛物线交于点P,过点P作PC∥AB交抛物线于点C,过点C作CD⊥x轴于点D.若点P在点C的左边,当矩形PCDM的周长最大时,求点M的坐标;(3)在(2)的条件下,当矩形PCDM的周长最大时,连接AC,我们把一条抛物线与直线AC的交点称为该抛物线的“恒定点”,将(1)中的抛物线平移,使其平移后的顶点为(n,2n),若平移后的抛物线总有“恒定点”,请直接写出n的取值范围.11.如图,在平面直角坐标系中,抛物线y x2x+2与x轴交于B、C两点(点B 在点C的左侧),与y轴交于点A,抛物线的顶点为D.(1)填空:点A的坐标为( , ),点B的坐标为( , ),点C的坐标为( , ),点D的坐标为( , );(2)点P是线段BC上的动点(点P不与点B、C重合)①过点P作x轴的垂线交抛物线于点E,若PE=PC,求点E的坐标;②在①的条件下,点F是坐标轴上的点,且点F到EA和ED的距离相等,请直接写出线段EF的长;③若点Q是线段AB上的动点(点Q不与点A、B重合),点R是线段AC上的动点(点R不与点A、C重合),请直接写出△PQR周长的最小值.12.如图,抛物线与直线相交于A,B两点,若点A在x轴上,点B的坐标是(2,4),抛物线与x轴另一交点为D,并且△ABD的面积为6,直线AB与y轴的交点的坐标为(0,2).点P是线段AB(不与A,B重合)上的一个动点,过点P作x轴的垂线,交抛物线与点Q.(1)分别求出抛物线与直线的解析式;(2)求线段PQ长度的最大值;(3)当PQ取得最大值时,在抛物线上是否存在M、N两点(点M的横坐标小于N的横坐标),使得P、D、M、N为顶点的四边形是平行四边形?若存在,求出MN的坐标;若不存在,请说明理由.13.如图,抛物线y x2x﹣4与x轴交于A,B两点(点B在点A的右侧),与y轴交于点C,连接BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.(1)求点A,B,C的坐标.(2)当点P在线段OB上运动时,直线l分别交BD于点M,求线段MQ长度的最大值.(3)当点P在线段EB上运动时,是否存在点Q,使△BDQ为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.(4)当点P在线段EB上运动时,直线l与菱形BDEC的某一边交于点S,是否存在m 值,使得点C、Q、S、D为顶点的四边形是平行四边形?如果存在,请直接写出m值,不存在,说明理由.14.如图,已知二次函数y=﹣x2﹣2x+3的图象交x轴于A、B两点(A在B左边),交y 轴于C点.(1)求A、B、C三点的坐标和直线AC的解析式;(2)点P是直线AC上方抛物线上一动点(不与A,C重合),过点P作x轴平行线交直线AC于M点,求线段PM的最大值.15.(1)如图,已知二次函数y=﹣x2+2x+3的图象交x轴于A,B两点(A在B左边),直线y=x+1过点A,与抛物线交于点C,点P是直线AC上方抛物线上一动点(不与A,C重合),过点P作y轴平行线交直线AC于Q点,求线段PQ的最大值.(2)在(1)条件下,过点P作y轴垂线交直线AC于Q点,求线段PQ的最大值.16.如图1,抛物线y=﹣x2﹣4x+5与x轴交于点A、B两点,与y轴交于点C,点D为抛物线的顶点.(1)求直线AC的解析式及顶点D的坐标;(2)连接CD,点P是直线AC上方抛物线上一动点(不与点A、C重合),过P作PE∥x轴交直线AC于点E,作PF∥CD交直线AC于点F,当线段PE+PF取最大值时,在抛物线对称轴上找一点L,在y轴上找一点K,连接OL,LK,PK,求线段OL+LK+PK的最小值,并求出此时点L的坐标.(3)如图2,点M(﹣2,﹣1)为抛物线对称轴上一点,点N(2,7)为直线AC上一点,点G为直线AC与抛物线对称轴的交点,连接MN,AM.点H是线段MN上的一个动点,连接GH,将△MGH沿GH翻折得到△M′GH(点M的对称点为M′),问是否存在点H,使得△M′GH与△NGH重合部分的图形为直角三角形,若存在,请求出NH的长,若不存在,请说明理由.17.如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与A重合),过点P作PD∥y轴交直线AC于点D.(1)求抛物线的解析式;(2)当D在线段AC上运动时,求点P在运动的过程中线段PD长度的最大值;(3)在抛物线对称轴上是否存在点M使|MA﹣MC|最大?若存在请求出点M的坐标,若不存在请说明理由.18.如图,在平面直角坐标系xOy中,直线y x交x轴于点A,交y轴于点B,经过点A的抛物线y x2+bx+c交直线AB另一点D,且点D到y轴的距离为8.(1)求抛物线解析式;(2)点P是直线AD上方的抛物线上一动点,(不与点A、D重合),过点P作PE⊥AD于E,过点P作PF∥y轴交AD于F,设△PEF的周长为L,点P的横坐标为m,求L与m的函数关系式,并直接写出自变量m的取值范围;(3)在图(2)的条件下,当L最大时,连接PD.将△PED沿射线PE方向平移,点P、E、F的对应点分别为Q、M、N,当△QMN的顶点M在抛物线上时,求M点的横坐标,并判断此时点N是否在直线PF上.(参考公式:二次函数y=ax2+bx+c(c≠0).当x时,y最大(小)值)19.如图,已知抛物线y=ax2+bx+c(a≠0)过点A(3,0),B(1,0),且与y轴交于点C(0,﹣3),点P是抛物线AC间上一动点,从点C沿抛物线向点A运动(点P 与A、C不重合),过点P作PD∥y轴,交AC于点D.(1)求该抛物线的函数关系式;(2)当△ADP是直角三角形时,直接写出点P的坐标;(3)求线段PD的最大值,并求最大值时P点的坐标;(4)在问题(3)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.20.已知二次函数y=ax2+bx+c与x轴只有一个交点,且系数a、b满足条件:.(1)求y=ax2+bx+c解析式;(2)将y=ax2+bx+c向右平移一个单位,再向下平移一个单位得到函数y=mx2+nx+k,该函数交y轴于点C,交x轴于A、B(点A在点B的右侧),点P是该抛物线上一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.当△ADP是直角三角形时,求点P的坐标;(3)在问题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.21.已知如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P 作PD∥y轴交直线AC于点D.(1)求抛物线的解析式;(2)求点P在运动的过程中线段PD长度的最大值;(3)△APD能否构成直角三角形?若能请直接写出点P坐标,若不能请说明理由;(4)在抛物线对称轴上是否存在点M使|MA﹣MC|最大?若存在请求出点M的坐标,若不存在请说明理由.22.如图1,抛物线y=﹣x2+bx+c经过点A(2,0),B(0,2),与x轴交于另一点C.(1)求抛物线的解析式及点C的坐标;(2)点P是抛物线y=﹣x2+bx+c在第一象限上的点,过点P分别向x轴、y轴作垂线,垂足分别为D,E,求四边形ODPE的周长的最大值;(3)如图2,点P是抛物线y=﹣x2+bx+c在第一象限上的点,过点P作PN⊥x轴,垂足为N,交AB于M,连接PB,PA.设点P的横坐标为t,当△ABP的面积等于△ABC面积的时,求t的值.23.如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)与x轴交于A,B两点,与y轴交于点C,三个交点的坐标分别为A(﹣1,0),B(3,0),C(0,3).(1)求抛物线的解析式及顶点D的坐标;(2)若P为线段BD上的一个动点,过点P作PM⊥x轴于点M,求四边形PMAC面积的最大值和此时P点的坐标;(3)若点P是抛物线在第一象限上的一个动点,过点P作PQ∥AC交x轴于点Q.当点P的坐标为 时,四边形PQAC是平行四边形;(直接写出结果,不写求解过程).24.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线1与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,设P点的横坐标为m.①求线段PE长度的最大值;②点P将线段AC分割成长、短两条线段PA、PC,如果较长线段与AC之比等于,则称P为线段AC的“黄金分割点”,请直接写出使得P为线段AC黄金分割点的m的值.25.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE 长度的最大值;(3)点G抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.26.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE 长度的最大值.27.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,(不与A、C重合),过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值,并直接写出△ACE面积的最大值;(3)点G为抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,直接写出所有满足条件的F点坐标;如果不存在,请说明理由.28.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,当点P运动到什么位置时,△ACE的面积最大?求出此时P点的坐标和S△ACE的最大值;(3)点G是抛物线上的动点,在x轴上是否存在点F,使以A、C、F、G为顶点的四边形是平行四边形?如果存在,直接写出所有满足条件的F点坐标;如果不存在,请说明理由.29.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点.求线段PE 长度的最大值;(3)若点G是抛物线上的动点,点F是x轴上的动点,判断有几个位置能使以点A、C、F、G为顶点的四边形为平行四边形,直接写出相应的点F的坐标.30.如图,抛物线y=﹣x2﹣2x+3与x轴交A、B两点(A点在B点右侧),直线l与抛物线交于A、C两点,其中C点的横坐标为﹣2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)若点P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求当点P坐标为多少时,线段PE长度有最大值,最大值是多少?(3)点G是抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.二次函数与线段最值问题参考答案与试题解析一.填空题1.如图,P是抛物线y=﹣x2+x+2在第一象限上的点,过点P分别向x轴和y轴引垂线,垂足分别为A,B,则四边形OAPB周长的最大值为 6 .【考点】H5:二次函数图象上点的坐标特征.【分析】设P(x,y)(2>x>0,y>0),根据矩形的周长公式得到C=﹣2(x﹣1)2+6.根据二次函数的性质来求最值即可.【解答】解:∵y=﹣x2+x+2,∴当y=0时,﹣x2+x+2=0即﹣(x﹣2)(x+1)=0,解得x=2或x=﹣1故设P(x,y)(2>x>0,y>0),∴C=2(x+y)=2(x﹣x2+x+2)=﹣2(x﹣1)2+6.∴当x=1时,C最大值=6,.即四边形OAPB周长的最大值为6.故答案是:6.【点评】本题考查了二次函数的最值,二次函数图象上点的坐标特征.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.本题采用了配方法.二.解答题2.已知函数y=(m+2)x2+kx+n.(1)若此函数为一次函数;①m,k,n的取值范围;②当﹣2≤x≤1时,0≤y≤3,求此函数关系式;③当﹣2≤x≤3时,求此函数的最大值和最小值(用含k,n的代数式表示);(2)若m=﹣1,n=2,当﹣2≤x≤2时,此函数有最小值﹣4,求实数k的值.【考点】F5:一次函数的性质;H7:二次函数的最值.【分析】(1)①根据二次项系数为0,一次项系数不为0,常数项为任意实数解答即可;②根据k>0,k<0时x、y的对应关系确定直线经过的点的坐标,求出解析式;③根据一次函数的性质即增减性解答即可;(2)把m=﹣1,n=2代入关系式,得到二次函数解析式,确定对称轴,顶点坐标,分情况讨论求出k的值.【解答】解:(1)①m=﹣2,k≠0,n为任意实数;②当k>0时,直线经过(﹣2,0)(1,3),函数关系式为:y=x+2当k<0时,直线经过(﹣2,3)(1,0),函数关系式为:y=﹣x+1③当k>0时,x=﹣2,y有最小值为﹣2k+nx=3时,y有最大值为3k+n当k<0时,x=﹣2,y有最大值为﹣2k+nx=3时,y有最小值为3k+n(2)若m=﹣1,n=2时,二次函数为y=x2+kx+2对称轴为x,当2,即k≥4时,把x=﹣2,y=﹣4代入关系式得:k=5当﹣22,即﹣4<k<4时,把x,y=﹣4代入关系式得:k=±2(不合题意)当2,即k≤﹣4时,把x=2,y=﹣4代入关系式得:k=﹣5.所以实数k的值为±5.【点评】本题考查了一次函数的概念、一次函数的性质、一次函数最值的应用以及二次函数的性质,综合性较强,需要学生灵活运用性质,把握一次函数的增减性和二次函数的增减性,解答题目.3.如图,二次函数y=﹣x2+2(m﹣2)x+3的图象与x、y轴交于A、B、C三点,其中A(3,0),抛物线的顶点为D.(1)求m的值及顶点D的坐标;(2)当a≤x≤b时,函数y的最小值为,最大值为4,求a,b应满足的条件;(3)在y轴右侧的抛物线上是否存在点P,使得三角形PDC是等腰三角形?如果存在,求出符合条件的点P的坐标;如果不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)先把A(3,0)代入y=﹣x2+2(m﹣2)x+3,得到关于m的方程,解方程求出m的值,再利用配方法将二次函数写成顶点式,即可求出顶点D的坐标;(2)先把y=1代入y=﹣x2+2x+3,得到方程1x2+2x+3,解方程求出x1,x2,再利用二次函数的性质结合图象即可得出a,b应满足的条件;(3)先求出二次函数与y轴交点C的坐标,当三角形PDC是等腰三角形时,分三种情况进行讨论:①当DC=DP时,易求点P坐标为(2,3);②当PC=PD时,过点D 作x轴的平行线,交y轴于点H,过点P作PM⊥y轴于点M,PN⊥DH于点N.由HD=HC,PC=PD,根据线段垂直平分线的判定与等腰三角形的性质得出HP平分∠MHN,再由线段垂直平分线的性质得出PM=PN.设P(m,﹣m2+2m+3),则m=4﹣(﹣m2+2m+3),解方程求出m的值,得出点P的坐标为或;③当CD=CP时,不符合题意.【解答】解:(1)把A(3,0)代入y=﹣x2+2(m﹣2)x+3,得﹣9+6(m﹣2)+3=0,解得m=3.则二次函数为y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4);(2)把y=1代入y=﹣x2+2x+3,得1x2+2x+3,解得x1,x2,结合图象知a≤1.当a时,1≤b,当a≤1时,b;(3)x=0时,y=3,所以点C坐标为(0,3).当三角形PDC是等腰三角形时,分三种情况:①如图1,当DC=DP时,∵点P与点C关于抛物线的对称轴x=1对称,∴点P坐标为(2,3);②如图2,当PC=PD时,过点D作x轴的平行线,交y轴于点H,过点P作PM⊥y 轴于点M,PN⊥DH于点N.∵HD=HC=1,PC=PD,∴HP是线段CD的垂直平分线.∵HD=HC,HP⊥CD,∴HP平分∠MHN,∵PM⊥y轴于点M,PN⊥DH于点N,∴PM=PN.设P(m,﹣m2+2m+3),则m=4﹣(﹣m2+2m+3),解得m,∴P的坐标为或;③如图3,当CD=CP时,点P在y轴左侧,不符合题意.综上所述,所求点P的坐标为(2,3)或或.【点评】本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求二次函数的解析式,抛物线顶点坐标的求法,二次函数的性质,线段垂直平分线的判定与性质,等腰三角形的性质,综合性较强,难度适中.利用数形结合、分类讨论及方程思想是解题的关键.4.已知点A(t,1)为函数y=ax2+bx+4(a,b为常数,且a≠0)与y=x图象的交点.(1)求t;(2)若函数y=ax2+bx+4的图象与x轴只有一个交点,求a,b;(3)若1≤a≤2,设当x≤2时,函数y=ax2+bx+4的最大值为m,最小值为n,求m﹣n的最小值.【考点】H7:二次函数的最值;HA:抛物线与x轴的交点.【分析】(1)把A(t,1)代入y=x即可得到结论;(2)根据题意得方程组,解方程组即可得到结论;(3)把A(1,1)代入y=ax2+bx+4得,b=﹣3﹣a,得到y=ax2﹣(a+3)x+4的对称轴为直线x,根据1≤a≤2,得到对称轴的取值范围x≤2,当x时,得到m,当x=2时,得到n,即可得到结论.【解答】解:(1)把A(t,1)代入y=x得t=1;(2)∵y=ax2+bx+4的图象与x轴只有一个交点,∴,∴或;(3)把A(1,1)代入y=ax2+bx+4得,b=﹣3﹣a,∴y=ax2﹣(a+3)x+4=a(x)2,∴对称轴为直线x,∵1≤a≤2,∴x2,∵x≤2,∴当x时,y=ax2+bx+4的最大值为m,当x=2时,n,∴m﹣n,∵1≤a≤2,∴当a=2时,m﹣n的值最小,即m﹣n的最小值.【点评】本题考查了抛物线与x轴的交点,二次函数的最值,正确的理解题意是解题的关键.5.已知y关于x的函数y=nx2﹣2(m+1)x+m+3(1)若m=n=﹣1时,当﹣1≤x≤3时,求函数的最大值和最小值;(2)若n=1,当m取何值时,抛物线顶点最高?(3)若n=2m>0,对于任意m的值,当x<k时,y随x的增大而减小,求k的最大整数;(4)若m=2n≠0,求抛物线与x轴两个交点之间的最短距离.【考点】H3:二次函数的性质;H7:二次函数的最值;HA:抛物线与x轴的交点.【分析】(1)利用待定系数法即可解决问题;(2)构建二次函数,利用二次函数的性质即可解决问题;(3)抛物线的解析式为y=2mx2﹣2(m+1)x+m+3,对称轴x,因为对于任意m的值,当x<k时,y随x的增大而减小,所以k,由此即可解决问题;(4)构建二次函数,利用二次函数的性质,解决最值问题;【解答】解:(1)当m=n=﹣1时,函数解析式为y=﹣x2+2,顶点坐标为(0,2),函数最大值为2,∵﹣1≤x≤3,x=﹣1时,y=1,x=3时,y=﹣7.∴函数的最大值为2和最小值为﹣7.(2)n=1时,函数解析式为y=x2﹣2(m+1)x+m+3,∵顶点的纵坐标m2﹣m+2,∵﹣1<0,∴m时,抛物线顶点的纵坐标最大,顶点最高.(3)∵n=2m,∴抛物线的解析式为y=2mx2﹣2(m+1)x+m+3,对称轴x,∵对于任意m的值,当x<k时,y随x的增大而减小,∴k,∴k的最大整数为0.(4)∵m=2n,∴抛物线的解析式为y=nx2﹣2(2n+1)x+2n+3,设抛物线与x轴的交点为(x1,0)和(x2,0),则|x1﹣x2|,∴当时,抛物线与x轴两个交点之间的距离最短,最小值为.【点评】本题考查抛物线与x轴的交点、二次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会构建二次函数解决最值问题,所以中考常考题型.6.如图,二次函数y=﹣x2+2(m﹣2)x+3的图象与x,y轴交于A,B,C三点,其中A(3,0),抛物线的顶点为D.(1)求m的值及顶点D的坐标.(2)连接AD,CD,CA,求△ACD外接圆圆心E的坐标和半径;(3)当x≤n时,函数y所取得的最大值为4,最小值为1,求n的取值范围.【考点】HF:二次函数综合题.【分析】(1)把A点坐标代入可求得m的值,可求得二次函数解析式,化为顶点式可求得D的坐标;(2)利用两点间的距离公式可求得AC、CD、AD,可知△ACD为直角三角形,AD为斜边,可知E为AC的中点,可求得E的坐标及半径;(3)当x时,可求得y=1,且当x=1时y=4,根据二次函数的对称性可求得n的范围.【解答】解:(1)∵抛物线过A点,∴代入二次函数解析式可得﹣9+6(m﹣2)+3=0,解得m=3,∴二次函数为y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D为(1,4);(2)由(1)可求得C坐标为(0,3),∴AC3,CD,AD2,∴AC2+CD2=AD2,∴△ACD为直角三角形,∴E为AD的中点,∴E点坐标为(2,2),外接圆的半径r AD;(3)当x时,y=1,当x=1时,y=4,∴当x≤1时,1y≤4,根据二次函数的对称性可知当1≤x时,1y≤4,∴1≤n.【点评】本题主要考查待定系数法求函数解析式及二次函数的顶点坐标、增减性、及直角三角形的判定等知识的综合应用.在(1)中掌握点的坐标满足函数的解析式是解题的关键,在(2)中判定出△ACD为直角三角形是解题的关键,在(3)中利用二次函数的对称性,结合二次函数在对称轴两侧的增减性可确定出n的范围.本题难度不大,注重基础知识的综合,较易得分.7.如图,抛物线y=ax2+bx+2与x轴交于A、B两点,点A的坐标为(﹣1,0),抛物线的对称轴为直线.点M为线段AB上一点,过M作x轴的垂线交抛物线于P,交过点A的直线y=﹣x+n于点C.(1)求直线AC及抛物线的解析式;(2)若,求PC的长;(3)过P作PQ∥AB交抛物线于点Q,过Q作QN⊥x轴于N,若点P在Q左侧,矩形PMNQ的周长记为d,求d的最大值.【考点】HF:二次函数综合题.【分析】(1)将A(﹣1,0)代入y=﹣x+n,运用待定系数法求出直线AC的解析式;根据抛物线的对称轴为x,把点A的坐标代入y=ax2+bx+2,组成关于a、b的二元一次方程组,求解即可得到抛物线的解析式;(2)设M点横坐标为m,则P(m,m2m+2),C(m,﹣m﹣1),得出PMm2m+2,PC m2m+3.由PM,得到m2m+2,即m2=3m+1,m,进而求出PC;(3)设M点横坐标为m,则PM m2m+2,MN=2(m)=3﹣2m,矩形PMNQ的周长d=﹣m2﹣m+10,将﹣m2﹣m+10配方,根据二次函数的性质,即可得出矩形PMNQ的周长的最大值.【解答】解:(1)∵直线y=﹣x+n过点A(﹣1,0),∴0=1+n,解得n=﹣1,∴直线AC的解析式为y=﹣x﹣1;∵抛物线y=ax2+bx+2的对称轴为直线x,经过点A(﹣1,0),∴,解得.∴抛物线的解析式是:y x2x+2;(2)如图,设M点横坐标为m,则P点坐标为(m,m2m+2),C点坐标为(m,﹣m﹣1).∵点M为线段AB上一点,∴﹣1<m<4.∴PM m2m+2,PC=(m2m+2)﹣(﹣m﹣1)m2m+3.∵PM,∴m2m+2,整理,得m2﹣3m﹣1=0,∴m2=3m+1,m,∴PC m2m+3(3m+1)m+3=m,∴当m时,PC;(3)设M点横坐标为m,则PM m2m+2,MN=2(m)=3﹣2m,∴矩形PMNQ的周长d=2(PM+MN)=2(m2m+2+3﹣2m)=﹣m2﹣m+10.∵﹣m2﹣m+10=﹣(m)2,∴当m时,d有最大值.【点评】本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求一次函数、二次函数的解析式,平行于坐标轴上的两点之间的距离,矩形的性质,一元二次方程的解法,二次函数最值的求法,综合性较强,难度适中.运用数形结合、方程思想是解题的关键.8.如图,抛物线y=ax2+bx+2与x轴交于A、B两点,点A的坐标为(﹣1,0),抛物线的对称轴为直线x=1.5,点M为线段AB上一点,过M作x轴的垂线交抛物线于P,交过点A的直线y=﹣x+n于点C.(1)求直线AC及抛物线的解析式;(2)M位于线段AB的什么位置时,PC最长,并求出此时P点的坐标;(3)若在(2)的条件下,在x轴上方的抛物线上是否存在点Q,使,求点Q的坐标.【考点】HF:二次函数综合题.【分析】(1)将A(﹣1,0)代入y=﹣x+n,运用待定系数法求出直线AC的解析式;根据抛物线的对称轴为x,把点A的坐标代入y=ax2+bx+2,组成关于a、b的二元一次方程组,求解即可得到抛物线的解析式;(2)设M点横坐标为m,则P(m,m2m+2),C(m,﹣m﹣1),得出PMm2m+2,化成顶点式即可;(3)根据抛物线的对称轴和A的坐标,求得B的坐标,求得AB,从而求得三角形APB的面积,进而求得三角形ABQ的面积,得出Q的纵坐标,把纵坐标代入抛物线的解析式即可求得横坐标,从而求得Q的坐标.【解答】解:(1)∵直线y=﹣x+n过点A(﹣1,0),∴0=1+n,解得n=﹣1,∴直线AC的解析式为y=﹣x﹣1;∵抛物线y=ax2+bx+2的对称轴为直线x,经过点A(﹣1,0),∴,解得.∴抛物线的解析式是:y x2x+2;(2)如图,设M点横坐标为m,则P点坐标为(m,m2m+2),C点坐标为(m,﹣m﹣1).∵点M为线段AB上一点,∴﹣1<m<4.∴PC=(m2m+2)﹣(﹣m﹣1)m2m+3.∵PC m2m+3(m)2,所以,当m时,PC最长,此时P(,),AM;(3)存在;∵抛物线y=ax2+bx+2的对称轴为直线x,经过点A(﹣1,0),∴B(4,0)∴AB=5,∵S△APB AB•PM5,∵,∴S△ABQ,设Q点纵坐标为n,∵S△ABQ AB•n,∴n,(或n这样计算比较方便),∴x2x+2,解得:x或x,∴Q(,)或(,)【点评】本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求一次函数、二次函数的解析式,平行于坐标轴上的两点之间的距离,一元二次方程的解法,二次函数最值的求法,综合性较强,难度适中.运用数形结合、方程思想是解题的关键.9.如图,抛物线y=﹣x2﹣2x+3 的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求A、B、C的坐标;(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PMNQ的周长最大时,求△AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F 作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2DQ,求点F的坐标.【考点】HF:二次函数综合题.【专题】153:代数几何综合题;16:压轴题.。
2020数学中考冲刺专项练习专题19线段的最值问题【难点突破】着眼思路,方法点拨, 疑难突破;两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”(如图1).三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两条对称轴“反射镜面”(如图2).两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最大值就是第三边的长.如图3,P A与PB的差的最大值就是AB,此时点P在AB的延长线上,即P′.解决线段和差的最值问题,有时候求函数的最值更方便,本讲不涉及函数最值问题.【名师原创】原创检测,关注素养,提炼主题;【原创】如图,抛物线y=ax2+bx+c与y轴交于点A(0,2),与x轴交于一点(-2+ 2,0),对称轴为直线x=﹣2,抛物线上存在B、C两点,点B在对称轴左侧,点C在对称轴右侧,BC=6且平行于x轴。
(1)求此抛物线的解析式.(2)求△ABC的面积.(3)点P在x轴负半轴上,且PA+PB的最小值为,求点P的坐标.直线CP将线段AB分成1:3两部分,试求点P的坐标。
【解答】解:(1)由题意得:x=﹣=﹣2,b=4a,c=2,又∵过点(-2+2,0),代入y=ax 2+4ax+2,解得a=1,故b=4则此抛物线的解析式为y=x 2+4x+2; (2)∵抛物线对称轴为直线x=﹣2,BC=6, ∴B 横坐标为﹣5,C 横坐标为1, 把x=1代入抛物线解析式得:y=7,又∵点A 的坐标为(0,2),故点A 到BC 的距离为7-2=5, ∴△ABC 的面积=5×6÷2=15. (3)由(2)题可知B (﹣5,7),C (1,7), 设直线PC 解析式为y=kx+b ,交AB 与点D , 过点A 作AE//BC ,交PC 于点E ,① 当AD :BD=1:3时,则有AE :BC=1:3又∵BC=6,故AE=2,从而得到点E 的坐标为(-2,2) 则代入PC 解析式可得:722k b k b +=⎧⎨-+=⎩解得:53163k b ⎧=⎪⎪⎨⎪=⎪⎩则直线PC 解析式为y=53x+163,则可得点P 的坐标为(0,165-) ②当AD :BD=3:1时,则有AE :BC=3:1 同理可得到点E 的坐标为(-18,2) 则代入PC 解析式可得:7182k b k b +=⎧⎨-+=⎩解得:51912819k b ⎧=⎪⎪⎨⎪=⎪⎩则直线PC 解析式为y=519x+ 12819,则可得点P 的坐标为(0,1285-) 综上所述可得点P 的坐标为(0,165-)或(0,1285-).【典题精练】典例精讲,运筹帷幄,举一反三;【例题1】如图1,菱形ABCD 中,AB =2,∠A =120°,点P 、Q 、K 分别为线段B C 、CD 、BD 上的任意一点,求PK +QK 的最小值.图1【解析】如图2,点Q 关于直线BD 的对称点为Q ′,在△KPQ ′中,PK +QK 总是大于PQ ′的.如图3,当点K 落在PQ ′上时,PK +QK 的最小值为PQ ′.如图4,PQ ′的最小值为Q ′H ,Q ′H 就是菱形ABCD 的高,Q ′H=3.这道题目应用了两个典型的最值结论:两点之间,线段最短;垂线段最短.图2 图3 图4【例题2】如图1,已知A (0, 2)、B (6, 4)、E (a , 0)、F (a +1, 0),求a 为何值时,四边形ABEF 周长最小?请说明理由.图1【解析】在四边形ABEF 中,AB 、EF 为定值,求AE +BF 的最小值,先把这两条线段经过平移,使得两条线段有公共端点.如图2,将线段BF 向左平移两个单位,得到线段ME .如图3,作点A 关于x 轴的对称点A ′,MA ′与x 轴的交点E ,满足AE +ME 最小. 由△A ′OE ∽△BHF ,得'OE HF OA HB =.解方程6(2)24a a -+=,得43a =.图2 图3【例题3】在平面直角坐标系中,O为原点,点A(﹣2,0),点B(0,2),点E,点F分别为OA,OB的中点.若正方形OEDF绕点O顺时针旋转,得正方形OE′D′F′,记旋转角为α.(Ⅰ)如图①,当α=90°时,求AE′,BF′的长;(Ⅱ)如图②,当α=135°时,求证AE′=BF′,且AE′⊥BF′;(Ⅲ)若直线AE′与直线BF′相交于点P,求点P的纵坐标的最大值(直接写出结果即可).【分析】(1)利用勾股定理即可求出AE′,BF′的长.(2)运用全等三角形的判定与性质、三角形的外角性质就可解决问题.(3)首先找到使点P的纵坐标最大时点P的位置(点P与点D′重合时),然后运用勾股定理及30°角所对的直角边等于斜边的一半等知识即可求出点P的纵坐标的最大值.【解答】解:(Ⅰ)当α=90°时,点E′与点F重合,如图①.∵点A(﹣2,0)点B(0,2),∴OA=OB=2.∵点E,点F分别为OA,OB的中点,∴OE=OF=1∵正方形OE′D′F′是正方形OEDF绕点O顺时针旋转90°得到的,∴OE′=OE=1,OF′=OF=1.在Rt△AE′O中,AE′=.在Rt△BOF′中,BF′=.∴AE′,BF′的长都等于.(Ⅱ)当α=135°时,如图②.∵正方形OE′D′F′是由正方形OEDF绕点O顺时针旋转135°所得,∴∠AOE′=∠BOF′=135°.在△AOE′和△BOF′中,,∴△AOE′≌△BOF′(SAS).∴AE′=BF′,且∠OAE′=∠OBF′.∵∠ACB=∠CAO+∠AOC=∠CBP+∠CPB,∠CAO=∠CBP,∴∠CPB=∠AOC=90°∴AE′⊥BF′.(Ⅲ)∵∠BPA=∠BOA=90°,∴点P、B、A、O四点共圆,∴当点P在劣弧OB上运动时,点P的纵坐标随着∠PAO的增大而增大.∵OE′=1,∴点E′在以点O为圆心,1为半径的圆O上运动,∴当AP与⊙O相切时,∠E′AO(即∠PAO)最大,此时∠AE′O=90°,点D′与点P重合,点P的纵坐标达到最大.过点P作PH⊥x轴,垂足为H,如图③所示.∵∠AE′O=90°,E′O=1,AO=2,∴∠E′AO=30°,AE′=.∴AP=+1.∵∠AHP=90°,∠PAH=30°,∴PH=AP=.∴点P的纵坐标的最大值为.【最新试题】名校直考,巅峰冲刺,一步到位。
二次函数求最值二次函数求最值的一般步骤:(1)找等量:分析题目中的数量关系, (2)列式:列出函数关系式, (3)求最值的方法: ①配方法, ②公式法。
方法归纳:二次函数求最值的注意事项:①若自变量的取值X 围是全体实数,则函数在顶点处取得最值,即当x =-b 2a 时,y 最值=4ac -b24a;②若自变量的取值X 围是x 1≤x ≤x 2,当-b 2a 在x 1≤x ≤x 2内时,有一个最值4ac -b 24a 在x =-b 2a时取得,另一个最值在两端点处取得;当-b2a 不在x 1≤x ≤x 2时,函数的最值在x =x 1和x =x 2时取得。
总结:1. 能根据实际问题的情境建立二次函数模型。
2. 会利用二次函数某某际问题的最值。
例题1在关于x ,y 的二元一次方程组⎩⎨⎧x +2y =a2x -y =1中。
(1)若a =3,求方程组的解;(2)若S =a (3x +y ),当a 为何值时,S 有最值。
解析:(1)用加减消元法求解即可;(2)把方程组的两个方程相加得到3x +y ,然后代入整理,再利用二次函数的最值问题解答。
答案:(1)a =3时,方程组为⎩⎨⎧x +2y =32x -y =1,解得⎩⎨⎧x =1y =1。
(2)方程组的两个方程相加得,3x +y =a +1,所以S =a (3x +y )=a (a +1)=a 2+a ,所以,当a =-12×1=-12时,S 有最小值。
点拨:本题考查了二次函数的最值问题,解二元一次方程组,(2)根据方程组的系数的特点,把两个方程相加得到3x +y 的表达式是解题的关键。
例题2便民商店经营一种商品,在销售过程中,发现一周利润y (元)与每件销售价x (元)之间的关系满足y =-2x 2+80x +750,由于某种原因,售价只能满足15≤x ≤22,那么一周可获得的最大利润是多少?解析:先将二次函数变形,或利用公式求出此抛物线的顶点,再判断顶点是否在15≤x ≤22X 围内,最后根据二次函数的性质求出最大值。
【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)素养拓展19等差数列中Sn 的最值问题(精讲+精练)一、等差数列的通项公式和前n 项和公式1.等差数列的通项公式如果等差数列{}n a 的首项为1a ,公差为d ,那么它的通项公式是1(1)=+-n a a n d .2.等差数列的前n 项和公式设等差数列{}n a 的公差为d ,其前n 项和11()(1)22+-=+=n n n a a n n S na d .注:数列{}n a 是等差数列⇔2=+n S An Bn (、A B 为常数).二、等差数列的前n 项和的最值1.公差0{}>⇔n d a 为递增等差数列,n S 有最小值;公差0{}<⇔n d a 为递减等差数列,n S 有最大值;公差0{}=⇔n d a 为常数列.2.在等差数列{}n a 中(1)若100,><a d ,则满足1+≥0⎧⎨≤0⎩m m a a 的项数m 使得n S 取得最大值m S ;(2)若100,<>a d ,则满足1+≤0⎧⎨≥0⎩m m a a 的项数m 使得n S 取得最小值m S .即若100>⎧⎨<⎩a d ,则n S 有最大值(所有正项或非负项之和);若100<⎧⎨>⎩a d ,则n S 有最小值(所有负项或非正项之和).【典例1】(2022·全国·统考高考真题)记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+.二、题型精讲精练一、知识点梳理又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-,所以13n a n =-,即有1123210,0a a a a <<<<= .则当12n =或13n =时,()min 78n S =-.【整体点评】(2)法一:根据二次函数的性质求出n S 的最小值,适用于可以求出n S 的表达式;法二:根据邻项变号法求最值,计算量小,是该题的最优解.【题型训练-刷模拟】一、单选题若5,故②正确;当8n =或9n =时,n S 取得最大值,所以211k a b +-=或12,故选:B【点睛】关键点点睛:本题考查的是等差数列的前n 项和最大值问题,思路是不难,大,即确定数列是递减数列,判断前多少项为非负项即可,但关键点在于如何求得正负项分界的项,即求得90a =,100a <,所以这里的关键是利用()217e 1ln 21a bS a b --≤≤-+,构造函数()e 1x f x x =--,利用导数判断函数单调性,结合最值解决这一问题.二、多选题三、填空题1四、解答题32.(2023·全国·高三专题练习)设等差数列{}n a 的前n 项和为n S ,且1121526,a S S =-=.(1)求{}n a 的通项公式;(2)求n S ,并求n S 的最小值.【答案】(1)228n a n =-;(2)227n S n n =-,最小值为182-.【分析】(1)设等差数列{}n a 的公差为d ,根据等差数列前n 项和公式由1215S S =列出方程即可解出d ,从而可得数列{}n a 的通项公式;(2)根据二次函数的性质或者邻项变号法即可判断何时n S 取最小值,并根据等差数列前n 项和公式求出nS。
专题19 利用导数求函数的最值一、单选题 1.若函数y =x 3+32x 2+m 在[-2,1]上的最大值为92,则m 等于( ) A .0 B .1 C .2 D .52【答案】C 【分析】利用导数研究函数的单调性,找出最值,解方程即可得到答案. 【详解】'2333(1)y x x x x =+=+,易知,当10x -<<时,'0y <,当21x -<<-或01x <<时,'0y >,所以函数y =x 3+32x 2+m 在(2,1)--,(0,1)上单调递增,在(1,0)-上单调递减,又当1x =-时, 12y m =+,当1x =时,52y m =+,所以最大值为5922m +=,解得2m =.故选:C2.已知函数2()f x x a =-+,2()x g x x e ,若对于任意的2[1,1]x ∈-,存在唯一的112[,]2x ∈-,使得12()()f x g x =,则实数a 的取值范围是( )A .(e ,4)B .(e 14+,4] C .(e 14+,4) D .(14,4] 【答案】B 【分析】结合导数和二次函数的性质可求出()f x 和()g x 的值域,结合已知条件可得[0e 4[]a ⊆-,,1)4a -,从而可求出实数a 的取值范围. 【详解】解:g (x )=x 2e x 的导函数为g ′(x )=2xe x +x 2e x =x (x +2)e x ,当0x =时,()0g x '=, 由[)1,0x ∈-时,()0g x '<,(]0,1x ∈时,()0g x '>,可得g (x )在[–1,0]上单调递减, 在(0,1]上单调递增,故g (x )在[–1,1]上的最小值为g (0)=0,最大值为g (1)=e , 所以对于任意的2[1,1]x ∈-,2()[0,e]g x ∈.因为2y x a =-+开口向下,对称轴为y 轴,又10202--<-,所以当0x =时,max ()f x a =,当2x =时,min ()4f x a =-, 则函数2()f x x a =-+在[12-,2]上的值域为[a –4,a ],且函数f (x )在11[,]22-,图象关于y 轴对称,在(12,2]上,函数()f x 单调递减.由题意,得[0e 4[]a ⊆-,,1)4a -,可得a –4≤0<e <14a -,解得e 14+<a ≤4.故选:B . 【点睛】本题考查了利用导数求函数的最值,考查了二次函数的性质,属于中档题.本题的难点是12()()f x g x =这一条件的转化.3.已知函数()3232f x x x =-+,对于任意[]12,1,1x x ∈-都有()()12f x f x m -≤,则实数m 的最小值为( ) A .0 B .2C .4D .6【答案】C 【分析】由题可得,只需满足()()max min f x f x m -≤即可. 【详解】对于任意[]12,1,1x x ∈-都有()()12f x f x m -≤,即()()max min f x f x m -≤,()()23632f x x x x x '=-=-当()1,0x ∈-时,()0f x '>,()f x 单调递增;当()0,1x ∈时,()0f x '<,()f x 单调递减;∴当0x =时,()()max 02f x f ==,()11322f -=--+=-,()11320f =-+=,()min 2f x ∴=-, ()()max min 4m f x f x ∴≥-=,即m 的最小值为4.故选:C. 【点睛】关键点睛:本题考查不等式的恒成立问题,解题的关键是将不等式化为()()max min f x f x m -≤,利用导数求最值即可.4.设函数()|ln |()f x x t x t R =++∈.当[1,e]x ∈时(e 为自然对数的底数),记()f x 的最大值为()g t ,则()g t 的最小值为( ) A.1 B .2eC .eD .【答案】C 【分析】由()ln ln ln ttx x tx e f x x t x x x tx e--++≥⎧=++=⎨--<⎩,分t e e -≥,1t e -≤,1t e e -<<三种情况分别讨论出函数()f x 在[1,]e 上的单调性,从而求出()f x 的最大值()g t ,再根据()g t 的解析式求()g t 的最小值.【详解】()ln ln ln ttx x tx e f x x t x x x tx e --++≥⎧=++=⎨--<⎩当t e e -≥,即1t ≤-时,在[1,e]x ∈时,()ln f x x x t =--,则()111x f x x x-'=-=此时,()10x f x x-'=≥在[1,e]x ∈上恒成立, 所以()f x 在[1,]e 上单调递增,则()()1g t f e e t ==--当1t e -≤,即0t ≥时,在[1,e]x ∈时,()ln f x x x t =++,则()1110x f x x x+'=+=> 所以()f x 在[1,]e 上单调递增,则()()1g t f e e t ==++当1t e e -<<,即10t -<<时,ln ()ln ln 1ttx x t e x e f x x t x x x t x e--++≤≤⎧=++=⎨--≤<⎩ 若t e x e -≤≤,则()ln f x x x t =++,()1110x f x x x +'=+=>,此时()f x 单调递增 1t x e-≤<,则()ln f x x x t =--,()1110x f x x x-'=-=≥,此时()f x 单调递增 又t x e -=时,两段在t x e -=处的函数值相等,所以()f x 在[1,]e 上单调递增 所以()()1g t f e e t ==++综上所述可得:11()11e t t g t e t t ++>-⎧=⎨--≤-⎩由一次函数的单调性可得当1t =-时,()g t 有最小值e 故选:C 【点睛】关键点睛:本题考查求含绝对值的函数的最值问题,解答本题的关键是打开绝对值得到ln ()ln ln ttx x tx e f x x t x x x tx e--++≥⎧=++⎨--<⎩,然后由t e e -≥时,()[]()ln 1,f x x x t x e =--∈,当1t e -≤时, ()ln f x x x t =++[]()1,x e ∈,t e x e -≤≤时,ln ()ln 1ttx x t e x e f x x x t x e --++≤≤⎧=⎨--≤<⎩,再由单调性得出最大值,属于中档题.5.函数2cos y x x =+在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值是( )A .13π+ B .4π+C .6π+D .2π 【答案】C 【分析】利用导数分析函数2cos y x x =+在区间0,2π⎡⎤⎢⎥⎣⎦上的单调性,进而可求得函数2cos y x x =+在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值. 【详解】对于函数2cos y x x =+,12sin y x '=-. 当06x π<<时,12sin 0y x '=->;当62x ππ<<时,12sin 0y x '=-<.所以,函数2cos y x x =+在区间0,6π⎡⎫⎪⎢⎣⎭上单调递增,在区间,62ππ⎛⎤ ⎥⎝⎦上单调递减.所以,max 2cos666y πππ=+=故选:C. 【点睛】利用导数求解函数在区间上的最值时,首先要注意区分函数最值与极值的区别.求解函数的最值时,要先求函数()y f x =在[],a b 内所有使()0f x '=的点,再计算函数()y f x =在区间内所有使()0f x '=的点和区间端点处的函数值,最后比较即得.6.已知函数()31x f x e x =--(e 为自然对数的底数),则以下结论正确的为( ) A .函数()y f x =仅有一个零点,且在区间(,)-∞+∞上单调递增;B .函数()y f x =仅有一个零点,且在(,0)-∞上单调递减,在(0,)+∞递增;C .函数()y f x =有二个零点,其中一个零点为0,另一个零点为负数;D .函数()y f x =有二个零点,且当ln3x =时,()y f x =取得最小值为23ln3-. 【答案】D 【分析】利用导数研究函数的单调性,然后可得最值及零点. 【详解】()3x f x e '=-是增函数,∴ln3x <时,()0f x '<,()f x 递减,ln 3x >时,()0f x '>,()f x 递增,显然(0)0f =,∴(ln 3)23ln 30f =-<,又x →+∞时,()f x →+∞,∴()f x 在(ln3,)+∞上也有一个零点,因此共有两个零点. 故选:D . 【点睛】关键点点睛:本题用导数研究函数的单调性,研究函数的零点与最值.解题方法是求出导函数,确定导函数的零点与正负,从而得原函数的单调性与极值,得最值,利用零点存在定理确定零点的存在性. 7.函数3()12f x x x =-在区间[]3,1-上的最小值是( ) A .16- B .18- C .11 D .9-【答案】A 【分析】先对函数求导,根据导数的方法判定其在给定区间的单调性,即可得出结果. 【详解】因为3()12f x x x =-,所以2()123f x x '=-,由()0f x '>得22x -<<,由()0f x '<得2x >或2x <-; 又31x -≤≤,所以当32x -≤<-时,()0f x '<,函数3()12f x x x =-单调递减;当21x -≤≤时,()0f x '>,函数3()12f x x x =-单调递增;因此min ()(2)24816f x f =-=-+=-. 故选:A. 【点睛】 方法点睛:求函数()f x 在区间[],a b 上的最值的方法:(1)若函数在区间[],a b 上单调递增或递减,则()f a 与()f b 一个为最大值,另一个为最小值; (2)若函数在区间[],a b 内有极值,则要先求出函数在[],a b 上的极值,再与()f a ,()f b 比较,最大的为最大值,最小的为最小值;(3)函数()f x 在区间(),a b 上有唯一一个极值点,这个极值点就是最大(或最小)值点,此结论在导数的实际应用中经常用到.8.某企业拟建造一个容器(不计厚度,长度单位:米),该容器的底部为圆柱形,高为l ,底面半径为r ,上部为半径为r 的半球形,按照设计要求容器的体积为283π立方米.假设该容器的建造费用仅与其表面积有关,已知圆柱形部分每平方米建造费用为3万元,半球形部分每平方米建造费用为4万元,则该容器的建造费用最小时,半径r 的值为( ) A .1 BCD .2【答案】C 【分析】根据体积公式用r 表示出l ,得出费用关于r 的函数,利用导数求出函数的极小值点即可. 【详解】解:由题意知2323142282333V r l r r l r πππππ=+⨯=+=, 故33322222282282282333333V r r r l r r r r r πππππ---===-=, 由0l >可知r <.∴ 建造费用()3222221282562344611723r y rl r r r r r r rπππππππ-=+⨯+⨯⨯=⨯+=+,(0r <<,则()3221445614r y r r rπππ-'=-=.当(r ∈时,0y '<,r ∈时,0y '>.当r =.故选:C . 【点睛】本题考查数学建模能力,利用导数求解最值问题,考查运算能力,是中档题. 9.下列关于函数2()(3)x f x x e =-的结论中,正确结论的个数是( ) ∴()0f x >的解集是{|x x <<;∴(3)f -是极大值,(1)f 是极小值; ∴()f x 没有最大值,也没有最小值; ∴()f x 有最大值,没有最小值; ∴()f x 有最小值,没有最大值. A .1个 B .2个C .3个D .4个【答案】B 【分析】直接不等式()0f x >可判断∴∴对函数求导,求函数的极值,可判断∴∴利用导数求函数的最值可判断∴∴∴ 【详解】解:由()0f x >,得230x ->,即230x -<,解得x <()0f x >的解集是{|x x <<,所以∴正确;由2()(3)xf x x e =-,得'2()(23)xf x x x e =--+,令'()0f x =,则2x 2x 30--+=,解得3x =-或1x =,当3x <-或1x >时,'()0f x <,当31x -<<时,'()0f x >,所以(3)f -是极小值,(1)f 是极大值,所以∴错误;因为(3)f -是极小值,且当3x <-时,()0f x <恒成立,而(1)f 是极大值,所以()f x 有最大值,没有最小值,所以∴正确,∴∴错误, 故选:B【点睛】此题考查导数的应用,考查函数极值和最值的求法,考查一元二次不等式的解法,属于基础题 10.函数()2sin sin 2f x x x =+的最小值是( )A .3-B .2-C .D . 【答案】C 【分析】对函数求导分析单调性即可求出函数的最值. 【详解】解:因为()2sin sin 2f x x x =+,2()2cos 2cos22cos 2(2cos 1)f x x x x x ∴'=+=+- 22(2cos cos 1)2(2cos 1)(cos 1)x x x x =+-=-+,cos 10x +,∴当1cos 2x <时,()0f x '<,()f x 单调递减, 当1cos 2x >时,()0f x '>,()f x 单调递增, ∴当1cos 2x =时,()f x 有最小值,又()2sin sin 22sin (1cos )f x x x x x =+=+,∴当sin x =时,()f x 有最小值,且1()2((1)2min f x =⨯⨯+= 故选:C 【点睛】本题解答的关键是利用导数研究函数的单调性,从而求出函数的最值;二、多选题11.在单位圆O :221x y +=上任取一点()P x y ,,圆O 与x 轴正向的交点是A ,将OA 绕原点O 旋转到OP 所成的角记为θ,若x ,y 关于θ的表达式分别为()x fθ=,()y g θ=,则下列说法正确的是( )A .()x f θ=是偶函数,()y g θ=是奇函数;B .()x f θ=在()0,π上为减函数,()y g θ=在()0,π上为增函数;C .()()1fg θθ+≥在02πθ⎛⎤∈⎥⎝⎦,上恒成立;D .函数()()22t f g θθ=+.【答案】ACD 【分析】依据三角函数的基本概念可知cos x θ=,sin y θ=,根据三角函数的奇偶性和单调性可判断A 、B ;根据辅助角公式知()()4f g πθθθ⎛⎫+=+ ⎪⎝⎭,再利用三角函数求值域可判断C ;对于D ,2cos sin2t θθ=+,先对函数t 求导,从而可知函数t 的单调性,进而可得当1sin 2θ=,cos 2θ=时,函数t 取得最大值,结合正弦的二倍角公式,代入进行运算即可得解. 【详解】由题意,根据三角函数的定义可知,x cos θ=,y sin θ=, 对于A ,函数()cos fθθ=是偶函数,()sin g θθ=是奇函数,故A 正确;对于B ,由正弦,余弦函数的基本性质可知,函数()cos fθθ=在()0,π上为减函数,函数()sin g θθ=在0,2π⎛⎫ ⎪⎝⎭为增函数,在,2ππ⎛⎫⎪⎝⎭为减函数,故B 错误; 对于C ,当0θπ⎛⎤∈ ⎥2⎝⎦,时,3,444πππθ⎛⎤+∈ ⎥⎝⎦()()cos sin 4f g πθθθθθ⎛⎫+=+=+∈ ⎪⎝⎭,故C 正确;对于D ,函数()()222cos sin2t fg θθθθ=+=+,求导22sin 2cos22sin 2(12sin )2(2sin 1)(sin 1)t θθθθθθ'=-+=-+-=--+,令0t '>,则11sin 2θ-<<;令0t '<,则1sin 12θ<<, ∴函数t 在06,π⎡⎤⎢⎥⎣⎦和5,26ππ⎡⎤⎢⎥⎣⎦上单调递增,在5,66ππ⎛⎫⎪⎝⎭上单调递减,当6πθ=即1sin 2θ=,cos 2θ=时,函数取得极大值1222t =+⨯=又当2θπ=即sin 0θ=,cos 1θ=时,212012t =⨯+⨯⨯=,所以函数()()22t f g θθ=+取得最大值2,故D 正确.故选:ACD. 【点睛】方法点睛:考查三角函数的值域时,常用的方法:(1)将函数化简整理为()()sin f x A x ωϕ=+,再利用三角函数性质求值域; (2)利用导数研究三角函数的单调区间,从而求出函数的最值.12.若存在实常数k 和b ,使得函数()F x 和()G x 对其公共定义域上的任意实数x 都满足:()F x kx b≥+和()G x kx b ≤+恒成立,则称此直线y kx b =+为()F x 和()G x 的“隔离直线”,已知函数()()2f x x R x =∈,()()10g x x x=<,()2eln h x x =(e 为自然对数的底数),则下列结论正确的是( ) A .()()()m x f x g x =-在x ⎛⎫∈ ⎪⎝⎭内单调递增 B .()f x 和()g x 之间存在“隔离直线,且b 的最小值为4 C .()f x 和()g x 间存在“隔离直线”,且k 的取值范围是(]4,1-D .()f x 和()h x 之间存在唯一的“隔离直线”e y =- 【答案】AD 【分析】求出()()()m x f x g x =-的导数,检验在x ⎛⎫∈ ⎪⎝⎭内的导数符号,即可判断选项A ;选项B 、C 可设()f x 、()g x 的隔离直线为y kx b =+,2x kx b ≥+对一切实数x 都成立,即有10∆≤,又1kx b x≤+对一切0x <都成立,20∆≤,0k ≤,0b ≤,根据不等式的性质,求出k 、b 的范围,即可判断选项B 、C ;存在()f x 和()h x 的隔离直线,那么该直线过这个公共点,设隔离直线的斜率为k,则隔离直线的方程为(y e k x -=-,构造函数求出函数的导数,根据导数求出函数的最值.【详解】对于选项A :()()()21m x f x g x x x =-=-,()212m x x x'=+,当x ⎛⎫∈ ⎪⎝⎭时,()2120m x x x '=+>, 所以函数()()()m x f x g x =-在x ⎛⎫∈ ⎪⎝⎭内单调递增;故选项A 正确 对于选项BC :设()f x 、()g x 的隔离直线为y kx b =+,则2x kx b ≥+对一切实数x 都成立,即有10∆≤,即240k b +≤,又1kx b x≤+对一切0x <都成立,则210kx bx +-≤,即 20∆≤,240b k +≤,0k ≤,0b ≤,即有24k b ≤-且24b k ≤-,421664k b k ≤≤-,可得40k -≤≤,同理可得:40b -≤≤,故选项B 不正确,故选项C 不正确; 对于选项D :函数()f x 和()h x的图象在x =()f x 和()h x 的隔离直线,那么该直线过这个公共点,设隔离直线的斜率为k ,则隔离直线的方程为(y e k x -=,即y kx e =-,由()f x kx e ≥-,可得20x kx e -+≥对于x ∈R 恒成立,则0∆≤,只有k =y e =-,下面证明()h x e ≤-,令()2n ()l G x e h x e x e =--=--,()x G x x'=,当x =()0'=G x ,当0x <<时,()0'<G x ,当x >()0G x '>,则当x =()G x 取到极小值,极小值是0,也是最小值.所以()()0G x e h x =--≥,则()h x e ≤-当0x >时恒成立.所以()f x 和()g x 之间存在唯一的“隔离直线”e y =-,故选项D 正确. 故选:AD【点睛】本提以函数为载体,考查新定义,关键是对新定义的理解,考查函数的导数,利用导数求最值,属于难题. 三、解答题13.已知函数()()21ln ,2f x ax x x b a b R =-⋅+∈,()()g x f x '=. (1)判断函数()y g x =的单调性;(2)若(]()0, 2.718x e e ∈≈,判断是否存在实数a ,使函数()g x 的最小值为2?若存在求出a 的值;若不存在,请说明理由;【答案】(1)答案见解析;(2)存在,2a e =. 【分析】(1)先求()()g x f x '=,再对()y g x =求导,对参数a 进行讨论确定导数的正负,即得函数单调性; (2)对参数a 进行讨论确定()y g x =导数的正负,即得函数()y g x =单调性,再根据单调性确定最值等于2,解得符合条件的参数值即得结果; 【详解】 (1)由()21ln 2f x ax x x b =-⋅+,知()()ln 1g x f x ax x '==--,0x >,故 ()11ax g x a x x-'=-=. 当0a ≤时,()0g x '<,即()g x 在()0,∞+为减函数, 当0a >时,在10,a ⎛⎫ ⎪⎝⎭上()0g x '<,所以()g x 在10,a ⎛⎫⎪⎝⎭为减函数,在1,a ⎛⎫+∞⎪⎝⎭上()0g x '>,所以()g x 在1,a ⎛⎫+∞ ⎪⎝⎭增函数. (2)当0a ≤时,()g x 在(]0,e 为减函数,所以()()min 11g x g e ea ==-≤-.故不存在最小值3. 当10a e <≤时,1e a≥,()g x 在(]0,e 为减函数,所以 ()()min1ln 2g x g e ea e ==--=,所以4a e=,不合题意,舍去.当1a e >时,10e a <<,在10,a ⎛⎫ ⎪⎝⎭上()0g x '<,函数()g x 单调递减;在1,e a ⎡⎤⎢⎥⎣⎦上()0g x '>,函数()g x 单调递增,由此()min 1111ln 2g x g a a ⎛⎫==--=⎪⎝⎭,所以ln 2a =.解得2a e =,故2a e =时,使函数()g x 的最小值为2. 【点睛】利用导数研究函数()f x 的单调性和最值的步骤:∴写定义域,对函数()f x 求导()'f x ;∴在定义域内,讨论不等式何时()0f x '>和()0f x '<∴对应得到增区间和减区间及极值点,进而比较端点和极值点的值确定指定区间的最值即可. 14.已知函数32()2+1f x x ax bx =++在x =1处取得极值-6. (1)求实数a ,b 的值;(2)求函数f (x )在区间[]2,2-上的最大值和最小值.【答案】(1)3,12a b ==- ;(2)max min ()21,() 6.f x f x ==- 【分析】(1)求导()262f x x ax b =++',根据函数()f x 在x =1处取得极值-6,由(1)6'(1)0f f =-⎧⎨=⎩求解.(2)由(1)知()()()26612612f x x x x x =+-=-+',分别求得极值和端点的函数值求解.【详解】(1)由32()2+1f x x ax bx =++得:()262f x x ax b =++'.由题意知:()()1610f f ⎧=-='⎪⎨⎪⎩ 即926a b a b +=-⎧⎨+=-⎩解得:312a b =⎧⎨=-⎩经检验312a b =⎧⎨=-⎩符合题意.(2)由(1)知32()2+3121f x x x x =-+,()()()26612612f x x x x x =+-=-+'令()0f x '=得:2x =-或1x =,当x 变化时,()()f x f x ',的变化情况如下:由表可知:max min ()(2)21,()(1) 6.f x f f x f =-===- 【点睛】方法点睛:(1)导数法求函数的最值时,要先求函数y =f (x )在[a ,b ]内所有使f ′(x )=0的点,再计算函数y =f (x )在区间内所有使f ′(x )=0的点和区间端点处的函数值,最后比较即得;(2)已知函数的最值求参数,一般先用参数表示最值,再列方程求解参数.15.已知函数()1x e f x x-=.(1)求函数()f x 的单调区间;(2)在平面直角坐标系xOy 中,直线2y kx =+与曲线xy e =交于P ,Q 两点,设点P 的横坐标为()0a a <,OPQ △的面积为S .(i )求证:12S a ae e S ae--=; (ii )当S 取得最小值时,求k 的值.【答案】(1)()f x 的增区间为(),0-∞和()0,∞+;(2)(i )证明见解析;(ii )2. 【分析】(1)求导()()211x e x f x x-+'=,令()()11xg x e x =-+,再利用导数法研究其正负即可. (2)(i )设(),aP a e,(),bQ b e (其中0a b <<),则OPQ △的面积()122S b a b a =⨯-=-,即S b a =-∴由2ae ka =+,得到2a e k a -=,然后再由(),a P a e 及(),bQ b e ,利用斜率公式得到b a e e k b a-=-求解;(ii )由(1)得到()()10S e f S S S -=>为增函数,则S 最小()f S ⇔最小()20a a e a ae -⇔<最小,令()()20a a e h a a ae-=<,再利用导数法求解. 【详解】(1)函数()f x 的定义域为()(),00,-∞⋃+∞,.()()211x e x f x x-+'=, 令()()11xg x ex =-+,则()x g x xe '=.因为()00g x x '>⇔>;()00g x x '<⇔<, 所以()g x 在(),0-∞上为减函数,在()0,∞+上为增函数. 当0x >时,()()00g x g >=,即()()20g x f x x ='>,当0x <时,()()00g x g >=,即()()20g x f x x ='>.所以当()(),00,x ∈-∞+∞时,()0f x '>,所以()f x 在区间(),0-∞和()0,∞+上都是增函数. 因此()f x 的增区间为(),0-∞和()0,∞+,没有减区间. (2)(i )证明:(),aP a e,设(),bQ b e (其中0a b <<),由题意,得OPQ △的面积()122S b a b a =⨯-=-,即S b a =-. 由2ae ka =+,得2a e k a-=,由(),aP a e 及(),bQ b e ,得b ae e k b a-=-,所以()11112S b a b a b a a a aa a e e e e e e e k Sb a b a e b a e e ae ------===⋅=⋅=---,故12S a ae e S ae--=成立. (ii )由(1),得()()10S e f S S S-=>为增函数,于是S 最小()f S ⇔最小()20a a e a ae -⇔<最小. 令()()20a a e h a a ae -=<,则()222a aa e h a a e+-'=, 再令()()220aa a ea ϕ=+-<,则()()200aa e a ϕ'=-><, 所以当0a <时,()a ϕ单调递增.又()110e ϕ--=-<,121102e ϕ-⎛⎫-=-> ⎪⎝⎭,所以存在唯一的011,2a ⎛⎫∈-- ⎪⎝⎭,使得()00a ϕ=,即00220a a e +-=. 当0a a <时,()0a ϕ<,即()()20aa h a a eϕ'=<;当00a a <<时,()0a ϕ>,即()()20aa h a a eϕ'=>,所以0a a =是()h a 的极小值点,也()h a 的最小值点,所以当0a a =时,()f S 取得最小值,等价于S 最小,此时00220a a e+-=,所以0022a e k a -==. 【点睛】本题主要考查导数与函数的单调性,导数与函数的最值,还考查了转化化归的思想和运算求解的能力,属于较难题.16.已知函数()cos ln f x x x ax =⋅-.(1)当0a =时,求函数()f x 在,2ππ⎡⎤⎢⎥⎣⎦上的最大值; (2)若函数()f x 在0,2π⎛⎫⎪⎝⎭上单调递增,求实数a 的取值范围. 【答案】(1)max ()0f x =;(2)2,ln π⎛⎤-∞ ⎥⎝⎦. 【分析】(1)对函数进行求导得cos ()sin ln x f x x x x '=-⋅+,易得()0f x '<在,2ππ⎡⎤⎢⎥⎣⎦上恒成立,即可得答案; (2)由题意得:()0f x '≥恒成立,即cos sin ln x a x x x ≤-⋅+在0,2π⎛⎫⎪⎝⎭恒成立.构造函数 cos ()sin ln xh x x x x=-⋅+,利用导数求出函数的最小值即可; 【详解】(1)当0a =时,cos ()sin ln xf x x x x'=-⋅+显然()0f x '<在,2ππ⎡⎤⎢⎥⎣⎦上恒成立,所以()f x 在,2ππ⎡⎤⎢⎥⎣⎦单调递减, 所以max ()02f x f π⎛⎫==⎪⎝⎭; (2)因为cos ()sin ln xf x x x a x'=-⋅+-, 所以()0f x '≥恒成立,即cos sin ln x a x x x ≤-⋅+在0,2π⎛⎫⎪⎝⎭恒成立. 令cos ()sin ln ,0,2x h x x x x x π⎛⎫=-⋅+∈ ⎪⎝⎭; 则212sin ()cos ln xh x x x x x'⎛⎫=-+-⎪⎝⎭当1,2x π⎡⎫∈⎪⎢⎣⎭时,ln 0,cos 0,sin 0x x x >>>,所以()0h x '< 当(0,1)x ∈时,令21()ln ,(0,1)x x x x ϕ=+∈,因为233122()0x x x x xϕ'-=-=<,所以()ϕx 在(0,1)x ∈ 单调递减,所以()(1)10x ϕϕ>=>,所以(0,1)x ∈时,()0h x '<综上,当0,2x π⎛⎫∈ ⎪⎝⎭时,()0h x '<恒成立,所以()h x 在0,2π⎛⎫⎪⎝⎭单调递减, 所以2()ln 2h x h ππ⎛⎫>= ⎪⎝⎭,所以2,ln a π⎛⎤∈-∞ ⎥⎝⎦. 【点睛】根据导数的正负研究函数的单调性;不等式恒成立问题,常用参变分离进行求解. 17.已知函数()()3exf x xx a =-+,a R ∈.(1)当2a =-时,求()f x 在[]1,2-上的最大值和最小值; (2)若()f x 在()1,+∞上单调,求a 的取值范围.【答案】(1)最大值为24e ,最小值为2e -;(2)[)2,-+∞. 【分析】(1)2a =-代入()f x ,对函数求导,利用导数正负确定单调性即可;(2)先利用极限思想进行估值x →+∞时()0f x '>,来确定()f x 在()1,+∞上单增,()0f x '≥,再对32310x x a x -++-≥分离参数,研究值得分布即得结果.【详解】 (1)()()3231xf x exx a x '=-++-当2a =-时,()()()()()3233311xx f x exx x e x x x '=+--=+-+∴()f x '在()3,1--和()1,+∞上为正,在(),3-∞-和()1,1-上为负, ∴()f x 在()3,1--和()1,+∞上单增,在(),3-∞-和()1,1-上单减, 有()21f e-=-,()224f e =,()12f e =-,故()f x 在[]1,2-上的最大值为24e ,最小值为2e -; (2)由()()3231xf x exx x a '=+-+-知,当x →+∞时,()0f x '>,若()f x 在()1,+∞上单调则只能是单增,∴()0f x '≥在()1,+∞恒成立,即32310x x a x -++-≥∴3231a x x x ≥--++,令()3231g x x x x =--++,1x >,则()23610g x x x '=--+<,∴()g x 在()1,+∞递减,()()12g x g <=-,∴[)2,a ∈-+∞. 【点睛】(1)利用导数研究函数()f x 的最值的步骤:∴写定义域,对函数()f x 求导()'f x ;∴在定义域内,解不等式()0f x '>和()0f x '<得到单调性;∴利用单调性判断极值点,比较极值和端点值得到最值即可.(2)函数()f x 在区间I 上递增,则()0f x '≥恒成立;函数()f x 在区间I 上递减,则()0f x '≤恒成立.(3)解决恒成立问题的常用方法:∴数形结合法;∴分离参数法;∴构造函数法.18.已知直线:(0)l y kx b b =+>与抛物线2:4C y x =交于A 、B 两点,P 是抛物线C 上异于A 、B 的一点,若PAB △重心的纵坐标为13,且直线PA 、PB 的倾斜角互补.(∴)求k 的值.(∴)求PAB △面积的取值范围. 【答案】(∴)2;(∴)30,4⎛⎫ ⎪⎝⎭. 【分析】(∴)设()()()001122,,,,,P x y A x y B x y ,利用斜率公式得到直线PA 、PB 、AB 的斜率,根据直线PA 、PB 的倾斜角互补.得到01220y y y ++=,根据三角形的重心的坐标公式可得122y y +=,从而可得2k =; (∴)联立直线:2l y x b =+与抛物线方程,根据弦长公式求出||AB ,利用点到直线的距离公式求出AB 边上的高,根据面积公式求出面积,再利用导数求出取值范围即可. 【详解】(∴)设()()()001122,,,,,P x y A x y B x y ,则010*********444PA y y y y k y y x x y y --===-+-,同理可得021244,PB AB k k y y y y ==++, 因为直线PA 、PB 的倾斜角互补,所以0102440y y y y +=++,即01220y y y ++=,又PAB △重心的纵坐标为13,根据三角形的重心的坐标公式可得0121y y y ++=, 所以122y y +=,所以422AB k k ===.(∴)由(∴)知直线:2l y x b =+,与抛物线方程联立,并整理得2244(1)0x b x b +-+=, 其判别式22116(1)1602b b b ∆=-->⇒<,所以102b <<.而212111,4b x x b x x +=-=,因此,||AB ===又由(∴)知,01y =-,所以200144y x ==,所以1,14P ⎛⎫- ⎪⎝⎭, 1,14P ⎛⎫- ⎪⎝⎭到直线:20l x y b -+=的距离为1|21|b d ⨯++==所以113||222PABS AB d b ⎛⎫=⋅=+= ⎪⎝⎭△令231()(12),022f b b b b ⎛⎫⎛⎫=-+<< ⎪⎪⎝⎭⎝⎭,则()2333()2122(61)0222f b b b b b b ⎛⎫'⎛⎫⎛⎫=-++-⨯+=-++< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭恒成立,故()f b 在10,2⎛⎫ ⎪⎝⎭上单调递减,所以9()(0,)4f b ∈,故30,4PAB S⎛⎫∈ ⎪⎝⎭. 【点睛】结论点睛:本题中用到的结论:∴三角形的重心的坐标公式,若三角形的三个顶点的坐标为112233(,),(,),(,)A x y B x y C x y ,则三角形的重心的坐标为123123,33x x x y y y ++++⎛⎫⎪⎝⎭,∴弦长公式:||AB =. 19.某市作为新兴的“网红城市”,有很多风靡网络的“网红景点”,每年都有大量的游客来参观旅游。
专题7 瓜豆原理中动点轨迹圆或圆弧型最值问题【专题说明】动点的轨迹为定圆时,可利用:“一定点与圆上的动点距离最大值为定点到圆心的距离与半径之和,最小值为定点到圆心的距离与半径之差”的性质求解。
确定动点轨迹为圆或者圆弧型的方法:(1)动点到定点的距离不变,则点的轨迹是圆或者圆弧。
(2)当某条边与该边所对的角是定值时,该角的顶点的轨迹是圆,具体运用如下;①见直角,找斜边,想直径,定外心,现圆形①见定角,找对边,想周角,转心角,现圆形【知识精讲】如图,P是圆O上一个动点,A为定点,连接A P,Q为A P中点.考虑:当点P在圆O上运动时,Q点轨迹是?【分析】观察动图可知点Q轨迹是个圆,而我们还需确定的是此圆与圆O有什么关系?考虑到Q点始终为A P中点,连接AO,取AO中点M,则M点即为Q点轨迹圆圆心,半径MQ是O P一半,任意时刻,均有△AMQ∽△AO P,QM:P O=AQ:A P=1:2.【小结】确定Q点轨迹圆即确定其圆心与半径,由A、Q、P始终共线可得:A、M、O三点共线,由Q为A P中点可得:AM=1/2AO.Q点轨迹相当于是P点轨迹成比例缩放.根据动点之间的相对位置关系【分析】圆心的相对位置关系;根据动点之间的数量关系【分析】轨迹圆半径数量关系.如图,P是圆O上一个动点,A为定点,连接A P,作AQ⊥A P且AQ=A P.考虑:当点P在圆O上运动时,Q点轨迹是?【分析】Q点轨迹是个圆,可理解为将A P绕点A逆时针旋转90°得AQ,故Q点轨迹与P点轨迹都是圆.接下来确定圆心与半径.考虑A P⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;考虑A P=AQ,可得Q点轨迹圆圆心M满足AM=AO,且可得半径MQ=P O.即可确定圆M位置,任意时刻均有△A P O≌△AQM.如图,△A P Q是直角三角形,∠P AQ=90°且A P=2AQ,当P在圆O运动时,Q点轨迹是?【分析】考虑A P⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;考虑A P:AQ=2:1,可得Q点轨迹圆圆心M满足AO:AM=2:1.即可确定圆M位置,任意时刻均有△A P O∽△AQM,且相似比为2.【模型总结】为了便于区分动点P、Q,可称点P为“主动点”,点Q为“从动点”.此类问题的必要条件:两个定量主动点、从动点与定点连线的夹角是定量(∠P AQ是定值);主动点、从动点到定点的距离之比是定量(A P:AQ是定值).【结论】(1)主、从动点与定点连线的夹角等于两圆心与定点连线的夹角:∠P AQ=∠OAM;(2)主、从动点与定点的距离之比等于两圆心到定点的距离之比:A P:AQ=AO:AM,也等于两圆半径之比.按以上两点即可确定从动点轨迹圆,Q与P的关系相当于旋转+伸缩.古人云:种瓜得瓜,种豆得豆.“种”圆得圆,“种”线得线,谓之“瓜豆原理”.【例题】1、如图,在Rt ABC ∆中,90︒∠=C ,4AC =,3BC =,点O 是AB 的三等分点,半圆O 与AC 相切,M ,N 分别是BC 与半圆弧上的动点,则MN 的最小值和最大值之和是( )A .5B .6C .7D .82、如图,在矩形纸片ABCD 中,2AB =,3AD =,点E 是AB 的中点,点F 是AD 边上的一个动点,将AEF 沿EF 所在直线翻折,得到'A EF ,则'A C 的长的最小值是( )A B .3 C 1 D 13、如图,在Rt ①ABC 中,①ABC =90°,①ACB =30°,BC =2√3 ,①ADC 与①ABC 关于AC 对称,点E 、F 分别是边DC 、BC 上的任意一点,且DE =CF ,BE 、DF 相交于点P ,则CP 的最小值为( ) A .1 B .√3 C .32 D .24、如图,在矩形ABCD 中,AB =4,AD =6,E 是AB 边的中点,F 是线段BC 上的动点,将ΔEBF 沿EF 所在直线折叠得到ΔEB ' F ,连接B ' D ,则B ' D 的最小值是_____.5、如图,Rt ABC △中,AB BC ⊥,6AB =,4BC =,P 是ABC △内部的一个动点,且满足90PAB PBA ︒∠+∠=,则线段CP 长的最小值为________.6、如图,点D 在半圆O 上,半径5OB =,4=AD ,点C 在弧BD 上移动,连接AC ,作DH AC ⊥,垂足为H ,连接BH ,点C 在移动的过程中,BH 的最小值是______.7、如图,过抛物线上一点A作轴的平行线,交抛物线于另一点B,交轴于点C,已知点A的横坐标为.(1)求抛物线的对称轴和点B的坐标;(2)在AB上任取一点P,连结O P,作点C关于直线O P的对称点D;①连结BD,求BD的最小值;①当点D落在抛物线的对称轴上,且在轴上方时,求直线P D的函数表达式.【解析】(1)由题意A(﹣2,5),对称轴x=﹣=4,①A、B关于对称轴对称,①B(10,5).(2)①如图1中,由题意点D在以O为圆心OC为半径的圆上,①当O、D、B共线时,BD的最小值=OB﹣OD=.①如图2中,图2当点D在对称轴上时,在Rt①ODE中,OD=OC=5,OE=4,①DE==3,①点D的坐标为(4,3).设P C=P D=x,在Rt①P DK中,x2=(4﹣x)2+22,①x=,①P(,5),∴直线P D的解析式为y=﹣x+.。
第19讲 双曲线中的最值问题题型总结【题型目录】题型一:利用焦半径范围求最值题型二:利用渐近线与双曲线位置关系求范围 题型三:利用双曲线线定义转化为三点共线问题求最值 【典型例题】题型一:利用焦半径范围求最值【例1】(2022·全国·高二)若P 是双曲线C :2214x y m-=上一点,C 的一个焦点坐标为()4,0F ,则下列结论中正确的是()A .m =.渐近线方程为y =C .PF 的最小值是2D .焦点到渐近线的距离是【例2】(2022·湖北·宜城市第一中学高三阶段练习)已知1F ,2F 分别是双曲线22:1421x yC -=的左、右焦点,动点P 在双曲线C 的右支上,则()()1244PF PF -⋅-的最小值为() A .4-B .3-C .2-D .1- 【答案】B 【解析】 【分析】根据题意得124PF PF -=,所以124PF PF =+,再根据双曲线性质得2PF 的范围,则()()()1222444PFPF PF PF -⋅-=⋅-,再利用二次函数求值域即可.【详解】因为动点P 在双曲线C 的右支上,由双曲线定义可得:124PF PF -=,所以124PF PF =+,因为24a =,221b =,所以2a =,5c =, 所以2523PF c a ≥-=-=,将124PF PF =+代入()()1244PF PF -⋅-得: ()()222222244243PF PF PF PF PF ⋅-=-=--≥-.故选:B .【例3】(2022·全国·高二课时练习)设P 是双曲线221916x y -=上一点,M 、N 分别是两圆22(5)4x y -+=和22(5)1x y ++=上的点,则PM PN -的最大值为()A .6B .9C .12D .14 【答案】B【分析】根据双曲线方程及其定义,求得,PM PN 的范围,再求PM PN -得最大值即可. 【详解】因为双曲线方程为221916x y -=,故291625c =+=,则其焦点为()()125,0,5,0F F -, 根据题意,作图如下:则22PM PF ≤+,当且仅当2,,P M F 三点共线,且2F 在,P M 之间时取得等号;11PN PF ≥-,当且仅当1,,P N F 三点共线,且N 在1,P F 之间时取得等号;则11PN PF -≤-,故可得213369PM PN PF PF -≤+-=+=, 故PM PN -的最大值为:9. 故选:B. 【题型专练】1.(2022·青海·海东市第一中学模拟预测(理))已知点P 是双曲线22221x y a b -=(a >0,b >0)的渐近线上一点,F 是双曲线的右焦点,若|PF |的最小值为2a ,则该双曲线的离心率为()ABD【答案】D 【解析】 【分析】结合双曲线的概念和性质求双曲线的离心率. 【详解】双曲线的渐近线方程为by x a=±,即0bx ay ±=, |PF |的最小值即为焦点(),0F c2a =,即12a b =,∴()22221144a b c a ==-,c e a ==.故选:D2.(2022·山东·德州市教育科学研究院二模)双曲线()2221016x y a a -=>的一条渐近线方程为43y x =,1F ,2F 分别为该双曲线的左右焦点,M 为双曲线上的一点,则2116MF MF +的最小值为() A .2B .4C .8D .12 【答案】B 【解析】 【分析】 求2116MF MF +最小值,则2MF 要尽可能小,1MF 要尽可能大,所以M 在双曲线的右支上,则2126MF MF a -==,所以216MF MF =-,消元转化为对勾函数求最值【详解】 若求2116MF MF +最小值,则2MF 要尽可能小,1MF 要尽可能大 所以M 在双曲线的右支上渐近线 4433b b y x x a a ==⇒= 又因为4b =所以3a =由双曲线定义,当M 在双曲线的右支上,2126MF MF a -==当且仅当1116MF MF =,即14MF =时取等号 因为右支上的顶点()3,0到()15,0F 最小,最小为8 所以11166MF MF +-取不到等号,当18MF =时,取最小值 最小值为:168682648+-=+-= 故选:B3.(2022·重庆·三模)已知双曲线C :()222210,0x y a b a b-=>>的左右焦点为1F ,2F ,左右顶点为1A ,2A ,过2F 的直线l 交双曲线C 的右支于P ,Q 两点,设12PA A α∠=,21PA A β∠=,当直线l 绕着2F 转动时,下列量保持不变的是()A .1PQA △的周长B .1PFQ 的周长与2PQ 之差C .tan tan αβD .tan tan αβ⋅ 【答案】BD 【解析】 【分析】如图所示:当直线l 的倾斜角越小时,点1PQA △的周长越大,可判断A ,根据双曲线定义求解可判断B ,设(),P x y ,则tan ,tan y y a x x aαα==-+-根据商与积的值可判断CD . 【详解】如图所示:当直线l 的倾斜角越小时,点1PQA △的周长越大,故A 不正确;1PFQ 的周长为1122442PF QF PQ a PF QF PQ a PQ ++=+++=+所以1PFQ 的周长与2PQ 之差为4a ,故B 正确; 设(),P x y ,则tan ,tan y ya x x aαα==-+-, 由tan tan a xa xαβ-=+不是常量,故C 不正确; 由22222222221tan tan x b y y a y b a x a x a x a x a αβ⎛⎫- ⎪⎝⎭⋅=⋅===-+---为常量,故D 正确; 故选:BD题型二:渐近线与双曲线位置关系求范围【例1】(2022·四川·内江市教育科学研究所三模(文))已知()2,0A -,()2,0B ,若曲线()00,0x y x y a b a b a b ⎛⎫⎛⎫+-=>> ⎪⎪⎝⎭⎝⎭上存在点P 满足2PA PB -=,则b a 的取值范围是___________.【题型专练】1.(2022·安徽师范大学附属中学模拟预测(理))已知()()2,0,2,0A B -,点P 满足方程0(0,0)nx my m n ±=>>,且有2PA PB -=,则nm的取值范围是()A .(0,1)B .C .D .2) 【答案】B 【解析】 【分析】根据双曲线的定义,得到点P 的轨迹表示以,A B 为焦点的双曲线C 的右支,进而求得双曲线的渐近线方程y =,结合双曲线的几何性质,即可求解.【详解】由题意,点()()2,0,2,0A B -且满足2PA PB -=,根据双曲线的定义,可得点P 的轨迹表示以,A B 为焦点的双曲线C 的右支,其中22,24a c ==,可得1,2a c ==,则b可得双曲线C 的渐近线方程为by x a=±=, 又因为点P 满足方程0(0,0)nx my m n ±=>>,即ny x m=±,结合双曲线的几何性质,可得0nm<n m 的取值范围是.故选:B.2.(2022·全国·高三专题练习)已知点(A ,(0,B ,若曲线()222200,0x y a b a b -=>>上存在点P 满足4PA PB -=,则下列正确的是() A .1b a <+B .2b a <C .1b a >+D .2b a > 【答案】D 【解析】 【分析】由已知可判断点P 在双曲线221(0)4y x y -=<上,将已知转化为曲线b y x a =±与双曲线221(0)4y x y -=<相交,利用直线by x a=±与渐近线的位置关系可得解. 【详解】点(A ,(0,B ,且4PA PB -=<P 在双曲线的下支上. 所以双曲线的方程为221(0)4y x y -=<,其渐近线方程为2y x =±,又点P 在曲线()2222000x y a b a b-=>>,上,即点P 在曲线b y x a =±上,即曲线b y x a =±与双曲线221(0)4y x y -=<相交,2b a ∴>,即2b a >故选:D题型三:利用双曲线线定义转化为三点共线问题求最值【例1】(2022·天津·二模)已知双曲线()222:109x y C b b-=>的左、右焦点分别为12,F F ,点M 在C 的左支上,过点M 作C 的一条渐近线的垂线,垂足为N ,若2MF MN +的最小值为9,则该双曲线的离心率为()AB .32D .53【答案】A 【解析】 【分析】由题意可知3a =,根据双曲线的对称性画出图形,由双曲线的定义可知21||||||6MF MN F N ++,当且仅当点1F ,M ,N 三点共线时,等号成立,从而得到2||||MF MN +的最小值为6b +,求出b 的值,得到双曲线的离心率. 【详解】解:根据双曲线的对称性,仅作一条渐近线, 因为双曲线()222:109x y C b b-=>,3a ∴=,由双曲线的定义可知,21||||26MF MF a -==,211||||||||6||6MF MN MF MN F N ∴+=++≥+,当且仅当点1F ,M ,N 三点共线时,等号成立, 渐近线方程为by x a=,即0bx ay -=,且1(,0)F c -, ∴此时1||bcF N b c==, 2||||MF MN ∴+的最小值为6b +,69b ∴+=,3b ∴=,所以c =∴离心率ce a=故选:A .【例2】(2022·全国·模拟预测(理))已知双曲线2222:1(0,0)x y C a b a b-=>>的左、有焦点分别为1F ,2F ,实轴长为4,离心率2e =,点Q 为双曲线右支上的一点,点(0,4)P .当1||QF PQ +取最小值时,2QF 的值为()A.1)B .1)C .1D .1【例3】(2022·全国·高二专题练习)已知1F ,2F 分别是双曲线C :22143x y -=的左,右焦点,动点A 在双曲线的左支上,点B 为圆E :()2231x y ++=上一动点,则2AB AF +的最小值为______.【例4】(2022·全国·高三专题练习)已知点P在双曲线22145x y-=的右支上,()0,2A,动点B满足2AB=,F是双曲线的右焦点,则PF PB-的最大值为___________.2##2-【例5】(2022·全国·高二课时练习)设P是双曲线221916x y-=上一点,M、N分别是两圆22(5)4x y-+=和22(5)1x y++=上的点,则PM PN-的最大值为()A.6B.9C.12D.14故选:B.【例6】(2022·四川·成都市锦江区嘉祥外国语高级中学模拟预测(理))已知双曲线()222210,0x y a b a b-=>>的离心率为32,其左,右焦点分别为12,F F ,过2F 且与x 轴垂直的直线l 与双曲线的两条渐近线分别交于A ,B 两点,若(||5,AB M =,P 为双曲线右支上一点,则2PM PF +的最小值为()A 1B .4C .4D 1【例7】(2021·广东·佛山一中高二阶段练习)设(),P x y 是双曲线22154x y -=的右支上的点,则A +...5 1||a AF -+2,(,)P x y 是双曲线则1||PF -1|||||PA PF a AF ∴--+故选:C 【题型专练】1.(2022·安徽蚌埠·三模(理))双曲线C :2221(0)y x a a -=>F 是C 的下焦点,若点P为C 上支上的动点,设点P 到C 的一条渐近线的距离为d ,则d PF +的最小值为() A .6B .7C .8D .9 【答案】B 【解析】 【分析】由离心率可得29a =,即知渐近线为3y x =±,若上焦点为F ',结合双曲线定义,将问题转化为求6d PF '++最小,若||d PH =应用数形结合思想判断,,P F H '的位置关系求最值. 【详解】由题设,221109a a +=,可得29a =,则双曲线渐近线方程为3y x =±,若上焦点为F ',则||||26PF PF a '-==,故||6||PF PF '=+, 所以6d PF d PF '+=++,如下图示:||d PH =,所以6||d PF PH PF '+=++,要使d PF +最小,只需,,P F H '共线,即F H '⊥一条渐近线,而F '1=,故min ()7d PF +=.故选:B2.(2022·全国·高二专题练习)设双曲线2211612x y -=的左、右焦点分别为1F ,2F ,过1F 的直线l 交双曲线左支于A ,B 两点,则22AF BF +的最小值为______.3.(2022·河南·南阳中学三模(文))已知双曲线221(0)5x y m m -=>20+=y ,左焦点为F ,点P 在双曲线右支上运动,点Q 在圆22(4)1x y +-=上运动,则||||PQ PF +的最小值为___________.4.(2022·陕西宝鸡·二模(理))已知F 是双曲线22:1C x y -=的右焦点,P 是C 的左支上一点,A .当APF 周长最小时,该三角形的面积为___________. 【答案】32##1.5【分析】M 为左焦点,利用双曲线定义得到APF 周长为||||||||||4AF PF AP PM AP ++=++,判断其最小由APF 周长为当且仅当,A 三点共线时APF 周长最小,此时所以,此时∴2的等腰直角三角形,||AP x =,则,故||PF =∴APF 中x ,可得32x =5.(2022·湖北·高三阶段练习)已知双曲线C :22133y x -=,F 是双曲线C 的右焦点,点A 是双曲线C 的左支上的一点,点B 为圆D :(223x y ++=上一点,则AB AF +的最小值为_____.【答案】6.(2022·江苏·华罗庚中学高三阶段练习)已知双曲线2213x y -=的左右焦点分别为1F 、2F ,P 为双曲线右支上一点,点Q 的坐标为()2,3-,则1PQ PF +的最小值为___________.【答案】5+5【详解】7.(2022·全国·高三专题练习)已知双曲线C :()222210,0x y a b a b-=>>的左、右焦点分别为1F ,2F ,点M 在C 的左支上,过点M 作C 的一条渐近线的垂线,垂足为N ,则当2MF MN +取最小值10时,12F NF △面积的最大值为___________ 【答案】252##12.51212F NF F NOSS=,可求得答案【详解】由题意得MF (),0F c -到渐近线bx 8.(2022·全国·高二专题练习)已知双曲线C :22197x y -=,1F ,2F 是其左右焦点.圆E :22430x y y +-+=,点P 为双曲线C 右支上的动点,点Q 为圆E 上的动点,则1PQ PF +的最小值是________.【答案】5+59.(2022·江西鹰潭·二模(文))已知双曲线221(0)5x y m m -=>20+=y ,左焦点为F ,点P 在双曲线右支上运动,点Q 在圆22(4)1x y +-=上运动,则||||PQ PF +的最小值为()A .4B .8C .5D .910.(2022·河南·许昌高中高三开学考试(文))已知双曲线22:145x y C 的左焦点为1F ,M 为双曲线C 右支上任意一点,D 点的坐标为()3,1,则1MD MF -的最大值为() A .3B .1C .3-D .2-11.(2023·全国·高三专题练习)已知F 是双曲线221412x y -=的左焦点,(1,4)A ,P 是双曲线右支上的动点,则||||PF PA +的最小值为()A.9B.8C.7D.612.(2022·全国·高二专题练习)设F是双曲线221412x y-=的左焦点,()1,3A,P是双曲线右支上的动点,则PF PA+的最小值为()A.5B.4+.5+.9。
专题19 用一次函数、反比例函数、二次函数解决实际问题【中考考向导航】目录【直击中考】 (1)【考向一在一次函数解决实际问题求最值问题】 (1)【考向二用反比例函数解决实际问题】 (3)【考向三在二次函数解决实际问题求最值问题】 (6)【直击中考】【考向一在一次函数解决实际问题求最值问题】例题:(2023·山东济南·山东大学附属中学校考一模)为响应对口扶贫,深圳某单位和西部某乡结对帮扶,采购该乡农副产品助力乡村振兴.已知1件A产品价格比1件B产品价格少20元,300元购买A产品件数与400元购买B产品件数相同.(1)A产品和B产品每件分别是多少元?(2)深圳该对口单位动员职工采购该乡A、B两种农副产品,根据统计:职工响应积极,两种预计共购买150件,A的数量不少于B的2倍,当采购A、B两种农副产品为多少时,购买总费用最大?并求购买总费用的最大值.【变式训练】1.(2023秋·广东河源·八年级校考期末)某商店欲购进甲、乙两种商品,已知甲的进价是乙的进价的一半,进3件甲商品和1件乙商品恰好用200元.甲、乙两种商品的售价每件分别为80元、130元,该商店决定用不少于6710且不超过6810元购进这两种商品共100件.(1)甲、乙两种商品的进价各是多少?(2)设其中甲商品的进货件数为x件,商店有几种进货方案?(3)设销售两种商品的总利润为W元,试写出利润W与x的函数关系式,并利用函数的性质说明哪一种进货方案可获得最大利润,并求出最大利润是多少?设该经销商购进普通包装的柿饼x 斤,总利润为y 元.(1)求y 与x 之间的函数关系式;(2)经过市场调研,该经销商决定购进精品包装的柿饼不大于普通包装的3倍,请问获利最大的进货方案及最大利润.【考向二 用反比例函数解决实际问题】 例题:(2023秋·湖南永州·九年级校考期末)某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度()C y ︒与时间()h x 之间的函数关系,其中线段AB 、BC 表示恒温系统开启阶段,双曲线的一部分CD 表示恒温系统关闭阶段.请根据图中信息解答下列问题: (1)求这天的温度y 与时间()024x x ≤≤的函数关系式;(2)若大棚内的温度低于10C ︒时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?【变式训练】1.(2023·云南·校考一模)云南某山区冬季经常缺水,政府在山顶修建了一大型蓄水池.据统计,按每天用水0.6立方米计算,蓄水池剩余的水一个月(30天)刚好用完.如果每天的用水量为x 立方米,那么这个蓄水池的水能维持y 天.(1)写出y 与x 之间的函数表达式;(2)如果每天用水0.5立方米,那么蓄水池剩余的水能维持多少天?2.(2023·安徽宿州·统考一模)为检测某品牌一次性注射器的质量,将注射器里充满一定量的气体,当温度不变时,注射器里的气体的压强()kPa p 与气体体积()ml V 满足反比例函数关系,其图像如图所示.(1)求反比例函数的表达式.(2)当气体体积为60ml 时,气体的压强为______kPa .(3)若注射器内气体的压强不能超过500kPa ,则其体积V 要控制在什么范围?3.(2023秋·河北邯郸·九年级校考期末)某校为进一步预防“新型冠状病毒”,对全校所有的教室都进行了“熏药法消毒”处理,已知该药物在燃烧释放过程中,教室内空气中每立方米的含药量y (mg )与燃烧时间x (min )之间的函数关系如图所示,其中当5x <时,y 是x 的正比例函数,当5x ≥时,y 是x 的反比例函数,根据图象提供的信息,解答下列问题:(1)求y 与x 的函数关系式;(2)求点P 的坐标;(3)药物燃烧释放过程中,若空气中每立方米的含药量不小于4mg 的时间超过20分钟,即为有效消毒,请问本题中的消毒是否为有效消毒?(1)请写出这个反比例函数的解析式.(1)观察上表实验数据,写出表中a的值______.坐标的各点,并用平滑的曲线顺次连接这些点;(3)根据所画的图象,求出F 与L 的函数关系式.【考向三 在二次函数解决实际问题求最值问题】 例题:(2022秋·山东烟台·九年级统考期末)某文具店以8元/支的进价购进一批签字笔进行销售,经市场调查后发现,日销量y (支)与零售价x (元)之间的关系图象如下图所示,其中816x ≤≤. (1)求出日销量y (支)与零售价x (元)之间的关系;(2)当零售价定为多少时,该文具店每天销售这种签字笔获得的利润最大?最大利润是多少?【变式训练】1.(2022秋·山西太原·九年级校考期末)某文具商店销售进价为28元/盒的彩色铅笔,市场调查发现,若以每盒40元的价格销售,平均每天销售80盒,价格每提高1元,平均每天少销售2盒,设每盒彩色铅笔的销售价为x (40x >)元,平均每天销售y 盒,平均每天的销售利润为 W 元.(1)直接写出y 与x 之间的函数关系式:_______.(2)求W 与x 之间的函数关系式(3)为稳定市场,物价部门规定每盒彩色铅笔的售价不得高于50元,当每盒的销售价为多少元时,平均每天获得的利润最大?最大利润是多少元?(1)求y与x函数关系式;7.(2023秋·江苏泰州·九年级校考期末)某书店销售一本畅销的小说,每本进价为25元.根据以往经验,当销售单价是30元时,每天的销售量是300本;销售单价每上涨1元,每天的销售量减少10本,设这本小说每天的销售量为y本,销售单价为x3050()元.<<x(1)请求出y与x之间的函数关系式;(2)书店决定每销售1本该小说,就捐赠3元给山区贫困儿童,若想每天扣除捐赠后获得最大利润,则该小说每本售价为多少元?每天最大利润是多少元?。
专题19 应用题(函数、不等式、方程)一.解答题1.(2022·广西梧州)梧州市地处亚热带,盛产龙眼.新鲜龙眼的保质期短,若加工成龙眼干(又叫带壳圆肉)则有利于较长时间保存.已知3kg的新鲜龙眼在无损耗的情况下可以加工成1kg的龙眼干.(1)若新鲜龙眼售价为12元/kg,在无损耗的情况下加工成龙眼干,使龙眼干的销售收益不低于新鲜龙眼的销售收益,则龙眼干的售价应不低于多少元/kg?(2)在实践中,小苏发现当地在加工龙眼干的过程中新鲜龙眼有6%的损耗,为确保果农的利益,龙眼干的销售收益应不低于新鲜龙眼的销售收益,此时龙眼干的定价取最低整数价格.市场调查还发现,新鲜龙眼以12元/kg最多能卖出100kg,超出部分平均售价是5元/kg,可售完.果农们都以这种方式出售新鲜龙眼.设某果农有akg新鲜龙眼,他全部加工成龙眼干销售获得的收益与全部以新鲜龙眼销售获得的收益之差为w元,请写出w与a的函数关系式.2.(2022·黑龙江)学校开展大课间活动,某班需要购买A、B两种跳绳.已知购进10根A 种跳绳和5根B种跳绳共需175元:购进15根A种跳绳和10根B种跳绳共需300元.(1)求购进一根A种跳绳和一根B种跳绳各需多少元?(2)设购买A种跳绳m根,若班级计划购买A、B两种跳绳共45根,所花费用不少于548元且不多于560元,则有哪几种购买方案?(3)在(2)的条件下,哪种购买方案需要的总费用最少?最少费用是多少元?3.(2022·黑龙江牡丹江)为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?4.(2022·福建)在学校开展“劳动创造美好生活”主题系列活动中,八年级(1)班负责校园某绿化角的设计、种植与养护.同学们约定每人养护一盆绿植,计划购买绿萝和吊兰两种绿植共46盆,且绿萝盆数不少于吊兰盆数的2倍.已知绿萝每盆9元,吊兰每盆6元.(1)采购组计划将预算经费390元全部用于购买绿萝和吊兰,问可购买绿萝和吊兰各多少盆?(2)规划组认为有比390元更省钱的购买方案,请求出购买两种绿植总费用的最小值.5.(2022·湖北恩施)某校计划租用甲、乙两种客车送180名师生去研学基地开展综合实践活动.已知租用一辆甲型客车和一辆乙型客车共需500元,租用2辆甲型客车和3辆乙型客车共需1300元.甲型客车每辆可坐15名师生,乙型客车每辆可坐25名师生.(1)租用甲、乙两种客车每辆各多少元?(2)若学校计划租用8辆客车,怎样租车可使总费用最少?6.(2022·广西梧州)梧州市地处亚热带,盛产龙眼.新鲜龙眼的保质期短,若加工成龙眼干(又叫带壳圆肉)则有利于较长时间保存.已知3kg的新鲜龙眼在无损耗的情况下可以加工成1kg的龙眼干.(1)若新鲜龙眼售价为12元/kg,在无损耗的情况下加工成龙眼干,使龙眼干的销售收益不低于新鲜龙眼的销售收益,则龙眼干的售价应不低于多少元/kg?(2)在实践中,小苏发现当地在加工龙眼干的过程中新鲜龙眼有6%的损耗,为确保果农的利益,龙眼干的销售收益应不低于新鲜龙眼的销售收益,此时龙眼干的定价取最低整数价格.市场调查还发现,新鲜龙眼以12元/kg最多能卖出100kg,超出部分平均售价是5元/kg,可售完.果农们都以这种方式出售新鲜龙眼.设某果农有akg新鲜龙眼,他全部加工成龙眼干销售获得的收益与全部以新鲜龙眼销售获得的收益之差为w元,请写出w与a的函数关系式.7.(2022·黑龙江)学校开展大课间活动,某班需要购买A、B两种跳绳.已知购进10根A 种跳绳和5根B种跳绳共需175元:购进15根A种跳绳和10根B种跳绳共需300元.(1)求购进一根A种跳绳和一根B种跳绳各需多少元?(2)设购买A种跳绳m根,若班级计划购买A、B两种跳绳共45根,所花费用不少于548元且不多于560元,则有哪几种购买方案?(3)在(2)的条件下,哪种购买方案需要的总费用最少?最少费用是多少元?8.(2022·黑龙江牡丹江)为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?9.(2022·福建)在学校开展“劳动创造美好生活”主题系列活动中,八年级(1)班负责校园某绿化角的设计、种植与养护.同学们约定每人养护一盆绿植,计划购买绿萝和吊兰两种绿植共46盆,且绿萝盆数不少于吊兰盆数的2倍.已知绿萝每盆9元,吊兰每盆6元.(1)采购组计划将预算经费390元全部用于购买绿萝和吊兰,问可购买绿萝和吊兰各多少盆?(2)规划组认为有比390元更省钱的购买方案,请求出购买两种绿植总费用的最小值.10.(2022·湖北恩施)某校计划租用甲、乙两种客车送180名师生去研学基地开展综合实践活动.已知租用一辆甲型客车和一辆乙型客车共需500元,租用2辆甲型客车和3辆乙型客车共需1300元.甲型客车每辆可坐15名师生,乙型客车每辆可坐25名师生.(1)租用甲、乙两种客车每辆各多少元?(2)若学校计划租用8辆客车,怎样租车可使总费用最少?11.(2022·广西河池)为改善村容村貌,阳光村计划购买一批桂花树和芒果树.已知桂花树的单价比芒果树的单价多40元,购买3棵桂花树和2棵芒果树共需370元.(1)桂花树和芒果树的单价各是多少元?(2)若该村一次性购买这两种树共60棵,且桂花树不少于35棵.设购买桂花树的棵数为n,总费用为w元,求w关于n的函数关系式,并求出该村按怎样的方案购买时,费用最低?最低费用为多少元?12.(2022·辽宁锦州)某商场新进一批拼装玩具,进价为每个10元,在销售过程中发现.,日销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.(1)求y与x的函数关系式(不要求写出自变量x的取值范围);(2)若该玩具某天的销售利润是600元,则当天玩具的销售单价是多少元?(3)设该玩具日销售利润为w元,当玩具的销售单价定为多少元时,日销售利润最大?最大利润是多少元?13.(2022·内蒙古呼和浩特)今年我市某公司分两次采购了一批土豆,第一次花费30万元,第二次花费50万元,已知第一次采购时每吨土豆的价格比去年的平均价格上涨了200元,第二次采购时每吨土豆的价格比去年的平均价格下降了200元,第二次的采购数量是第一次采购数量的2倍.(1)问去年每吨土豆的平均价格是多少元?(2)该公司可将土豆加工成薯片或淀粉,因设备原因,两种产品不能同时加工,若单独加工成薯片,每天可加工5吨土豆,每吨土豆获利700元;若单独加工成淀粉,每天可加工8吨土豆,每吨土豆获利400元.由于出口需要,所有采购的土豆必须全部加工完且用时不超过60天,其中加工成薯片的土豆数量不少于加工成淀粉的土豆数量的23,为获得最大利润,应将多少吨土豆加工成薯片?最大利润是多少?14.(2022·广西)打油茶是广西少数民族特有的一种民俗,某特产公司近期销售一种盒装油茶,每盒的成本价为50元,经市场调研发现,该种油茶的月销售量y(盒)与销售单价x(元)之间的函数图像如图所示.(1)求y 与x 的函数解析式,并写出..自变量x 的取值范围; (2)当销售单价定为多少元时,该种油茶的月销售利润最大?求出最大利润.15.(2022·辽宁)某文具店购进一批单价为12元的学习用品,按照相关部门规定其销售单价不低于进价,且不高于进价的1.5倍,通过分析销售情况,发现每天的销售量y (件)与销售单价x (元)满足一次函数关系,且当15x =时,50y =;当17x =时,30y =.(1)求y 与x 之间的函数关系式;(2)这种学习用品的销售单价定为多少时,每天可获得最大利润,最大利润是多少元?16.(2022·黑龙江大庆)果园有果树60棵,现准备多种一些果树提高果园产量.如果多种树,那么树之间的距离和每棵果树所受光照就会减少,每棵果树的平均产量随之降低.根据经验,增种10棵果树时,果园内的每棵果树平均产量为75kg .在确保每棵果树平均产量不低于40kg 的前提下,设增种果树x (0x >且x 为整数)棵,该果园每棵果树平均产量为kg y ,它们之间的函数关系满足如图所示的图象.(1)图中点P 所表示的实际意义是________________________,每增种1棵果树时,每棵果树平均产量减少____________kg ;(2)求y 与x 之间的函数关系式,并直接写出自变量x 的取值范围;(3)当增种果树多少棵时,果园的总产量(kg)w 最大?最大产量是多少?17.(2022·湖北武汉)在一条笔直的滑道上有黑、白两个小球同向运动,黑球在A处开始2减速,此时白球在黑球前面70cm处.小聪测量黑球减速后的运动速度v(单位:cm/s)、运动距离y(单位:cm)随运动时间t(单位:s)变化的数据,整理得下表.y与运动时间t之间成二次函数关系.(1)直接写出v关于t的函数解析式和y关于t的函数解析式(不要求写出自变量的取值范围)(2)当黑球减速后运动距离为64cm时,求它此时的运动速度;(3)若白球一直..以2cm/s的速度匀速运动,问黑球在运动过程中会不会碰到白球?请说明理由.18.(2022·山东青岛)李大爷每天到批发市场购进某种水果进行销售,这种水果每箱10千克,批发商规定:整箱购买,一箱起售,每人一天购买不超过10箱;当购买1箱时,批发价为8.2元/千克,每多购买1箱,批发价每千克降低0.2元.根据李大爷的销售经验,这种水果售价为12元/千克时,每天可销售1箱;售价每千克降低0.5元,每天可多销售1箱.(1)请求出这种水果批发价y(元/千克)与购进数量x(箱)之间的函数关系式;(2)若每天购进的这种水果需当天全部售完,请你计算,李大爷每天应购进这种水果多少箱,才能使每天所获利润最大?最大利润是多少?19.(2022·贵州铜仁)为实施“乡村振兴”计划,某村产业合作社种植了“千亩桃园”.2022年该村桃子丰收,销售前对本地市场进行调查发现:当批发价为4千元/吨时,每天可售出12吨,每吨涨1千元,每天销量将减少2吨,据测算,每吨平均投入成本2千元,为了抢占市场,薄利多销,该村产业合作社决定,批发价每吨不低于4千元,不高于5.5千元.请解答以下问题:(1)求每天销量y(吨)与批发价x(千元/吨)之间的函数关系式,并直接写出自变量x的取值范围;(2)当批发价定为多少时,每天所获利润最大?最大利润是多少?20.(2022·浙江金华)“八婺”菜场指导菜农生产和销售某种蔬菜,提供如下信息:①统计售价与需求量的数据,通过描点(图1),发现该蔬菜需求量1y (吨)关于售价x (元/千克)的函数图象可以看成抛物线,其表达式为21y ax c =+,部分对应值如表:②该蔬菜供给量2y (吨)关于售价x (元/千克)的函数表达式为21y x =-,函数图象见图1. ③1~7月份该蔬菜售价1x (元/千克),成本2x (元/千克)关于月份t 的函数表达式分别为11=22x t +,2213342x t t =-+,函数图象见图2.请解答下列问题:(1)求a ,c 的值.(2)根据图2,哪个月出售这种蔬菜每千克获利最大?并说明理由.(3)求该蔬菜供给量与需求量相等时的售价,以及按此价格出售获得的总利润.21.(2022·辽宁营口)某文具店最近有A ,B 两款纪念册比较畅销,该店购进A 款纪念册5本和B 款纪念册4本共需156元,购进A 款纪念册3本和B 款纪念册5本共需130元.在销售中发现:A 款纪念册售价为32元/本时,每天的销售量为40本,每降低1元可多售出2本;B 款纪念册售价为22元/本时,每天的销售量为80本,B 款纪念册每天的销售量与售价之间满足一次函数关系,其部分对应数据如下表所示:该店准备降低每本A 款纪念册的利润,同时提高每本B 款纪念册的利润,且这两款纪念册每天销售总数不变,设A 款纪念册每本降价m 元.①直接写出B 款纪念册每天的销售量(用含m 的代数式表示);②当A 款纪念册售价为多少元时,该店每天所获利润最大,最大利润是多少?22.(2022·内蒙古包头)由于精准扶贫的措施科学得当,贫困户小颖家今年种植的草莓喜获丰收,采摘上市16天全部销售完.小颖对销售情况进行统计后发现,在该草莓上市第x 天(x 取整数)时,日销售量y (单位:千克)与x 之间的函数关系式为12010,203201016,x x y x x ≤≤⎧=⎨-+<≤⎩()()草莓价格m (单位:元/千克)与x 之间的函数关系如图所示.(1)求第14天小颖家草莓的日销售量;(2)求当412x ≤≤时,草莓价格m 与x 之间的函数关系式;(3)试比较第8天与第10天的销售金额哪天多?23.(2022·湖北武汉)某超市销售一种进价为18元/千克的商品,经市场调查后发现,每天的销售量y (千克)与销售单价x (元/千克)有如下表所示的关系:(1)根据表中的数据在下图中描点(),x y ,并用平滑曲线连接这些点,请用所学知识求出y 关于x 的函数关系式;(2)设该超市每天销售这种商品的利润为w (元)(不计其它成本), ①求出w 关于x 的函数关系式,并求出获得最大利润时,销售单价为多少; ②超市本着“尽量让顾客享受实惠”的销售原则,求240=w (元)时的销售单价.24.(2022·广东深圳)某学校打算购买甲乙两种不同类型的笔记本. 已知甲种类型的电脑的单价比乙种类型的要便宜10元,且用110元购买的甲种类型的数量与用120元购买的乙种类型的数量一样.(1)求甲乙两种类型笔记本的单价.(2)该学校打算购买甲乙两种类型笔记本共100件,且购买的乙的数量不超过甲的3倍,则购买的最低费用是多少?25.(2022·广西贺州)2022年在中国举办的冬奥会和残奥会令世界瞩目,冬奥会和残奥会的吉祥物冰墩墩和雪容融家喻户晓,成为热销产品,某商家以每套34元的价格购进一批冰墩墩和雪容融套件,若该产品每套的售价是48元时,每天可售出200套;若每套售价提高2元,则每天少卖4套.(1)设冰墩墩和雪容融套件每套售价定为x元时,求该商品销售量y与x之间的函数关系式;(2)求每套售价定为多少元时,每天销售套件所获利润W最大,最大利润是多少元?26.(2022·江苏无锡)某农场计划建造一个矩形养殖场,为充分利用现有资源,该矩形养殖场一面靠墙(墙的长度为10m),另外三面用栅栏围成,中间再用栅栏把它分成两个面积为1:2的矩形,已知栅栏的总长度为24m,设较小矩形的宽为xm(如图).(1)若矩形养殖场的总面积为362m,求此时x的值;(2)当x为多少时,矩形养殖场的总面积最大?最大值为多少?27.(2022·湖南湘潭)为落实国家《关于全面加强新时代大中小学劳动教育的意见》,某校准备在校园里利用围墙(墙长12m)和21m长的篱笆墙,围成Ⅰ、Ⅰ两块矩形劳动实践基地.某数学兴趣小组设计了两种方案(除围墙外,实线部分为篱笆墙,且不浪费篱笆墙),请根据设计方案回答下列问题:(1)方案一:如图①,全部利用围墙的长度,但要在Ⅰ区中留一个宽度1mAE 的水池且需保证总种植面积为232m,试分别确定CG、DG的长;(2)方案二:如图②,使围成的两块矩形总种植面积最大,请问BC应设计为多长?此时最大面积为多少?28.(2022·山东威海)某农场要建一个矩形养鸡场,鸡场的一边靠墙,另外三边用木栅栏围成.已知墙长25m,木栅栏长47m,在与墙垂直的一边留出1m宽的出入口(另选材料建出入门).求鸡场面积的最大值.专题19 应用题(函数、不等式、方程)一.解答题1.(2022·广西梧州)梧州市地处亚热带,盛产龙眼.新鲜龙眼的保质期短,若加工成龙眼干(又叫带壳圆肉)则有利于较长时间保存.已知3kg的新鲜龙眼在无损耗的情况下可以加工成1kg的龙眼干.(1)若新鲜龙眼售价为12元/kg,在无损耗的情况下加工成龙眼干,使龙眼干的销售收益不低于新鲜龙眼的销售收益,则龙眼干的售价应不低于多少元/kg?(2)在实践中,小苏发现当地在加工龙眼干的过程中新鲜龙眼有6%的损耗,为确保果农的利益,龙眼干的销售收益应不低于新鲜龙眼的销售收益,此时龙眼干的定价取最低整数价格.市场调查还发现,新鲜龙眼以12元/kg最多能卖出100kg,超出部分平均售价是5元/kg,可售完.果农们都以这种方式出售新鲜龙眼.设某果农有akg新鲜龙眼,他全部加工成龙眼干销售获得的收益与全部以新鲜龙眼销售获得的收益之差为w元,请写出w与a的函数关系式.【答案】(1)龙眼干的售价应不低于36元/kg(2)11,(100)50361700,(100)50aawaa⎧<⎪⎪=⎨⎪-≥⎪⎩【分析】(1)设龙眼干的售价应不低于x元/kg,新鲜龙眼共3a千克,得到总收益为12×3a=36a 元;加工成龙眼干后总收益为ax元,再根据龙眼干的销售收益不低于新鲜龙眼的销售收益得到不等式ax≥36a,解出即可;(2)设龙眼干的售价为y元/千克,当100a<千克时求出新鲜龙眼的销售收益为12a元,龙眼干的销售收益为47150ay元,根据“龙眼干的销售收益不低于新鲜龙眼的销售收益,且龙眼干的定价取最低整数价格”得到4712150ay a,解出39y=;然后再当100a≥千克时同样求出新鲜龙眼收益与龙眼干收益,再相减即可求解.(1)解:设龙眼干的售价应不低于x元/kg,设新鲜龙眼共3a千克,总销售收益为12×3a=36a (元),加工成龙眼干后共a千克,总销售收益为x×a=ax(元),∵龙眼干的销售收益不低于新鲜龙眼的销售收益,∴ax≥36a,解出:x≥36,故龙眼干的售价应不低于36元/kg.(2)解:a千克的新鲜龙眼一共可以加工成147(16%)3150a a千克龙眼干,设龙眼干的售价为y元/千克,则龙眼干的总销售收益为47150ay元,当100a ≤千克时,新鲜龙眼的总收益为12a 元,∵龙眼干的销售收益不低于新鲜龙眼的销售收益, ∴4712150ay a ,解出12150180038.34747y 元, 又龙眼干的定价取最低整数价格,∴39y =, ∴龙眼干的销售总收益为476113915050a a , 此时全部加工成龙眼干销售获得的收益与全部以新鲜龙眼销售获得的收益之差61111125050a w a a 元; 当100a >千克时,新鲜龙眼的总收益为121005(100)(5700)a a 元, 龙眼干的总销售收益为61150a 元, 此时全部加工成龙眼干销售获得的收益与全部以新鲜龙眼销售获得的收益之差 611361(5700)(700)5050a w a a 元, 故w 与a 的函数关系式为()11,10050361700,(100)50a a w a a ⎧≤⎪⎪=⎨⎪->⎪⎩. 【点睛】本题考查了一元一次不等式的应用、一次函数的实际应用等,本题的关键是读懂题意,明确题中的数量关系,正确列出函数关系式或不等式求解.2.(2022·黑龙江)学校开展大课间活动,某班需要购买A 、B 两种跳绳.已知购进10根A 种跳绳和5根B 种跳绳共需175元:购进15根A 种跳绳和10根B 种跳绳共需300元.(1)求购进一根A 种跳绳和一根B 种跳绳各需多少元?(2)设购买A 种跳绳m 根,若班级计划购买A 、B 两种跳绳共45根,所花费用不少于548元且不多于560元,则有哪几种购买方案?(3)在(2)的条件下,哪种购买方案需要的总费用最少?最少费用是多少元?【答案】(1)购进一根A 种跳绳需10元,购进一根B 种跳绳需15元(2)有三种方案:方案一:购买A 种跳绳23根,B 种跳绳22根;方案二:购买A 种跳绳24根,B 种跳绳21根;方案三:购买A 种跳绳25根,B 种跳绳20根(3)方案三需要费用最少,最少费用是550元【分析】(1)设购进一根A 种跳绳需x 元,购进一根B 种跳绳需y 元,可列方程组1051751510300x y x y +=⎧⎨+=⎩, 解方程组即可求得结果;(2)根据题意可列出不等式组()()101545560101545548m m m m ⎧+-≤⎪⎨+-≥⎪⎩,解得:2325.4m ≤≤,由此即可确定方案;(3)设购买跳绳所需费用为w 元,根据题意,得()1015455675w m m m =+-=-+,结合函数图像的性质,可知w 随m 的增大而减小,即当25m =时525675550=-⨯+=.(1)解:设购进一根A 种跳绳需x 元,购进一根B 种跳绳需y 元,根据题意,得1051751510300x y x y +=⎧⎨+=⎩,解得1015x y =⎧⎨=⎩, 答:购进一根A 种跳绳需10元,购进一根B 种跳绳需15元;(2)根据题意,得()()101545560101545548m m m m ⎧+-≤⎪⎨+-≥⎪⎩, 解得2325.4m ≤≤,∵m 为整数,∴m 可取23,24,25.∴有三种方案:方案一:购买A 种跳绳23根,B 种跳绳22根;方案二:购买A 种跳绳24根,B 种跳绳21根;方案三:购买A 种跳绳25根,B 种跳绳20根;(3)设购买跳绳所需费用为w 元,根据题意,得()1015455675w m m m =+-=-+∵50-<,∴w 随m 的增大而减小,∴当25m =时,w 有最小值,即w 525675550=-⨯+=(元)答:方案三需要费用最少,最少费用是550元.【点睛】本题主要考查的是不等式应用题、二元一次方程组应用题、一次函数相关应用题,根据题意列出对应的方程是解题的关键.3.(2022·黑龙江牡丹江)为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:(1)求m 的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a (50<a <70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?【答案】(1)m=10;(2)11种;(3)购进甲种运动鞋95双,购进乙种运动鞋105双,可获得最大利润【分析】(1)用总价除以单价表示出购进鞋的数量,根据两种鞋的数量相等列出方程求解即可.(2)设购进甲种运动鞋x双,表示出乙种运动鞋(200﹣x)双,然后根据总利润列出一元一次不等式,求出不等式组的解集后,再根据鞋的双数是正整数解答.(3)设总利润为W,根据总利润等于两种鞋的利润之和列式整理,然后根据一次函数的增减性分情况讨论求解即可.【详解】解:(1)依题意得,30002400m m20=-,去分母得,3000(m﹣20)=2400m,解得m=100.经检验,m=100是原分式方程的解.∴m=100.(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,根据题意得,()()()()240100x16080(200x)21700{240100x16080(200x)22300 -+--≥-+--≤①②,解不等式①得,x≥95,解不等式②得,x≤105,∴不等式组的解集是95≤x≤105.∵x是正整数,105﹣95+1=11,∴共有11种方案.(3)设总利润为W,则W=(140﹣a)x+80(200﹣x)=(60﹣a)x+16000(95≤x≤105),①当50<a<60时,60﹣a>0,W随x的增大而增大,∴当x=105时,W有最大值,即此时应购进甲种运动鞋105双,购进乙种运动鞋95双.②当a=60时,60﹣a=0,W=16000,(2)中所有方案获利都一样.③当60<a<70时,60﹣a<0,W随x的增大而减小,∴当x=95时,W有最大值,即此时应购进甲种运动鞋95双,购进乙种运动鞋105双.4.(2022·福建)在学校开展“劳动创造美好生活”主题系列活动中,八年级(1)班负责校园某绿化角的设计、种植与养护.同学们约定每人养护一盆绿植,计划购买绿萝和吊兰两种绿植共46盆,且绿萝盆数不少于吊兰盆数的2倍.已知绿萝每盆9元,吊兰每盆6元.(1)采购组计划将预算经费390元全部用于购买绿萝和吊兰,问可购买绿萝和吊兰各多少盆?(2)规划组认为有比390元更省钱的购买方案,请求出购买两种绿植总费用的最小值.【答案】(1)购买绿萝38盆,吊兰8盆(2)369元【分析】(1)设购买绿萝x盆,购买吊兰y盆,根据题意建立方程组4696390x yx y+=⎧⎨+=⎩,解方程组即可得到答案;(2)设购买绿萝x 盆,购买吊兰y 盆,总费用为z ,得到关于z 的一次函数3414z y =-+,再建立关于y 的不等式组,解出y 的取值范围,从而求得z 的最小值.(1)设购买绿萝x 盆,购买吊兰y 盆∵计划购买绿萝和吊兰两种绿植共46盆∴46x y +=∵采购组计划将预算经费390元全部用于购买绿萝和吊兰,绿萝每盆9元,吊兰每盆6元 ∴96390x y +=得方程组4696390x y x y +=⎧⎨+=⎩解方程组得388x y =⎧⎨=⎩∵38>2×8,符合题意∴购买绿萝38盆,吊兰8盆;(2)设购买绿萝x 盆,购买吊兰吊y 盆,总费用为z∴46x y +=,96z x y =+∴4143z y =-∵总费用要低于过390元,绿萝盆数不少于吊兰盆数的2倍∴41433902y x y -<⎧⎨≥⎩将46x y =-代入不等式组得4143390462y y y-<⎧⎨-≥⎩ ∴4683y <≤∴y 的最大值为15 ∵3414z y =-+为一次函数,随y 值增大而减小∴15y =时,z 最小∴4631x y =-=∴96369z x y =+=元故购买两种绿植最少花费为369元.【点睛】本题考查二元一次方程组、一次函数、不等式组的性质,解题的关键是数量掌握二元一次方程组、一次函数、不等式组的相关知识.5.(2022·湖北恩施)某校计划租用甲、乙两种客车送180名师生去研学基地开展综合实践活动.已知租用一辆甲型客车和一辆乙型客车共需500元,租用2辆甲型客车和3辆乙型客车共需1300元.甲型客车每辆可坐15名师生,乙型客车每辆可坐25名师生.(1)租用甲、乙两种客车每辆各多少元?(2)若学校计划租用8辆客车,怎样租车可使总费用最少?【答案】(1)甲种客车每辆200元,乙种客车每辆300元(2)租用甲种客车5辆,乙种客车3辆,租车费用最低为1900元【分析】(1)可设甲种客车每辆x 元,乙种客车每辆y 元,根据等量关系:一辆甲型客车和一辆乙型客车共需500元,租用2辆甲型客车和3辆乙型客车共需1300元,列出方程组求解即可;(2)设租车费用为w 元,租用甲种客车a 辆,根据题意列出不等式组,求出a 的取值范围,进而列出w 关于a 的函数关系式,根据一次函数的性质求解即可.。
专题19分离参数定最值分离参数定最值是一类重要的数学问题,通常出现在最优化问题中,即找到使目标函数取得最大值或最小值的参数取值。
在这类问题中,参数的取值范围可能很广,因此需要通过分离参数的方法来定位最值点。
首先,让我们考虑一个简单的例子。
假设有一根长度为10米的绳子,我们需要在这根绳子上分割一段,使得分割后的两段绳子之和的乘积最大。
设分割点距离左端的距离为x,则分割点距离右端的距离为10-x。
定义两段绳子的长度为L1和L2,则有L1=x,L2=10-x。
我们的目标是找到使得L1*L2最大的x值。
为了解决这个问题,我们首先定义目标函数f(x)=L1*L2=x*(10-x),即在给定的范围内,找到使f(x)取得最大值的x值。
首先,我们求目标函数的导数f'(x)。
根据导数的定义,有f'(x)=(x*(10-x))'=(10-2x)。
令f'(x)=0,解得x=5接下来,我们计算f''(x)。
根据导数的定义,有f''(x)=(f'(x))'=(10-2x)'=-2根据二阶导数的性质,当f''(x)<0时,函数处于凸函数状态,也就是说f(x)在x=5处取得了最大值。
所以x=5时,f(x)取得最大值。
通过这个简单的例子,我们可以总结出分离参数定最值的一般步骤:1.定义目标函数。
根据问题的实际情况,将问题转化为一个数学函数问题,并定义目标函数。
2.求目标函数的导数。
根据目标函数的定义,求出导数。
3.找出导数为零的点。
令目标函数的导数等于零,求出参数取值的临界点。
4.判断最值点。
计算二阶导数,判断函数的凹凸性,找到使目标函数取得最大(或最小)值的参数取值。
上面的例子只是一个简单的示例,实际中的问题可能更加复杂。
在应用中,我们可能需要考虑多个参数、多个约束条件等。
但是,无论问题的复杂度如何,分离参数定最值的一般步骤都是类似的,即通过定义目标函数、求导、找临界点和判断最值点等步骤来解决问题。
二次函数的最值之与动点有关的面积最小值问题1. 如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=4,D是AB的中点,E,F分别是AC,BC上的点(点E不与端点A,C重合),且AE=CF,连接EF 并取EF的中点O,连接DO并延长至点G,使GO=OD,连接DE,DF,GE,GF.(1)求证:四边形EDFG是正方形;(2)当点E在什么位置时,四边形EDFG的面积最小?并求四边形EDFG面积的最小值.2. 如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.(1)求证:∠APB=∠BPH;(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;(3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S 是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.3. 如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30°【操作】将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板DEF绕点E旋转,并使边DE与边AB交于点P,边EF与边BC于点Q(1)【探究一】在旋转过程中,①如图2,当时,EP与EQ满足怎样的数量关系?并给出证明.________ ②如图3,当时EP与EQ满足怎样的数量关系?,并说明理由.________③根据你对(1)、(2)的探究结果,试写出当时,EP与EQ满足的数量关系式为________,其中的取值范围是________(直接写出结论,不必证明)(2)【探究二】若且AC=30cm,连续PQ,设△EPQ的面积为S(cm2),在旋转过程中:①S是否存在最大值或最小值?若存在,求出最大值或最小值,若不存在,说明理由.②随着S取不同的值,对应△EPQ的个数有哪些变化?不出相应S值的取值范围.4. 如图,在Rt△ABC中,∠ACB=90°,AC=5cm,∠BAC=60°,动点M从点B出发,在BA边上以每秒2cm的速度向点A匀速运动,同时动点N从点C出发,在CB边上以每秒cm的速度向点B匀速运动,设运动时间为t秒(0≤t≤5),连接MN.(1)若BM=BN,求t的值;(2)当t为何值时,四边形ACNM的面积最小?并求出最小值.5. 如图,在平面直角坐标系中,O为原点,四边形ABCD是矩形,点A、C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A、C 重合),连结BD,作,交x轴于点E,以线段DE、DB为邻边作矩形BDEF.(1)填空:点B的坐标为________;(2)①求证:;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值6. 已知二次函数图象的顶点坐标为(0,1),且过点(﹣1,),直线y=kx+2与y轴相交于点P,与二次函数图象交于不同的两点A(x1,y1),B(x2,y2).(注:在解题过程中,你也可以阅读后面的材料)附:阅读材料任何一个一元二次方程的根与系数的关系为:两根的和等于一次项系数与二次项系数的比的相反数,两根的积等于常数项与二次项系数的比.即:设一元二次方程ax2+bx+c=0的两根为x1,x2,则:x1+x2=﹣,x1•x2=能灵活运用这种关系,有时可以使解题更为简单.例:不解方程,求方程x2﹣3x=15两根的和与积.解:原方程变为:x2﹣3x﹣15=0∵一元二次方程的根与系数有关系:x1+x2=﹣,x1•x2=∴原方程两根之和=﹣=3,两根之积= =﹣15.(1)求该二次函数的解析式.(2)对(1)中的二次函数,当自变量x取值范围在﹣1<x<3时,请写出其函数值y的取值范围;(不必说明理由)(3)求证:在此二次函数图象下方的y轴上,必存在定点G,使△ABG的内切圆的圆心落在y轴上,并求△GAB面积的最小值.7. 如图所示,将矩形OABC置于平面直角坐标系中,点A,C分别在x,y轴的正半轴上,已知点B(4,2),将矩形OABC翻折,使得点C的对应点P恰好落在线段OA(包括端点O,A)上,折痕所在直线分别交BC、OA于点D、E;若点P在线段OA上运动时,过点P作OA的垂线交折痕所在直线于点Q.(1)求证:CQ=QP(2)设点Q的坐标为(x,y),求y关于x的函数关系式及自变量x的取值范围;(3)如图2,连结OQ,OB,当点P在线段OA上运动时,设三角形OBQ的面积为S,当x取何值时,S取得最小值,并求出最小值;8. 如图,直角△ABC中,∠A为直角,AB=6,AC=8.点P,Q,R分别在AB,BC,CA边上同时开始作匀速运动,2秒后三个点同时停止运动,点P由点A 出发以每秒3个单位的速度向点B运动,点Q由点B出发以每秒5个单位的速度向点C运动,点R由点C出发以每秒4个单位的速度向点A运动,在运动过程中:(1)求证:△APR,△BPQ,△CQR的面积相等;(2)求△PQR面积的最小值;9. 如图,⊙M的圆心M(﹣1,2),⊙M经过坐标原点O,与y轴交于点A,经过点A的一条直线l解析式为:y=﹣x+4与x轴交于点B,以M为顶点的抛物线经过x轴上点D(2,0)和点C(﹣4,0).(1)求抛物线的解析式;(2)求证:直线l是⊙M的切线;(3)点P为抛物线上一动点,且PE与直线l垂直,垂足为E,PF∥y轴,交直线l于点F,是否存在这样的点P,使△PEF的面积最小?若存在,请求出此时点P的坐标及△PEF面积的最小值;若不存在,请说明理由.10. 如图1,正方形ABCD的顶点A在原点O处,点B在x轴上,点C的坐标为(6,6),点D在y轴上,动点P,Q各从点A,D同时出发,分别沿AD,DC方向运动,且速度均为每秒1个单位长度.(1)探索AQ与BP有什么样的关系?并说明理由;(2)如图2,当点P运动到线段AD的中点处时,AQ与BP交于点E,求线段CE的长.(3)如图3,设运动t秒后,点P仍在线段AD上,AQ交BD于F,且△BPQ 的面积为S,试求S的最小值,及当S取最小值时∠DPF的正切值.11. 已知抛物线y=﹣mx2+4x+2m与x轴交于点A(α,0),B(β,0),且=﹣2(1)求抛物线的解析式;(2)抛物线的对称轴为l,与y轴的交点为C,顶点为D,点C关于l的对称点为E,是否存在x轴上的点M,y轴上的点N,使四边形DNME的周长最小?若存在,请画出图形(保留作图痕迹),并求出周长的最小值;若不存在,请说明理由.12. 在一空旷场地上设计一落地为矩形ABCD的小屋,AB+BC=10m,拴住小狗的10m长的绳子一端固定在B点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为S(m2).(1)如图1,若BC=4m,则S=________m2.(2)如图2,现考虑在(1)中的矩形ABCD小屋的右侧以CD为边拓展一正△CDE区域,使之变成落地为五边形ABCED的小屋,其他条件不变,则在BC 的变化过程中,当S取得最小值时,边BC的长为________m.13. 如图,直线y=﹣3x+3与x轴、y轴分别交于A,B两点,抛物线y=﹣x2+bx+c与直线y=c分别交y轴的正半轴于点C和第一象限的点P,连接PB,得△PCB≌△BOA(O为坐标原点).若抛物线与x轴正半轴交点为点F,设M 是点C,F间抛物线上的一点(包括端点),其横坐标为m.(1)直接写出点P的坐标和抛物线的解析式;(2)当m为何值时,△MAB面积S取得最小值和最大值?请说明理由;14. 已知正方形OABC的边OC、OA分别在x、y轴的正半轴上,点B坐标为(10,10),点P从O出发沿O→C→B运动,速度为1个单位每秒,连接AP.设运动时间为t.(1)若抛物线y=﹣(x﹣h)2+k经过A,B两点,求抛物线函数关系式;(2)当0≤t≤10时,如图1,过点O作OH⊥AP于点H,直线OH交边BC于点D,连接AD,PD,设△APD的面积为S,求S的最小值;15. 如图,在△ABC中,AB=5,AC=9,S△ABC= ,动点P从A点出发,沿射线AB方向以每秒5个单位的速度运动,动点Q从C点出发,以相同的速度在线段AC上由C向A运动,当Q点运动到A点时,P、Q两点同时停止运动,以PQ为边作正方形PQEF(P、Q、E、F按逆时针排序),以CQ为边在AC上方作正方形QCGH.(1)求tanA的值;(2)设点P运动时间为t,正方形PQEF的面积为S,请探究S是否存在最小值?若存在,求出这个最小值,若不存在,请说明理由;16. 已知:在平面直角坐标系中,抛物线交x轴于A、B两点,交y轴于点C,且对称轴为x=﹣2,点P(0,t)是y轴上的一个动点.(1)求抛物线的解析式及顶点D的坐标.(2)如图1,当0≤t≤4时,设△PAD的面积为S,求出S与t之间的函数关系式;S是否有最小值?如果有,求出S的最小值和此时t的值.17. 如图,平行四边形ABCD中,D点在抛物线y= x2+bx+c上,且OB=OC,AB=5,tan∠ACB= ,M是抛物线与y轴的交点.(1)求直线AC和抛物线的解析式;(2)动点P从A到D,同时动点Q从C到A都以每秒1个单位的速度运动.问:当P运动到何处时,△APQ是直角三角形?(3)在(2)中当P运动到某处时,四边形PDCQ的面积最小,求此时△CMQ 的面积.18. 如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.动点M,N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A,B移动,同时动点P 从点B出发,以每秒2cm的速度沿BA向终点A移动,连接PM,PN,设移动时间为t(单位:秒,0<t<2.5).(1)当t为何值时,以A,P,M为顶点的三角形与△ABC相似?(2)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S 的最小值;若不存在,请说明理由.2019中考数学狙击重难点系列专题19. 如图,在边长为2的正方形ABCD中,P为AB的中点,Q为边CD上一动点,设DQ=t(0≤t≤2),线段PQ的垂直平分线分别交边AD、BC于点M、N,过Q作QE⊥AB于点E,过M作MF⊥BC于点F.(1)当t≠1时,求证:△PEQ≌△NFM;(2)顺次连接P、M、Q、N,设四边形PMQN的面积为S,求出S与自变量t 之间的函数关系式,并求S的最小值.20. 如图,抛物线y=﹣x2+bx+c与x轴相交于A、B两点,与y轴相交于点C,且点B与点C的坐标分别为B(3,0).C(0,3),点M是抛物线的顶点.(1)求二次函数的关系式;(2)点P为线段MB上一个动点,过点P作PD⊥x轴于点D.若OD=m,△PCD 的面积为S,试判断S有最大值或最小值?并说明理由;答案解析部分一、综合题1.【答案】(1)证明:连接CD,如图1所示.∵△ABC为等腰直角三角形,∠ACB=90°,D是AB的中点,∴∠A=∠DCF=45°,AD=CD.在△ADE和△CDF中,,∴△ADE≌△CDF(SAS),∴DE=DF,∠ADE=∠CDF.∵∠ADE+∠EDC=90°,∴∠EDC+∠CDF=∠EDF=90°,∴△EDF为等腰直角三角形.∵O为EF的中点,GO=OD,∴GD⊥EF,且GD=2OD=EF,∴四边形EDFG是正方形(2)解:过点D作DE′⊥AC于E′,如图2所示.∵△ABC为等腰直角三角形,∠ACB=90°,AC=BC=4,∴DE′= BC=2,AB=4 ,点E′为AC的中点,∴2≤DE<2 (点E与点E′重合时取等号).∴4≤S四边形EDFG=DE2<8.∴当点E为线段AC的中点时,四边形EDFG的面积最小,该最小值为4.【解析】【分析】(1)连接CD,根据等腰直角三角形的性质可得出∠A=∠DCF=45°、AD=CD,结合AE=CF可证出△ADE≌△CDF(SAS),根据全等三角形的性质可得出DE=DF、ADE=∠CDF,通过角的计算可得出∠EDF=90°,再根据O为EF的中点、GO=OD,即可得出GD⊥EF,且GD=2OD=EF,由此即可证出四边形EDFG是正方形;(2)过点D作DE′⊥AC 于E′,根据等腰直角三角形的性质可得出DE′的长度,从而得出2≤DE<2 ,再根据正方形的面积公式即可得出四边形EDFG的面积的最小值.2.【答案】(1)证明:如图1,∵PE=BE,∴∠EBP=∠EPB.又∵∠EPH=∠EBC=90°,∴∠EPH﹣∠EPB=∠EBC﹣∠EBP.即∠PBC=∠BPH.又∵AD∥BC,∴∠APB=∠PBC.∴∠APB=∠BPH(2)△PHD的周长不变为定值8.证明:如图2,过B作BQ⊥PH,垂足为Q.由(1)知∠APB=∠BPH,在△ABP和△QBP中,∴△ABP≌△QBP(AAS).∴AP=QP,AB=BQ.又∵AB=BC,∴BC=BQ.又∵∠C=∠BQH=90°,BH=BH,∴△BCH≌△BQH.∴CH=QH.∴△PHD的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8 (3)如图3,过F作FM⊥AB,垂足为M,则FM=BC=AB.又∵EF为折痕,∴EF⊥BP.∴∠EFM+∠MEF=∠ABP+∠BEF=90°,∴∠EFM=∠ABP.又∵∠A=∠EMF=90°,∴△EFM≌△PBA(ASA).∴EM=AP=x.∴在Rt△APE中,(4﹣BE)2+x2=BE2.解得,.∴.又∵折叠的性质得出四边形EFGP与四边形BEFC全等,∴.即:.配方得,,∴当x=2时,S有最小值6.【解析】【分析】(1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出∠APB=∠PBC即可得出答案;(2)首先证明△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出PD+DH+PH=AP+PD+DH+HC=AD+CD=8;(3)利用已知得出△EFM≌△BPA,进而利用在Rt△APE中,(4﹣BE)2+x2=BE2,利用二次函数的最值求出即可.3.【答案】(1)解:当时,PE=QE.即E为AC中点,理由如下:连接BE,∵△ABC是等腰直角三角形,∴BE=CE,∠PBE=∠C=45°,又∵∠PEB+∠BEQ=90°,∠CEQ+∠BEQ=90°,∴∠PEB=∠CEQ,在△PEB和△QEC中,∵,∴△PEB≌△QEC(ASA),∴PE=QE.;EP:EQ=EA:EC=1:2;理由如下:作EM⊥AB,EN⊥BC,∴∠EMP=∠ENQ=90°,又∵∠PEN+∠MEP=∠PEN+∠NEQ=90°,∴∠MEP=∠NEQ,∴△MEP∽△NEQ,∴EP:EQ=ME:NE,又∵∠EMA=∠ENC=90°,∠A=∠C,∴△MEA∽△NEC,∴ME:NE=EA:EC,∵,∴EP:EQ=EA:EC=1:2.;EP:EQ=1:m;0<m≤2+(2)解:①存在.由【探究一】中(2)知当时,EP:EQ=EA:EC=1:2;设EQ=x,则EP= x,∴S= ·EP·EQ= ·x·x= x2,当EQ⊥BC时,EQ与EN重合时,面积取最小,∵AC=30,△ABC是等腰直角三角形,∴AB=BC=15 ,∵,AC=30,∴AE=10,CE=20,在等腰Rt△CNE中,∴NE=10 ,∴当x=10 时,S min=50(cm2);当EQ=EF时,S取得最大,∵AC=DE=30,∠DEF=90°,∠EDF=30°,在Rt△DEF中,∴tan30°= ,∴EF=30× =10 ,此时△EPQ面积最大,∴S max=75(cm2);②由(1)知CN=NE=5 ,BC=15 ,∴BN=10 ,在Rt△BNE中,∴BE=5 ,∴当x=BE=5 时,S=62.5cm2,∴当50<S≤62.5时,这样的三角形有2个;当S=50或62.5<S≤75时,这样的三角形有1个.【解析】【解答】(1)③作EM⊥AB,EN⊥BC,∵∠B=∠PEQ=90°,∴∠EPB+∠EQB=180°,又∵∠EPB+∠EPM=180°,∴∠EQB=∠EPM,∴△MEP∽△NEQ,∴EP:EQ=ME:NE,又∵∠EMA=∠ENC=90°,∠A=∠C,∴△MEA∽△NEC,∴ME:NE=EA:EC,∵,∴EP:EQ=EA:EC=1:m,∴EP与EQ满足的数量关系式为EP:EQ=1:m,∴0<m≤2+ (当m>2+ 时,EF与BC不会相交).【分析】【探究一】①根据已知条件得E为AC中点,连接BE,根据等腰直角三角形的性质可BE=CE,∠PBE=∠C=45°,由同角的余角相等得∠PEB=∠CEQ,由全等三角形的判定ASA可得△PEB≌△QEC,再由全等三角形的性质得PE=QE.②作EM⊥AB,EN⊥BC,由相似三角形的判定分别证△MEP∽△NEQ,△MEA∽△NEC,再由相似三角形的性质得EP:EQ=ME:NE=EA:EC,从而求得答案. ③作EM⊥AB,EN⊥BC,由相似三角形的判定分别证△MEP∽△NEQ,△MEA∽△NEC,再由相似三角形的性质得EP:EQ=ME:NE=EA:EC,从而求得答案.【探究二】①设EQ=x,根据【探究一】(2)中的结论可知则EP= x,根据三角形面积公式得出S的函数关系式,再根据当EQ⊥BC时,EQ与EN重合时,面积取最小;当EQ=EF时,S取得最大;代入数值计算即可得出答案.②根据(1)中数据求得当EQ与BE重合时,△EPQ的面积,再来分情况讨论即可.4.【答案】(1)解:∵在Rt△ABC中,∠ACB=90°,AC=5,∠BAC=60°,∴∠B=30°,∴AB=2AC=10,BC=5 .由题意知:BM=2t,CN= t,∴BN=5 - t,∵BM=BN,∴2t=5 - t解得:.(2)解:过M作MD⊥BC于点D,则MD∥AC,∴△BMD∽△BAC,∴,即,解得:MD=t.设四边形ACNM的面积为y,∴y= = =.∴根据二次函数的性质可知,当t= 时,y的值最小.此时,.【解析】【分析】(1)由已知条件得出AB=10,BC=5 .由题意知:BM=2t,CN= t,BN=5 - t,由BM=BN得出方程2t=5 - t,解方程即可;(2)过M作MD⊥BC于点D,则MD∥AC,证出△BMD∽△BAC,得出比例式求出MD=t.四边形ACNM的面积y=△ABC的面积﹣△BMN的面积,得出y是t的二次函数,由二次函数的性质即可得出结果.5.【答案】(1)(2)①如图,过点D作MN⊥AB于点M,交OC于点N。
专题19 导数综合目录一览2023真题展现考向一利用导数研究函数的极值考向二利用导数研究函数的单调性真题考查解读近年真题对比考向一利用导数研究函数的单调性考向二利用导数研究函数的最值命题规律解密名校模拟探源易错易混速记/二级结论速记考向一利用导数研究函数的极值1.(2023•新高考Ⅱ•第22题)(1)证明:当0<x<1时,x﹣x2<sin x<x;(2)已知函数f(x)=cos ax﹣ln(1﹣x2),若x=0为f(x)的极大值点,求a的取值范围.考向二利用导数研究函数的单调性2.(2023•新高考Ⅰ•第19题)已知函数f(x)=a(e x+a)﹣x.(1)讨论f(x)的单调性;.(2)证明:当a>0时,f(x)>2ln a+32【命题意图】考查导数的应用.考查求导公式,导数几何意义,利用导数研究函数的单调性、极值、最值,函数零点等问题.体会数形结合思想,分类讨论思想,化归和转化思想.【考查要点】导数是必考内容,难度、广度和深度较大.常规基础考查求导公式与几何意义.中等难度考查求单调区间、极值、最值等.压轴题考查零点、不等式证明、恒成立或者存在问题、分类讨论求参数等,和数列、不等式、函数等知识结合.【得分要点】1、导数和函数的单调性的关系(1)若f′(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数,f′(x)>0的解集与定义域的交集的对应区间为增区间.(2)若f′(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数,f′(x)<0的解集与定义域的交集的对应区间为减区间.2.求函数f(x)的极值的步骤(1)确定函数的定义区间,求导数f′(x).(2)求方程f′(x)=0的根.(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号即都为正或都为负,则f(x)在这个根处无极值.3.用导数求函数的最值步骤:设函数f(x)在[a,b]上连续,在(a,b)内可导,则求f(x)在[a,b]上的最大值与最小值的步骤如下:(1)求f(x)在(a,b)内的极值.(2)将f(x)的各极值与f(a)、f(b)比较得出f(x)在[a,b]上的最值.4.利用导数研究曲线上某点切线方程(1)确定切点.(2)求斜率,即求曲线上该点的导数.(3)利用点斜式求出直线方程.5.函数恒成立问题恒成立问题最后都转化为求最值问题,常用的方法是分离参变量和求导.考向一利用导数研究函数的单调性3.(2022•新高考Ⅱ)已知函数f(x)=xe ax﹣e x.(1)当a=1时,讨论f(x)的单调性;(2)当x>0时,f(x)<﹣1,求a的取值范围;(3)设n∈N*,证明:++…+>ln(n+1).4.(2021•新高考Ⅰ)已知函数f(x)=x(1﹣lnx).(1)讨论f(x)的单调性;(2)设a,b为两个不相等的正数,且blna﹣alnb=a﹣b,证明:2<+<e.5.(2021•新高考Ⅱ)已知函数f(x)=(x﹣1)e x﹣ax2+b.(Ⅰ)讨论f(x)的单调性;(Ⅱ)从下面两个条件中选一个,证明:f(x)恰有一个零点.①<a≤,b>2a;②0<a<,b≤2a.考向二利用导数研究函数的最值6.(2022•新高考Ⅰ)已知函数f(x)=e x﹣ax和g(x)=ax﹣lnx有相同的最小值.(1)求a;(2)证明:存在直线y=b,其与两条曲线y=f(x)和y=g(x)共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.导数是必考内容,难度、广度和深度较大.常规基础考查求导公式与几何意义.中等难度考查求单调区间、极值、最值等.压轴题考查零点、不等式证明、恒成立或者存在问题、分类讨论求参数等,和数列、不等式、函数等知识结合.一.利用导数研究函数的单调性(共17小题)1.(2023•沙坪坝区校级模拟)已知函数f(x)=xe x+ax2+ax﹣1.(1)若函数f(x)在R上单调递增,求实数a的值;(2)若函数F(x)=2f(x)﹣ax2﹣(4a+1)x﹣2lnx恰有两个不同的零点,求实数a的取值范围.2.(2023•沈河区校级模拟)已知函数f(x)=xlnx.(1)求f(x)的单调区间;(2)若x1<x2,且f(x1)=f(x2)=a,证明:ae+1<x2﹣x1<a+1.3.(2023•天津一模)已知函数f(x)=x•lnx.(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求f(x)的单调区间;(Ⅲ)若对于任意,都有f(x)≤ax﹣1,求实数a的取值范围.4.(2023•忻州一模)已知函数,f′(x)为其导函数.(1)若a=﹣2,求f′(x)的单调区间;(2)若关于x的方程f(x)=e x有两个不相等的实根,求实数a的取值范围.5.(2023•沈阳模拟)已知f(x)=(x2﹣2x)lnx+(a﹣)x2+2(1﹣a)x,a>0.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.6.(2023•淄博二模)已知函数,a∈R.(1)求函数f(x)的单调区间;(2)若x1,x2是函数的两个极值点,且x1<x2,求证:f(x1)﹣f(x2)<0.7.(2023•禅城区校级一模)已知函数.(1)若函数y=f(x)为增函数,求k的取值范围;(2)已知0<x1<x2,(i)证明:;(ii)若,证明:|f(x1)﹣f(x2)|<1.8.(2023•五华区校级模拟)设a,b,c∈R,a≠0,6a+b=0,函数f(x)=ax3+bx2+cx,f(1)=4a.(1)讨论函数f(x)的单调性;(2)若0≤x≤3时,函数y=f(x)﹣xe﹣x有三个零点x1,x2,x3,其中x1<x2<x3,试比较x1+x2+x3与2的大小关系,并说明理由.9.(2023•泉州模拟)已知函数f(x)=e x[x2﹣(a+2)x+a+3].(1)讨论f(x)的单调性;(2)若f(x)在(0,2)有两个极值点x1,x2,求证:.10.(2023•张家口三模)已知函数f(x)=x2+2cos x,f′(x)为函数f(x)的导函数.(1)讨论函数f(x)的单调性;(2)已知函数g(x)=f′(x)﹣5x+5alnx,存在g(x1)=g(x2)(x1≠x2),证明x1+x2>2a.11.(2023•天津三模)已知定义域均为R的两个函数g(x)=e x,h(x)=(x﹣a)2.(Ⅰ)若函数f(x)=g(x)h(x),且f(x)在x=﹣1处的切线与x轴平行,求a的值;(Ⅱ)若函数m(x)=,讨论函数m(x)的单调性和极值;(Ⅲ)设a,b是两个不相等的正数,且a+lnb=b+lna,证明:a+b+ln(ab)>2.12.(2023•黄浦区校级三模)设函数f(x)=x3+ax2+bx+c.(1)设a=b=4,求函数f(x)的单调区间;(2)求证:a2﹣3b>0是f(x)有三个不同零点的必要而不充分条件;(3)设a=0,,c=﹣1,证明:函数f(x)恰有一个零点r,且存在唯一的严格递增正整数数列{a n},使得.13.(2023•鼓楼区校级模拟)已知函数.(1)求函数f(x)的单调区间;(2)当a=1时,若f(x1)+f(x2)=0,求证:x1+x2≥2;(3)求证:对于任意n∈N*都有.14.(2023•平江县模拟)已知函数f(x)=axlnx+e x﹣1.(1)若f(x)在定义域内单调递增,求a的取值范围;(2)当a>0时,若f(x)存在唯一零点x1,极值点为x2,证明:2x2<x1.15.(2023•承德模拟)已知函数f(x)=ax﹣4lnx.(1)讨论函数f(x)的单调性;(2)若,求实数a的取值范围.16.(2023•深圳一模)已知函数,其中a∈R且a≠0.(1)当a=1时,求函数f(x)的单调区间;(2)若存在实数x0,使得f(x0)=x0,则称x0为函数f(x)的“不动点”求函数f(x)的“不动点”的个数;(3)若关于x的方程f(f(x))=f(x)有两个相异的实数根,求a的取值范围.17.(2023•河北区二模)已知a>0,函数f(x)=xlna﹣alnx+(x﹣e)2,其中e是自然对数的底数.(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)当a=e时,求函数f(x)的单调区间;(Ⅲ)求证:函数f(x)存在极值点,并求极值点x0的最小值.二.利用导数研究函数的极值(共12小题)18.(2023•青岛二模)已知函数,a>0.(1)讨论f(x)极值点的个数;(2)若f(x)恰有三个零点t1,t2,t3(t1<t2<t3)和两个极值点x1,x2(x1<x2).(ⅰ)证明:f(x1)+f(x2)=0;(ⅱ)若m<n,且mlnm=nlnn,证明:.19.(2023•新乡模拟)已知函数f(x)=ax﹣alnx﹣.(1)若不等式f(x)<0恒成立,求实数a的取值范围;(2)若函数y=f(x)有三个不同的极值点x1,x2,x3,且f(x1)+f(x2)+f(x3)≤3e2﹣e,求实数a的取值范围.20.(2023•湖北模拟)设函数f(x)=e x+b sin x,x∈(﹣π,+∞).(1)若函数f(x)在(0,f(0))处的切线的斜率为2.①求实数b的值;②求证:f(x)存在唯一极小值点x0且f(x0)>﹣1.(2)当b>0时,若f(x)在x∈(﹣π,+∞)上存在零点,求实数b的取值范围.21.(2023•南京三模)已知函数f(x)=xlnx﹣ax2,g(x)=﹣x+a(a∈R).(1)若y=x与f(x)的图象恰好相切,求实数a的值;(2)设函数F(x)=f(x)+g(x)的两个不同极值点分别为x1,x2(x1<x2).(i)求实数a的取值范围:(ii)若不等式eλ+1<x1•x2λ恒成立,求正数λ的取值范围(e=2.71828…为自然对数的底数).22.(2023•罗定市校级模拟)已知函数,k∈R.(1)若f(x)在x=1处取极值,求k的值;(2)若f(x)=ax有两个零点x1,x2,求证:.23.(2023•红桥区二模)已知函数f(x)=x﹣alnx,g(x)=﹣(a>0).(Ⅰ)若a=1,求函数f(x)的极值;(Ⅱ)设函数h(x)=f(x)﹣g(x),求函数h(x)的单调区间;(Ⅲ)若存在x0∈[1,e],使得f(x0)<g(x0)成立,求a的取值范围.24.(2023•海淀区校级三模)已知函数f(x)=e ax(x﹣1)2.(1)若a=1,求f(x)在(0,f(0))处切线方程;(2)求f(x)的极大值与极小值;(3)证明:存在实数M,当a>0时,函数y=f(x)﹣M有三个零点.25.(2023•曲靖模拟)已知函数f(x)=ax2﹣xlnx+1(a∈R),f'(x)是f(x)的导函数.(1)求函数y=f'(x)的极值;(2)若函数f(x)有两个不同的零点x1,x2,证明:x1x2>2e2.26.(2023•思明区校级模拟)已知函数f(x)=x3﹣mx2+m2x(m∈R)的导函数为f′(x).(1)若函数g(x)=f(x)﹣f′(x)存在极值,求m的取值范围;(2)设函数h(x)=f′(e x)+f′(lnx)(其中e为自然对数的底数),对任意m∈R,若关于x的不等式h(x)≥m2+k2在(0,+∞)上恒成立,求正整数k的取值集合.27.(2023•天津一模)已知函数f(x)=ae x﹣sin x﹣a.(注:e=2.718281…是自然对数的底数).(1)当a=2时,求曲线y=f(x)在点(0,f(0))处的切线方程;(2)当a>0时,函数f(x)在区间内有唯一的极值点x1.(ⅰ)求实数a的取值范围;(ⅱ)求证:f(x)在区间(0,π)内有唯一的零点x0,且x0<2x1.28.(2023•湖南模拟)已知函数f(x)=sin x+sin2x,x∈[0,π].(1)函数F(x)=f(x)cos x+x在x=x0处取得极大值,求f(x0)的值;(2)若,证明:f(x)≥3x cos ax.29.(2023•永州三模)已知函数f(x)=xe﹣x⋅lna,g(x)=sin x.(1)若x=0是函数h(x)=f(x)+ag(x)的极小值点,讨论h(x)在区间(﹣∞,π)上的零点个数.(2)英国数学家泰勒发现了如下公式:cos x=这个公式被编入计算工具,计算足够多的项时就可以确保显示值的精确性.现已知,利用上述知识,试求的值.三.利用导数研究函数的最值(共29小题)30.(2023•蕉城区校级模拟)已知函数.(1)讨论函数f(x)的零点的个数;(2)当m=0时,若对任意x>0,恒有,求实数a的取值范围.31.(2023•贺兰县校级四模)已知函数f(x)=kx﹣ln(1+x)(k>0).(1)当k=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;(2)如果存在x0∈(0,+∞),使得当x∈(0,x0)时,恒有f(x)<x2成立,求k的取值范围.32.(2023•叶城县校级模拟)已知函数.(1)求出函数f(x)的单调区间;(2)若g(x)=x2f(x),求g(x)的最小值.33.(2023•南关区校级模拟)已知函数.(Ⅰ)当a=0时,求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)若a>0,讨论函数f(x)的单调性;(Ⅲ)当x≥2时,f(x)≥0恒成立,求a的取值范围.34.(2023•海淀区校级三模)已知函数f(x)=e x﹣1﹣a sin x(a∈R).(1)若曲线y=f(x)在(0,f(0))处的切线方程为y=﹣x,求实数a的值;(2)当a=2时,求f(x)在[0,π]上的最大值;(3)若对任意的x∈[0,π],恒有f(x)≥0,求实数a的取值范围.35.(2023•沙坪坝区校级模拟)已知函数f(x)=sin2x+2sin2x.(1)若f(x)≥2ax在上恒成立,求实数a的取值范围;(2)证明:.36.(2023•杭州模拟)已知x1,x2是方程e x﹣ax=ln(ax)﹣x的两个实根,且x1<x2.(1)求实数a的取值范围;(2)已知f(x)=ax,g(x)=ln(1+x)﹣cos x+2,若存在正实数x3,使得f(x1)=g(x3)成立,证明:x1<x3.37.(2023•郴州模拟)已知函数f(x)=x2﹣ax+1,g(x)=lnx+a(a∈R).(1)若a=1,f(x)>g(x)在区间(0,t)上恒成立,求实数t的取值范围;(2)若函数f(x)和g(x)有公切线,求实数a的取值范围.38.(2023•让胡路区校级模拟)已知函数.(1)若f(x)在定义域上具有唯一单调性,求k的取值范围;(2)当x∈(1,2)时,证明:.39.(2023•西城区二模)已知函数f(x)=x2+ln(x+1).(Ⅰ)求f(x)在区间上的最大值和最小值;(Ⅱ)若(e x+a cos x)f(x)≥0恒成立,求实数a的值.40.(2023•海淀区校级三模)已知函数f(x)=kx﹣ln(1+x)(k>0).(1)当k=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;(2)若函数f(x)在(0,+∞)上有最小值,求k的取值范围;(3)如果存在x0∈(0,+∞),使得当x∈(0,x0)时,恒有f(x)<x2成立,求k的取值范围.41.(2023春•鼓楼区期中)设x=﹣3是函数f(x)=ax3+bx2﹣3x+c的一个极值点,曲线y=f(x)在x=1处的切线斜率为8.(1)求f(x)的单调区间;(2)若f(x)在闭区间[﹣1,1]上的最大值为10,求c的值.42.(2023•浙江模拟)已知λ为正实数,函数f(x)=ln(λx+1)﹣λx+(x>0).(1)若f(x)>0恒成立,求λ的取值范围;(2)求证:2ln(n+1)﹣<(﹣)<2ln(n+1)(i=1,2,3,…).43.(2023•贺兰县校级模拟)已知函数f(x)=(x+2)ln(1+x)﹣ax.(Ⅰ)当a=0时,求f(x)在x=0处的切线方程;(Ⅱ)如果当x>0时,f(x)>0恒成立,求实数a的取值范围;(Ⅲ)求证:当a>2时,函数f(x)恰有3个零点.44.(2023•保定一模)已知函数f(x)=sin x﹣aln(x+1).(1)当a=1时,证明:当x∈[0,1]时,f(x)≥0;(2)当x∈[0,π]时,f(x)≤2e x﹣2恒成立,求a的取值范围.45.(2023•葫芦岛一模)已知函数f(x)=lnx,g(x)=x﹣1.(1)h(x)=(x+1)f(x)﹣2g(x),x∈[1,+∞),求h(x)的最小值;(2)设φ(x)=x2f(x)①证明:φ(x)≥g(x);②若方程φ(x)=m(m∈R)有两个不同的实数解x1,x2证明:.46.(2023•谷城县校级模拟)已知a>0,设函数f(x)=(2x﹣a)lnx+x,f′(x)是f(x)的导函数.(1)若a=2,求曲线f(x)在点(1,f(1))处的切线方程;(2)若f(x)在区间(1,+∞)上存在两个不同的零点x1,x2(x1<x2).①求实数a的取值范围;②证明:.47.(2023•松江区校级模拟)已知函数f(x)=alnx+,a∈R.(1)若a=2,且直线y=x+m是曲线y=f(x)的一条切线,求实数m的值;(2)若不等式f(x)>1对任意x∈(1,+∞)恒成立,求a的取值范围;(3)若函数h(x)=f(x)﹣x有两个极值点x1,x2(x1<x2),且h(x2)﹣h(x1)≤,求a的取值范围.48.(2023•沙坪坝区校级模拟)对于定义在D上的函数F(x),若存在x0∈D,使得F(x0)=x0,则称x0为F(x)的一个不动点.设函数f(x)=(x﹣1)e x﹣alnx+x,已知x0(x0≠1)为函数f(x)的不动点.(1)求实数a的取值范围;(2)若k∈Z,且kx0<a对任意满足条件的x0成立,求整数k的最大值.(参考数据:ln2≈0.693,ln3≈1.1,,e2≈7.39,)49.(2023•思明区校级四模)函数f(x)=sin x﹣ax+1.(1),求f(x)的单调区间;(2)若f(x)≥cos x在x∈[0,π]上恒成立,求实数a的取值范围;(3)令函数g(x)=f(x)+ax﹣1,求证:.50.(2023•海淀区校级三模)已知函数f(x)=(1+x)a,g(x)=1+ax,(a∈R);(1)当a=3时,求曲线y=f(x)在点(0,f(0))处的切线方程;(2)若正数a使得f(x)≥g(x)对x∈[0,+∞)恒成立,求a的取值范围;(3)设函数G(x)=g(x)﹣e g(x)+2,x∈[0,+∞),讨论其在定义域内的零点个数.51.(2023•绍兴模拟)已知函数f(x)=x2﹣axlnx﹣1,a∈R.(1)求证:;(2)若函数f(x)有三个不同的零点x1,x2,x3(x1<x2<x3).(ⅰ)求a的取值范围;(ⅱ)求证:x1+x3>2a﹣2.52.(2023•万州区模拟)已知函数f(x)=.(1)讨论f(x)的极值;(2)当a=1时,关于x的不等式≥1+mx﹣ln(x+1)在[0,+∞)上恒成立,求实数m的取值范围.53.(2023•潍坊模拟)已知函数f(x)=ax++2﹣2a(a>0)的图像在点(1,f(1))处的切线与直线x+2y+1=0垂直.(1)求a,b满足的关系式;(2)若f(x)≥2lnx在[1,+∞)上恒成立,求a的取值范围;(3)证明:54.(2023•云南模拟)已知函数(1)求y=f(x)在(0,f(0))处的切线方程;(2)若af(x)﹣g(x)≥0,求实数a的取值范围.55.(2023•朝阳区校级模拟)已知a∈R,函数f(x)=(x﹣a﹣1)e x﹣1.(1)讨论f(x)在(﹣∞,b)上的单调性;(2)已知点P(m,m).(i)若过点P可以作两条直线与曲线y=e x﹣1+1(﹣1<x<3)相切,求m的取值范围;(ii)设函数,若曲线y=h(x)上恰有三个点T i(i=1,2,3)使得直线PT i与该曲线相切于点T i,写出m的取值范围(无需证明).56.(2023•乌鲁木齐模拟)已知f(x)=xe x﹣a(x+lnx).(1)当a=e时,求f(x)的最小值;(2)当a=1时,有f(x)≥(b﹣2)x+1恒成立,求b的取值范围.57.(2023•嘉兴二模)已知f(x)=e x,g(x)=lnx.(1)若存在实数a,使得不等式f(x)﹣g(x)≥f(a)﹣g(a)对任意x∈(0,+∞)恒成立,求f(a)•g(a)的值;(2)若1<x1<x2,设,证明:①存在x0∈(x1,x2),使得成立;②.58.(2023•福建模拟)已知函数f(x)=e x+e﹣x+(2﹣b)x,g(x)=ax2+b(a,b∈R),若曲线y=g(x)在x=1处的切线方程y=2x+1+f′(0).(1)求实数a,b的值;(2)若不等式f(x)≥kg(x)﹣2k+2对任意x∈R恒成立,求k的取值范围;(3)设θ1,θ2,θ3,…,θn∈(0,),其中n∈N*,n≥2,求证:f(sinθ1)f(cosθn)+f(sinθ2)f(cosθn)+…+f(sinθn﹣1)f(cosθ2)+f(sinθn)f(cosθ1)>6n.﹣1四.利用导数研究曲线上某点切线方程(共2小题)59.(2023•浦东新区二模)设P是坐标平面xOy上的一点,曲线Γ是函数y=f(x)的图像.若过点P恰能作曲线Γ的k条切线(k∈N),则称P是函数y=f(x)的“k度点”.(1)判断点O(0,0)与点A(2,0)是否为函数y=lnx的1度点,不需要说明理由;(2)已知0<m<π,g(x)=sin x.证明:点B(0,π)是y=g(x)(0<x<m)的0度点;(3)求函数y=x3﹣x的全体2度点构成的集合.60.(2023•抚松县校级模拟)已知函数f(x)=ln(x+1),g(x)=x2+bx+1(b为常数),h(x)=f(x)﹣g(x).(1)若存在过原点的直线与函数f(x)、g(x)的图象相切,求实数b的值;(2)当b=﹣2时,∃x1、x2∈[0,1]使得h(x1)﹣h(x2)≥M成立,求M的最大值;(3)若函数h(x)的图象与x轴有两个不同的交点A(x1,0)、B(x2,0),且0<x1<x2,求证:h′()<0.1.利用导数判断函数单调性:设函数()y f x =在某个区间内可导,①'()0f x >⇒()f x 该区间内为增函数;②'()0f x <⇒()f x 该区间内为减函数;注意:当'()f x 在某个区间内个别点处为零,在其余点处为正(或负)时,()f x 在这个区间上仍是递增(或递减)的。
专题19 最值问题
阅读与思考
在实际生活与生产中,人们总想节省时间或费用,而取得最好的效果或最高效益,反映在数学问题上,就是求某个量的和、差、积、商的最大值和最小值,这类问题被称之为最值问题,在现阶段,解这类问题的相关知识与基本方法有:
1、 通过枚举选取.
2、 利用完全平方式性质.
3、 运用不等式(组)逼近求解.
4、 借用几何中的不等量性质、定理等.
解答这类问题应当包括两个方面,一方面要说明不可能比某个值更大(或更小),另一方面要举例说明可以达到这个值,前者需要详细说明,后者需要构造一个合适的例子.
例题与求解
【例1】 若c 为正整数,且a b c +=,b c d +=,d a b +=,则(a b +)(b c +)(c d +)(d a +)的最小值是 .
(北京市竞赛试题)
解题思路:条件中关于C 的信息量最多,应突出C 的作用,把a ,b ,d 及待求式用c 的代数式表示.
【例2】 已知实数a ,b 满足221a b +=,则44a ab b ++的最小值是( ) A. 1
8- B.0 C.1 D. 98
( 全国初中数学竞赛试题) 解题思路:对44a ab b ++进行变形,利用完全平方公式的性质进行解题.
【例3】 如果正整数12345,,,,x x x x x 满足12345x x x x x ++++=12345x x x x x ,求5x 的最大值. 解题思路:不妨设12345x x x x x ≤≤≤≤,由题中条件可知
23451345124512351234
11111x x x x x x x x x x x x x x x x x x x x ++++=1.结合题意进行分析.
【例4】 已知,,x y z 都为非负数,满足1x y z +-=,234x y z ++=,记32w x y z =++,求w 的最大值与最小值.
(四川省竞赛试题) 解题思路:解题的关键是用含一个字母的代数式表示w .
【例5】 某工程车从仓库上水泥电线杆运送到离仓库恰为1000米的公路边栽立,要求沿公路的一边向前每隔100米栽立电线杆一根,已知工程车每次之多只能运送电线杆4根,要求完成运送18根的任务,并返回仓库,若工程车每行驶1千米耗油m 升(在这里耗油量的多少只考虑与行驶的路程有关,其他因素不计).每升汽油n 元,求完成此项任务最低的耗油费用.
(湖北省竞赛试题) 解题思路:要使耗油费用最低,应当使运送次数尽可能少,最少需运送5次,而5次又有不同运送方法,求出每种运送方法的行驶路程,比较得出最低的耗油费用.
【例6】 直角三角形的两条直角边长分别为5和12,斜边长为13,P 是三角形内或边界上的一点,P 到三边的距离分别为1d ,2d ,3d ,求1d +2d +3d 的最大值和最小值,并求当1d +2d +3d 取最大值和最小值时,P 点的位置.
(“创新杯”邀请赛试题) 解题思路:连接P 点与三角形各顶点,利用三角形的面积公式来解.
能力训练
A 级
1.社a ,b ,c 满足2229a b c ++=,那么代数式222
()()()a b b c c a -+-+-的最大值是 . (全国初中数学联赛试题)
2.在满足23,0,0x y x y +≤≥≥的条件下,2x y +能达到的最大值是 .
(“希望杯”邀请赛试题)
3.已知锐角三角形ABC 的三个内角A ,B ,C 满足A >B >C.用α表示A-B ,B-C ,以及90-A 中的最小值,则α的最大值是 .
(全国初中数学联赛试题)
4.已知有理数a ,b ,c 满足a >b >c ,且a+b+c=0,.那么c a
的取值范围是 . (数学夏令营竞赛试题)
5.在式子1234x x x x +++++++中,代入不同的x 值,得到对应的值,在这些对应的值中,最小的值是( ).
A.1
B.2
C.3
D.4
6.若a ,b ,c ,d 是整数,b 是正整数,且满足b c d +=,d c a +=,b a c +=,那么a b c d +++的最大值是( ).
A.-1
B.-5
C.0
D.1
(全国初中数学联赛试题)
7.已知,x y a -=10,z y -=则代数式222
x y z xy yz xz ++---的最小值是( ).
A.75
B.80
C.100
D.105
(江苏省竞赛试题)
8.已知x ,y ,z 均为非负数,且满足x y z ++=30, 350x y z +-=,又设542M x y Z =++,则M 的最小值与最大值分别为( ).
A.110,120
B.120,130
C.130,140
D.140,150
9.已知非负实数x,y,z满足
123
234
x y z
---
==,记345
w x y z
=++.求w的最大值和最小值
(“希望杯”邀请赛试题)
10.某童装厂现有甲种布料38米,乙钟布料26米,现计划用这两种布料生产L,M两种型号的童装共50套,已知做一套L型号的童装需用甲种布料0.5米,乙种布料1米,可获利45元;做一套M型号的童装需用甲种布料0.9米,乙种布料0.2米,可获利30元,试问该厂生产的这批童装,当L型号的童装为多少套是,能使该厂获得利润最大?最大利润为多少?
(江西省无锡市中考试题)。