________________
课堂练习
课本P:41页 页 课本 练习:1,2,3,4 练习
-10 32
26
1 已知数列{an }的前n项和为S n = n + n, 求这个 2 数列的通项公式。这个数列是等差数列吗?如果
2
是,它的首项和公差分别是什么?
解:根据Sn = a1 + a2 +L+ an−1 + an 与Sn−1 = a1 + a2 +L+ an−1(n −1),
可 知, n >1 , 当 时 1 1 2 an = Sn − −1) 2 2 1 = 2n − 2
知识回顾 {an}为等差数列 ⇔ an+1- an=d 为等差数列
⇔ an= a1+(n-1) d ⇔ an= kn + b k、b为常数) 为常数) ( 、 为常数
a、b、c成等差数列 、 、 成等差数列 ⇔ b为a、c 的等差中项 为 、
a+c ⇔ b= ⇔ 2
2b= a+c
3.更一般的情形,an= 更一般的情形, 更一般的情形
a 1 + a 3 + a 5 + a 7 + a 9 = 125 由题 a 2 + a 4 + a 6 + a 8 + a 10 = 15
5 a 1 + ( 2 + 4 + 6 + 8 ) d = 125 法一 : 5 a 1 + ( 1 + 3 + 5 + 7 + 9 ) d = 15 a 1 + 4 d = 25 ⇒ a1 + 5d = 3 a 1 = 113 ⇒ d = − 22