2022-2023学年江苏省南京市鼓楼区数学九年级第一学期期末质量检测模拟试题含解析
- 格式:doc
- 大小:1.33 MB
- 文档页数:24
第1页,共4页 第2页,共4页………○…………○…………内…………○…………装…………○…………订…………○…………线…………○………………○…………○…………外…………○…………装…………○…………订…………○…………线…………○………考点考场考号姓 名座位号2022-2023学年第一学期期末质量监测试卷九年级 数学学科(考试时间:120分钟 考试分值:150分)一、选择题(每题5分,共45分)1.(5分)下列新冠疫情防控标识图案中,中心对称图形是( )A.B.C.D.2.(5分)下列为一元二次方程的是( )A.02=+-c bx axB.0232=-+x x C.01322=+-x x D.0222=+y x3.(5分)已知关于x 的一元二次方程x m x 442=-有两个不相等的实数根,则m 的取值范围是( )A.1->mB.2<mC.0≥mD.0<m4.(5分)方程0)3)(2(=+-x x 的解是( )A.2=xB.3-=xC.3,221==x xD.3,221-==x x 5.(5分)如图,AB 是☉O 的弦,点C 在圆上,已知∠AOB=100°,则∠C=( )A.40°B.50°C.60°D.80°6.(5分)抛物线2)4(32++=x y 的顶点坐标是( ) A.(2,4) B.(2,-4) C.(4,2) D.(-4,-2)7.(5分)目前我国已建立了比较完善的经济困难学生资助体系.某校前年发放给每个经济困难学生389元,今年发放了438元.设每年发放的资助金额的平均增长率为x ,则下面列出的方程中正确的是( )A.438)13892=+x (B.389)14382=+x (C.438)21389=+x (D.389)21438=+x (8.(5分)对于二次函数2)1(2+-=x y 的图像,下列说法正确的是( ) A.开口向下B.对称轴是直线1-=xC.顶点坐标是(1,2)D.当1>x 时,y 随x 的增大而减小9.(5分)当0>ab 时,2ax y =与b ax y +=的图象大致是( )A. B. C. D.二、 填空题 (每题 5 分 ,共30分 )10.(5分)点A(-2,3)关于原点对称的点的坐标是________.11.(5分)已知关于x 的方程0322=++k x x 的一个根是-1,则k=________. 12.(5分)如图,四边形ABCD 为☉O 的内接四边形,已知∠BOD=100°,则∠BCD 的度数为____.13.(5分)一个不透明袋子中装有10个球,其中有5个红球,3个白球,2个黑球,这些球除颜色外无其它差别,从袋子中随机取出个球,则它是白球的概率是________.14.(5分)若562)1(--+=m m x m y 是二次函数,则m=________.第3页,共14页第4页,共14页装订线内不许答题15.(5分)如图,抛物线与x 轴交于点A(-1,0),顶点坐标(1,n),与y 轴的交点在(0,3),(0,4)之间(包含端点),则下列结论正确的有________.(填编号)①03<b a +;②134-≤≤-a ;③对于任意实数m ,bm am b a +≥+2恒成立;④关于x 的方程12+=++n c bx ax 有两个相等的实数根.三、 解答题 (本题共计 8 小题 ,共计75分 )16. (8分) 解方程:(1)033(=-+-x x x ); (2)0142=--x x . 17. (7分) 关于x 的方程0232=+-m x x 的一个根为-1,求方程的另一个根及m 的值.18. (8分) 如图所示,每个小正方形的边长为1个单位长度,作出△ABC 关于原点对称的图形△A 1B 1C 1,并写出A 1,B 1,C 1的坐标.19. (10分) 如图,某小区规划在一个长为40米、宽为26米的矩形场地ABCD 上修建三条同样宽度的马路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草.若使每一块草坪的面积都是144m 2,求马路的宽.第5页,共4页 第6页,共4页………○…………○…………内…………○…………装…………○…………订…………○…………线…………○………………○…………○…………外…………○…………装…………○…………订…………○…………线…………○………考点考场考号姓 名座位号20.(10分) 为了解长垣市民对全市创建全国文明城市工作的满意程度,某中学数学兴趣小组在某个小区内进行了调查统计.将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中的信息,解决下列问题: (1)此次调查中接受调查的人数为________人; (2)请你补全条形统计图;(3)扇形统计图中“满意”部分的圆心角为________度;(4)该兴趣小组准备从调查结果为“不满意”的4位市民中随机选择2位进行回访,已知这4位市民中有2位男性,2位女性.请用画树状图的方法求出选择回访的市民为“一男一女”的概率.21.(10分) 如图,在△ABC 中,点O 是AB 边上一点,OB=OC,∠B=30°,过点A 的 ☉O 切BC 于点D ,CO 平分∠ACB .(1)求证:AC 是☉O 的切线; (2)若BC=12,求☉O 的半径长;(3)在(2)的条件下,求阴影部分的面积.22. (10分) 某商人如果将进货价为8元的商品按每件10元出售,每天可销售100件.现采用提高售出价,减少进货量的办法增加利润,已知这种商品每涨价0.1元,其销售量就要减少1件,问涨价多少元时,才能使每天所赚的利润达到360元?23.(12分) 如图,在平面直角坐标系中,抛物线422++=ax ax y 与x 轴交于点 A(-4,0),B(2,0),与y 轴交于点C .经过点B 的直线b kx y +=与y 轴交于点D(0,2),与抛物线交于点E .(1)求抛物线的解析式及点C 的坐标;(2)若点P 为抛物线的对称轴上的动点,当△AEP 的周长最小时,求点P 的坐标; (3)若点M 是直线BE 上的动点,过M 作MN ∥y 轴交抛物线于点N ,判断是否存在点M ,使以点M 、N ,C ,D 为顶点的四边形是平行四边形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.第7页,共14页 第8页,共14页装订线内不许答题2022-2023学年第一学期期末质量监测试卷答案九年级 数学学科一、选择题(每题5分,共45分)1.A2.C3.A4.D5.B6.D7.A8.C9.D二、 填空题 (每题 5 分 ,共30分 )10.(2,-3) 11.2± 12.130° 13.10314. 7 15.①②③三、 解答题 (本题共计 8 小题 ,共计75分 )16.解:(1)0)3()3(=-+-x x x分解因式得:0)1)(3=+-x x (————————2分 可得03=-x 或01=+x解得:1,321-==x x ————————4分 (2)5142=--x x移项得:642=-x x ————————1分配方法得:10442=+-x x 即10)22=-x (————————2分 开方得:102±=-x解得:10210221-=+=x x , ————————4分 17.解:把 代入方程,得,解得,————————3分设方程的另一个根为,则,————————5分所以,即方程的另一个根为.————————7分18.解:关于原点的对称图形如图,————————5分根据图形可知:,,.————————8分19.解:设马路的宽为米 ————————1分依题意可列方程————————4分整理得 ————————6分 解得,(舍去) ————————9分答:马路的宽为2米.————————10分第9页,共4页第10页,共4页………○…………○…………内…………○…………装…………○…………订…………○…………线…………○………………○…………○…………外…………○…………装…………○…………订…………○…………线…………○………考点考场考号姓 名座位号20.(1)∵非常满意的有18人,占,∴此次调查中接受调查的人数:(人).故答案为:50 ————————2分 (2)此次调查中结果为满意的人数为:(人)补全条形统计图如下:————————4分(3)144 ————————6分 (4)画树状图:∵共有12种等可能的结果,选择回访市民为“一男一女”的有8种情况,∴选择回访的市民为“一男一女”的概率为:. ————————10分21.(1)证明:∵∴又∵ 平分∴ ∴∴∴是的切线. ————————3分(2)解:如图,连接,设交于点,设半径为r .∵ 切于点, ∴.又∵,, ∴AC=6,,由勾股定理得AB=36∴ 在直角三角形OCD 中,由勾股定理得 r 2+62=(36-r)2解得 r=32 ————————6分 (3)解:∵, ∴————————10分第11页,共14页 第12页,共14页装订线内不许答题22.解:设涨价元时,才能使每天所赚的利润达到元. ————————1分————————4分 ,, ————————7分 解得. ————————9分答:涨价元时,才能使每天所赚的利润达到元. ————————10分23.解:(1),点的坐标为————————4分(2)如图,由,可得对称轴为.∵ 的边是定长,∴ 当的值最小时,的周长最小.点关于的对称点为点,∴ 当点是与直线的交点时,的 值最小. ∵ 直线经过点∴ ’解得∴ 直线:令,得,∴ 当的周长最小时,点的坐标为————————8分(3)存在.点的坐标为或————————12分第13页,共4页 第14页,共4页…………○…………○…………内…………○…………装…………○…………订…………○…………线…………○………点场号名座位号。
人教版2022~2023学年九年级数学第一学期期末学业监测试卷(分值:120分)一、精心选一选(本大题共10小题,每小题3分,共30分.每小题给出四个答案,其中只有一个是正确的)1.(3分)下列说法:①三点确定一个圆;②垂直于弦的直径平分弦;③三角形的内心到三条边的距离相等;④圆的切线垂直于经过切点的半径.其中正确的个数是()A.0B.2C.3D.42.(3分)如图,底边长为2的等腰Rt△ABO的边OB在x轴上,将△ABO绕原点O逆时针旋转45°得到△OA1B1,则点A1的坐标为()A.(1,﹣)B.(1,﹣1)C.()D.(,﹣1)3.(3分)如图,点A、C、B在⊙O上,已知∠AOB=∠ACB=α.则α的值为()A.135°B.120°C.110°D.100°4.(3分)如图,⊙O的半径为5,点O到直线l的距离为7,点P是直线l上的一个动点,PQ与⊙O相切于点Q,则PQ的最小值为()A.B.C.2D.25.(3分)关于x的函数y=k(x+1)和y=(k≠0)在同一坐标系中的图象大致是()A.B.C.D.6.(3分)若A(3,y1),B(5,y2),C(﹣2,y3)是抛物线y=﹣x2+4x+k上的三点,则y1、y2、y3的大小关系为()A.y2>y1>y3B.y3>y2>y1C.y1>y2>y3D.y3>y1>y27.(3分)下列方程中,关于x的一元二次方程是()A.3(x+1)2=2(x+1)B.C.ax2+bx+c=0D.x2+2x=x2﹣1 8.(3分)如图,在矩形ABCD中,AB=3,BC=4,将其折叠,使AB边落在对角线AC上,得到折痕AE,则点E到点B的距离为()A.B.2C.D.39.(3分)在一个四边形ABCD中,依次连接各边的中点得到的四边形是菱形,则对角线AC与BD需要满足条件是()A.垂直B.相等C.垂直且相等D.不再需要条件10.(3分)如图,点A在双曲线y=上,且OA=4,过A作AC⊥x轴,垂足为C,OA的垂直平分线交OC于B,则△ABC的周长为()A.B.5C.D.二、你能填得又快又准吗?(共8小题,每题4分,共32分)11.(4分)用配方法解方程x2﹣2x﹣7=0时,配方后的形式为.12.(4分)如图,把△ABC绕点A逆时针旋转42°,得到△AB′C′,点C′恰好落在边AB上,连接BB′,则∠B′BC′的大小为.13.(4分)如图,点P在反比例函数y=(x<0)的图象上,PA⊥x轴于点A,△PAO的面积为5,则k的值为.14.(4分)已知==,则=.15.(4分)如图,双曲线上有一点A,过点A作AB⊥x轴于点B,△AOB的面积为2,则该双曲线的表达式为.16.(4分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,若AD=1,BD=4,则CD=.17.(4分)如图,在梯形ABCD中,AD∥BC,AC,BD交于点O,S△AOD:S△COB=1:9,则S△DOC:S△BOC=.18.(4分)如图,在△ABC中,点D、E分别在AB、AC上,DE∥BC.若AD=4,DB=2,则的值为.三、解答题:(共9道题,总分88分)19.(8分)解方程(1)2x2﹣2x﹣5=0;(2)(y+2)2=(3y﹣1)2.20.(8分)已知,如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.21.(10分)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)线段BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.22.(10分)已知甲同学手中藏有三张分别标有数字,,1的卡片,乙同学手中藏有三张分别标有1,3,2的卡片,卡片外形相同.现从甲乙两人手中各任取一张卡片,并将它们的数字分别记为a,b.(1)请你用树形图或列表法列出所有可能的结果.(2)现制定这样一个游戏规则:若所选出的a,b能使得ax2+bx+1=0有两个不相等的实数根,则称甲获胜;否则称乙获胜.请问这样的游戏规则公平吗?请你用概率知识解释.23.(10分)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE,已知:∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.24.(10分)如图,已知A (﹣4,n),B (2,﹣4)是一次函数y=kx+b的图象和反比例函数的图象的两个交点;(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积;(3)求不等式的解集(请直接写出答案).25.(10分)某商场礼品柜台元旦期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元.为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,商场要想平均每天盈利120元,每张贺年卡应降价多少元?26.(10分)如图,P1、P2是反比例函数(k>0)在第一象限图象上的两点,点A1的坐标为(2,0),若△P1OA1与△P2A1A2均为等边三角形.(1)求此反比例函数的解析式;(2)求A2点的坐标.27.(12分)(1)如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且∠EAF=60°,延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得线段BE、EF、FD之间的数量关系为.(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是BC、CD 上的点,且∠EAF=∠BAD,线段BE、EF、FD之间存在什么数量关系,为什么?(3)如图3,点A在点O的北偏西30°处,点B在点O的南偏东70°处,且AO=BO,点A沿正东方向移动249米到达E处,点B沿北偏东50°方向移动334米到达点F处,从点O观测到E、F之间的夹角为70°,根据(2)的结论求E、F之间的距离.答案一、精心选一选(本大题共10小题,每小题3分,共30分.每小题给出四个答案,其中只有一个是正确的)1.C2.B3.B4.C5.D6.C7.A8.A9.B10.A二、你能填得又快又准吗?(共8小题,每题4分,共32分)11.(x﹣1)2=8.12.69°13.﹣1014.15.y=﹣.16.217.1:318.三、解答题:(共9道题,总分88分)19.解:(1)∵a=2,b=﹣2,c=﹣5,∴△=(﹣2)2﹣4×2×(﹣5)=48>0,∴方程有两个不相等的实数根,∴x==,即x1=,x2=,(2)移项得(y+2)2﹣(3y﹣1)2=0,分解因式得(4y+1)(3﹣2y)=0,解得y1=﹣,y2=.20.解:(1)连接AC,过点D作DF∥AC,交直线BC于点F,线段EF即为DE 的投影.(2)∵AC∥DF,∴∠ACB=∠DFE.∵∠ABC=∠DEF=90°∴△ABC∽△DEF.∴,∴∴DE=10(m).说明:画图时,不要求学生做文字说明,只要画出两条平行线AC和DF,再连接EF即可.21.解:(1)BD=CD.理由如下:依题意得AF∥BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(AAS),∴AF=CD,∵AF=BD,∴BD=CD;(2)当△ABC满足:AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD(三线合一),∴∠ADB=90°,∴▱AFBD是矩形.22.解:(1)画树状图得:∵(a,b)的可能结果有(,1)、(,3)、(,2)、(,1)、(,3)、(,2)、(1,1)、(1,3)及(1,2),∴(a,b)取值结果共有9种;(2)∵当a=,b=1时,△=b2﹣4ac=﹣1<0,此时ax2+bx+1=0无实数根,当a=,b=3时,△=b2﹣4ac=7>0,此时ax2+bx+1=0有两个不相等的实数根,当a=,b=2时,△=b2﹣4ac=2>0,此时ax2+bx+1=0有两个不相等的实数根,当a=,b=1时,△=b2﹣4ac=0,此时ax2+bx+1=0有两个相等的实数根,当a=,b=3时,△=b2﹣4ac=8>0,此时ax2+bx+1=0有两个不相等的实数根,当a=,b=2时,△=b2﹣4ac=3>0,此时ax2+bx+1=0有两个不相等的实数根,当a=1,b=1时,△=b2﹣4ac=﹣3<0,此时ax2+bx+1=0无实数根,当a=1,b=3时,△=b2﹣4ac=5>0,此时ax2+bx+1=0有两个不相等的实数根,当a=1,b=2时,△=b2﹣4ac=0,此时ax2+bx+1=0有两个相等的实数根,∴P(甲获胜)=P(△>0)=>P(乙获胜)=,∴这样的游戏规则对甲有利,不公平.23.证明:(1)∵Rt△ABC中,∠BAC=30°,∴AB=2BC,又∵△ABE是等边三角形,EF⊥AB,∴AB=2AF∴AF=BC,在Rt△AFE和Rt△BCA中,,∴Rt△AFE≌Rt△BCA(HL),∴AC=EF;(2)∵△ACD是等边三角形,∴∠DAC=60°,AC=AD,∴∠DAB=∠DAC+∠BAC=90°又∵EF⊥AB,∴EF∥AD,∵AC=EF,AC=AD,∴EF=AD,∴四边形ADFE是平行四边形.24.解:(1)∵B(2,﹣4)在y=上,∴m=﹣8.∴反比例函数的解析式为y=﹣.∵点A(﹣4,n)在y=﹣上,∴n=2.∴A(﹣4,2).∵y=kx+b经过A(﹣4,2),B(2,﹣4),∴.解之得.∴一次函数的解析式为y=﹣x﹣2.(2)∵C是直线AB与x轴的交点,∴当y=0时,x=﹣2.∴点C (﹣2,0).∴OC=2.∴S △AOB =S △ACO +S △BCO =×2×2+×2×4=6.(3)不等式的解集为:﹣4<x <0或x >2.25.解:设每张贺年卡应降价x 元,现在的利润是(0.3﹣x )元,则商城多售出100x ÷0.1=1000x 张.(0.3﹣x )(500+1000x )=120,解得x 1=﹣0.3(降价不能为负数,不合题意,舍去),x 2=0.1.答:每张贺年卡应降价0.1元.26.解:(1)作P 1B ⊥OA 1于点B ,∵等边△P 1OA 1中,OA 1=2,∴OB=1,P 1B=,把P 1点坐标(1,)代入, 解得:,∴; (2)作P 2C ⊥A 1A 2于点C ,∵等边△P 2A 1A 2,设A 1C=a ,则P 2C=,OC=2+a ,把P 2点坐标(2+a ,)代入, 即:, 解得,(舍去), ∴OA 2=2+2a=, ∴A 2(,0).27.解:(1)EF=BE+DF;证明:如图1,延长FD到G,使DG=BE,连接AG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△GAF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;故EF=BE+DF;(2)EF=BE+DF仍然成立.证明:如图2,延长FD到G,使DG=BE,连接AG,∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,∴∠B=∠ADG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△GAF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;(3)如图3,连接EF,延长AE、BF相交于点C,∵∠AOB=20°+90°+(90°﹣60°)=140°,∠EOF=70°,∴∠EOF=∠AOB,又∵OA=OB,∠OAC+∠OBC=(90°﹣20°)+(60°+50°)=180°,∴符合探索延伸中的条件,∴结论EF=AE+BF成立,即EF=583米.。
人教版2022~2023学年九年级数学第一学期期末学业水平监测试卷(分值:120分)一、选择题:将下列各题中唯一正确答案的序号填入下面答题栏中相应的题号栏内,不填、填错或填的序号超过一个的不给分,每小题3分,共30分.1.(3分)根据下列已知条件,能唯一画出△ABC的是()A.AB=2,BC=4,AC=7B.AB=5,BC=3,∠A=30°C.∠A=60°,∠B=45°,AC=4D.∠C=90°,AB=62.(3分)下列各式:,,,,(x﹣y)中,是分式的共有()A.1个B.2个C.3个D.4个3.(3分)若(x+3)(x﹣4)=x2+px+q,那么p、q的值是()A.p=1,q=﹣12B.p=﹣1,q=﹣12C.p=7,q=12D.p=7,q=﹣12 4.(3分)下列能判定△ABC为等腰三角形的是()A.AB=AC=3,BC=6B.∠A=40°、∠B=70°C.AB=3、BC=8,周长为16D.∠A=40°、∠B=50°5.(3分)若一个多边形的每一个外角都是40°,则这个多边形是()A.六边形B.八边形C.九边形D.十边形6.(3分)如图,四边形ABCD中,BC∥AD,AB=CD,BE=DF,图中全等三角形的对数是()A.5B.6C.3D.47.(3分)下列交通标志中既是中心对称图形,又是轴对称图形的是()A.B.C.D.8.(3分)方程x2﹣9=0的根是()A.x=﹣3B.x1=3,x2=﹣3C.x1=x2=3D.x=39.(3分)把抛物线y=(x﹣1)2+2向左平移1个单位,再向下平移2个单位,所得抛物线是()A.y=x2B.y=(x﹣2)2C.y=(x﹣2)2+4D.y=x2+410.(3分)二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c<3b;③25a+5b+c=0;④当x>2时,y随x的增大而减小.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题:每小题3分,共18分.11.(3分)反比例函数的图象在一、三象限,则k应满足.12.(3分)把一个三角形改做成和它相似的三角形,如果面积缩小到原来的倍,那么边长应缩小到原来的倍.13.(3分)已知一元二次方程(a﹣1)x2+7ax+a2+3a﹣4=0有一个根为零,则a 的值为.14.(3分)将半径为5的圆形纸片,按如图方式折叠,若和都经过圆心O,则图中阴影部分的面积是.15.(3分)如图,一次函数y1=k1+b与反比例函数y2=的图象相交于A(﹣1,2)、B(2,﹣1)两点,则y2<y1时,x的取值范围是.16.(3分)如图,直线y=x﹣4与x轴、y轴分别交于M、N两点,⊙O的半径为2,将⊙O以每秒1个单位的速度向右作平移运动,当移动时间秒时,直线MN恰好与圆相切.三、解答题:共72分,解答应写出文字说明、证明过程或演算步骤.17.(8分)解下列方程:(1)x2﹣2x﹣3=0;(2)(x﹣5)2=2(5﹣x)18.(8分)如图,等腰Rt△ABC中,BA=BC,∠ABC=90°,点D在AC上,将△ABD绕点B沿顺时针方向旋转90°后,得到△CBE.(1)求∠DCE的度数;(2)若AB=4,CD=3AD,求DE的长.19.(8分)如图,在平面直角坐标系中,已知点A(1,3)、B(3,3)、C(4,2).(1)请在图中作出经过点A、B、C三点的⊙M,并写出圆心M的坐标;(2)若D(1,4),则直线BD与⊙M.A、相切B、相交.20.(8分)在一个暗箱中装有红、黄、白三种颜色的乒乓球(除颜色外其余均相同),其中白球、黄球各1个,且从中随机摸出一个球是白球的概率是.(1)求暗箱中红球的个数;(2)先从暗箱中随机摸出一个球,记下颜色放回,再从暗箱中随机摸出一个球,求两次摸到的球颜色不同的概率.21.(8分)已知关于x的方程x2﹣2(k+1)x+k2=0有两个实数根x1、x2.(1)求k的取值范围;(2)若x1+x2=3x1x2﹣6,求k的值.22.(10分)如图,⊙O是△ABC的外接圆,圆心O在AB上,M是OA上一点,过M作AB的垂线交BC的延长线于点E,过点C作⊙O的切线,交ME于点F.(1)求证:EF=CF;(2)若∠B=2∠A,AB=4,且AC=CE,求BM的长.23.(10分)有两块面积相同的试验田,分别收获蔬菜900kg和1500kg,已知第一块试验田每亩收获蔬菜比第二块少300kg,求第一块试验田每亩收获蔬菜多少千克?24.(12分)如图,已知抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C,且OC=OB.(1)求此抛物线的解析式;(2)若点E为第二象限抛物线上一动点,连接BE,CE,求四边形BOCE面积的最大值,并求出此时点E的坐标;(3)点P在抛物线的对称轴上,若线段PA绕点P逆时针旋转90°后,点A的对应点A′恰好也落在此抛物线上,求点P的坐标.答案一、选择题:将下列各题中唯一正确答案的序号填入下面答题栏中相应的题号栏内,不填、填错或填的序号超过一个的不给分,每小题3分,共30分.1.C2.C3.B4.B5.C6.C7.C8.B9.A10.D二、填空题:每小题3分,共18分.11.k>﹣2.12.13.﹣414.π15.x<﹣1或0<x<216.4﹣2或4+2.三、解答题:共72分,解答应写出文字说明、证明过程或演算步骤.17.解:(1)∵x2﹣2x﹣3=0,∴(x﹣3)(x+1)=0,∴x﹣3=0或x+1=0,∴x1=3,x2=﹣1;(2)∵(x﹣5)2=2(5﹣x)∴(x﹣5)2+2(x﹣5)=0,∴(x﹣5)(x﹣5+2)=0,∴x﹣5=0或x﹣3=0,∴x1=5,x2=3.18.解:(1)∵△ABCD为等腰直角三角形,∴∠BAD=∠BCD=45°.由旋转的性质可知∠BAD=∠BCE=45°.∴∠DCE=∠BCE+∠BCA=45°+45°=90°.(2)∵BA=BC,∠ABC=90°,∴AC==4.∵CD=3AD,∴AD=,DC=3.由旋转的性质可知:AD=EC=.∴DE==2.19.解:(1)如图所示:圆心M的坐标为(2,1);(2)连接MB,DB,DM,∵DB=,BM=,DM=,∴DB2+BM2=DM2,∴△DBM是直角三角形,∴∠DBM=90°,即BM⊥DB,∴直线BD与⊙M相切,故选A.20.解:(1)设红球有x个数,根据题意得=,解得x=2,所以暗箱中红球的个数为2个;(2)画树状图为:共有16种等可能的结果数,其中两次摸到的球颜色不同的结果数为10,所以两次摸到的球颜色不同的概率==.21.解:(1)∵方程x2﹣2(k+1)x+k2=0有两个实数根x1,x2,∴△≥0,即4(k+1)2﹣4×1×k2≥0,解得k≥﹣,∴k的取值范围为k≥﹣;(2)∵方程x2﹣2(k+1)x+k2=0有两个实数根x1,x2,∴x1+x2=2(k+1),x1x2=k2,∵x1+x2=3x1x2﹣6,∴2(k+1)=3k2﹣6,即3k2﹣2k﹣8=0,∴k1=2,k2=﹣,∵k≥﹣,∴k=2.22.(1)证明:延长FC至H,如图所示:∵⊙O是△ABC的外接圆,圆心O在AB上,∴AB是⊙O的直径,∴∠ACB=90°,∵EM⊥AB,∴∠EMB=∠ACB=90°,∵∠ABC=∠EBM,∴△ABC∽△EMB,∴∠CEF=∠CAB,∵FC是⊙O的切线,∴∠CAB=∠BCH,∵∠BCH=∠ECF∴∠CAB=∠ECF,∴∠CEF=∠ECF,∴EF=CF;(2)解:∵∠ACB=90°,∠B=2∠A,∴∠B=60°,∠A=30°,在Rt△ABC中,∠ACB=90°,∠A=30°,AB=4,∴BC=AB=2,AC=BC=2,∵AC=CE,∴CE=2,∴BE=BC+CE=2+2,在Rt△BEM中,∠BME=90°,∠BEM=∠A=30°∴BM=BE=1+.23.解:设第一块试验田每亩收获蔬菜x千克,由题意得:=,解得:x=450,经检验:x=450是原分式方程的解,答:第一块试验田每亩收获蔬菜450千克.24.解:(1)∵抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),∴OB=3,∵OC=OB,∴OC=3,∴c=3,∴,解得:,∴所求抛物线解析式为:y=﹣x2﹣2x+3;(2)如图2,过点E作EF⊥x轴于点F,设E(a,﹣a2﹣2a+3)(﹣3<a<0),∴EF=﹣a2﹣2a+3,BF=a+3,OF=﹣a,∴S=BF•EF+(OC+EF)•OF,四边形BOCE=(a+3)•(﹣a2﹣2a+3)+(﹣a2﹣2a+6)•(﹣a),=﹣﹣a+,=﹣(a+)2+,最大,且最大值为.∴当a=﹣时,S四边形BOCE此时,点E坐标为(﹣,);(3)∵抛物线y=﹣x2﹣2x+3的对称轴为x=﹣1,点P在抛物线的对称轴上,∴设P(﹣1,m),∵线段PA绕点P逆时针旋转90°后,点A的对应点A′恰好也落在此抛物线上,①当m≥0时,∴PA=PA1,∠APA1=90°,如图3,过A1作A1N⊥对称轴于N,设对称轴于x轴交于点M,∴∠NPA1+∠MPA=∠NA1P+∠NPA1=90°,∴∠NA1P=∠NPA,在△A1NP与△PMA中,,∴△A1NP≌△PMA,∴A1N=PM=m,PN=AM=2,∴A1(m﹣1,m+2),代入y=﹣x2﹣2x+3得:m+2=﹣(m﹣1)2﹣2(m﹣1)+3,解得:m=1,m=﹣2(舍去),②当m<0时,要使P2A=P2A,2,由图可知A2点与B点重合,∵∠AP2A2=90°,∴MP2=MA=2,∴P2(﹣1,﹣2),∴满足条件的点P的坐标为P(﹣1,1)或(﹣1,﹣2).。
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)1.在同一坐标系中,二次函数2y ax b =+的图象与一次函数y bx a =+的图象可能是( ) A . B .C .D .2.如图,△ABC 内接于⊙O ,AB=BC ,∠ABC=120°,⊙O 的直径AD=6,则BD 的长为()A .2B .3C .23D .333.连接对角线相等的任意四边形各边中点得到的新四边形的形状是( )A .正方形B .菱形C .矩形D .平行四边形4.如图,在Rt △ABC 中,AC =3,AB =5,则cosA 的值为( )A .45B .35C .34D .435.已知反比例函数的解析式为||2-=a y x ,则a 的取值范围是( ) A .2a ≠ B .2a ≠- C .2a ≠± D .2a =±6.下列是随机事件的是( )A .口袋里共有5个球,都是红球,从口袋里摸出1个球是黄球B .平行于同一条直线的两条直线平行C .掷一枚图钉,落地后图钉针尖朝上D .掷一枚质地均匀的骰子,掷出的点数是77.下列二次函数中,如果函数图像的对称轴是y 轴,那么这个函数是( )A .2 2y x x =+B .2 21y x x =++C .22y x =+D .()21y x =- 8.如图,矩形ABCD 是由三个全等矩形拼成的,AC 与DE 、EF 、FG 、HG 、HB 分别交于点P 、Q 、K 、M 、N ,设△EPQ 、△GKM 、△BNC 的面积依次为S 1、S 2、S 1.若S 1+S 1=10,则S 2的值为( ).A .6B .8C .10D .129.如图,在Rt △ABC 内有边长分别为a ,b ,c 的三个正方形.则a 、b 、c 满足的关系式是( )A .b=a+cB .b=acC .b 2=a 2+c 2D .b=2a=2c10.若0ab <,则函数y ax =与b y x=在同一平面直角坐标系中的图象大致是( ) A . B . C . D .11.一次函数(0)y ax b a =+≠与二次函数2(0)y ax bx c a =++≠在同一平面直角坐标系中的图象可能是( ).A .B .C .D .12.下列说法正确的是( )A .一颗质地硬币已连续抛掷了5次,其中抛掷出正面的次数为1次,则第6次一定抛掷出为正面B .某种彩票中奖的概率是2%,因此买100张该种彩票一定会中奖C .天气预报说2020年元旦节紫云下雨的概率是50%,所以紫云2020年元旦节这天将有一半时间在下雨D .某口袋中有红球3个,每次摸出一个球是红球的概率为100%二、填空题(每题4分,共24分)13.已知:如图,△ABC 的面积为12,点D 、E 分别是边AB 、AC 的中点,则四边形BCED 的面积为_____.14.如图,△ABC 中,D 、E 分别在AB 、AC 上,DE ∥BC ,AD :AB=2:3,则△ADE 与△ABC 的面积之比为________.15.已知ABC ∆∽DEF ∆,若周长比为4:9,则:AC DF =_____________.16.将6×4的正方形网格如图所示放置在平面直角坐标系中,每个小正方形的边长为1,若点C 在第一象限内,且在正方形网格的格点上,若()31P ,是钝角ABC ∆的外心,则C 的坐标为__________.17.已知实数m ,n 满足等式m 2+2m ﹣1=0,n 2+2n ﹣1=0,那么求n m m n+的值是_____. 18.如图,在平面直角坐标系中,菱形OABC 的边OA 在x 轴上,AC 与OB 交于点D (4,2),反比例函数k y x =的图象经过点D .若将菱形OABC 向左平移n 个单位,使点C 落在该反比例函数图象上,则n 的值为_____________.三、解答题(共78分)19.(8分)解方程:(1)22450x x +-=(配方法)(2)()()2322x x x -=-20.(8分)计算: (1)解不等式组2531(3)23x x -≤⎧⎪⎨-<⎪⎩ (2)化简:22131x x x x x ---+- 21.(8分)如图,在△ABC 中,∠B =45°,AC =5,cosC =35,AD 是BC 边上的高线. (1)求AD 的长;(2)求△ABC 的面积.22.(10分)我市某中学艺术节期间,向全校学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)王老师采取的调查方式是 (填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共 件,其中b 班征集到作品 件,请把图2补充完整;(2)王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?(3)如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参加学校总结表彰座谈会,请直接写出恰好抽中一男一女的概率.23.(10分)(1)计算:()2013.148445132sin π-⎛⎫--++-+ ⎪⎝⎭; (2)解分式方程:21321x x x---=-; (3)解不等式组:()742 2531x x x x +⎧<⎪⎨⎪+>-⎩.24.(10分)如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,E 是CD 的中点,连接OE.过点C 作CF//BD 交OE 的延长线于点F ,连接DF. 求证:(1)△ODE ≌△FCE;(2)四边形OCFD 是矩形.25.(12分)在一元二次方程x 2-2ax +b =0中,若a 2-b >0,则称a 是该方程的中点值.(1)方程x 2-8x +3=0的中点值是________;(2)已知x 2-mx +n =0的中点值是3,其中一个根是2,求mn 的值.26.如图,AB 是⊙O 的直径,点C 在圆O 上,BE ⊥CD 垂足为E ,CB 平分∠ABE ,连接BC(1)求证:CD 为⊙O 的切线;(2)若cos ∠CAB 5CE 5AD 的长.参考答案一、选择题(每题4分,共48分)1、C【分析】根据二次函数、一次函数图像与系数的关系,对每个选项一一判断即可.【详解】A.由一次函数图像可得:a>0,b>0;由二次函数图像可得:a>0,b<0,故A选项不可能.B.由一次函数图像可得:a>0,b<0;由二次函数图像可得:a>0,b>0,故B选项不可能.C.由一次函数图像可得:a<0,b>0;由二次函数图像可得:a<0,b>0,故C选项可能.D.由一次函数图像可得:a>0,b>0;由二次函数图像可得:a<0,b<0,故D选项不可能.故选:C.【点睛】本题主要考查一次函数、二次函数图像与系数的关系,根据一次函数、二次函数图像判断系数的正负是解题关键.2、D【分析】连接OB,如图,利用弧、弦和圆心角的关系得到AB BC,则利用垂径定理得到OB⊥AC,所以∠ABO=12∠ABC=60°,则∠OAB=60°,再根据圆周角定理得到∠ABD=90°,然后利用含30度的直角三角形三边的关系计算BD的长.【详解】连接OB,如图:∵AB=BC,∴AB BC=,∴OB⊥AC,∴OB平分∠ABC,∴∠ABO=12∠ABC=12×120°=60°,∵OA=OB,∴∠OAB=60°,∵AD为直径,∴∠ABD=90°,在Rt△ABD中,AB=12AD=3,∴BD=333AB=.故选D.【点睛】考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了垂径定理和圆周角定理.3、B【分析】先根据三角形的中位线定理和平行四边形的判定定理证得此四边形为平行四边形,再判断一组邻边相等,所以根据菱形的定义可知该中点四边形是菱形.【详解】如图所示,连接AC、BD,∵E、F、G、H分别为各边的中点,∴HG、EF分别为△ACD与△ABC的中位线,∴HG∥AC∥EF,12HG EF AC==,∴四边形EFGH是平行四边形;同理可得,12EH GF BD==,∵AC=BD,∴EH=GH,∴四边形EFGH 是菱形;故选:B .【点睛】本题考查的是三角形中位线定理,即三角形的中位线平行于底边且等于底边的一半.解答此题的关键是根据题意画出图形,利用数形结合思想解答.4、B【分析】根据余弦的定义计算即可.【详解】解:在Rt △ABC 中,3cos 5AC A AB ==; 故选:B.【点睛】本题考查的是锐角三角函数的定义,掌握锐角A 的邻边b 与斜边c 的比叫做∠A 的余弦是解题的关键.5、C【分析】根据反比例函数的定义可得|a|-2≠0,可解得.【详解】根据反比例函数的定义可得|a|-2≠0,可解得a≠±2.故选C.【点睛】本题考核知识点:反比例函数定义. 解题关键点:理解反比例函数定义.6、C【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【详解】A. 口袋里共有5个球,都是红球,从口袋里摸出1个球是黄球,是不可能事件,故不符合题意;B. 平行于同一条直线的两条直线平行,是必然事件,故不符合题意;C. 掷一枚图钉,落地后图钉针尖朝上,是随机事件,故符合题意;D. 掷一枚质地均匀的骰子,掷出的点数是7,是不可能事件,故不符合题意,故选C.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7、C【分析】由已知可知对称轴为x=0,从而确定函数解析式y=ax 2+bx+c 中,b=0,由选项入手即可.【详解】二次函数的对称轴为y 轴,则函数对称轴为x=0,即函数解析式y=ax 2+bx+c 中,b=0,故选:C .【点睛】此题考查二次函数的性质,熟练掌握二次函数的图象及性质是解题的关键.8、D【分析】根据矩形的性质和平行四边形的性质判断出△AQE ∽△AMG ∽△ACB ,得到12QE AE MG AG ==,32BC AB MG AG ==,再通过证明得到△PQE ∽△KMG ∽△NCB ,利用面积比等于相似比的平方,得到S 1、S 2、S 1的关系,进而可得到答案.【详解】解:∵矩形ABCD 是由三个全等矩形拼成的,∴AE=EG=GB=DF=FH=HC ,∠AEQ=∠AGM=∠ABC=90°,AB ∥CD,AD ∥EF ∥GH ∥BC∴∠AQE=∠AMG=∠ACB,∴△AQE ∽△AMG ∽△ACB , ∴12QE AE MG AG ==,32BC AB MG AG == ∵EG= DF=GB=FH AB ∥CD,(已证)∴四边形DEGF ,四边形FGBH 是平行四边形,∴DE ∥FG ∥HB∴∠QPE=∠MKG=∠CNB ,∴△PQE ∽△KMG ∽△NCB ∴22121124S QE S MG ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ 22323924S BC S MG ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, ∴1214S S =,3294S S = ∵S 1+S 1=10,∴S 2=2.故选:D .【点睛】本题考查了矩形的性质、平行四边形的性质、三角形相似的性质的综合应用,能找到对应边的比是解答此题的关键. 9、A【分析】利用解直角三角形知识.在边长为a 和b 两正方形上方的两直角三角形中由正切可得a b c b a c -=-,化简得b =a +c ,故选A.【详解】请在此输入详解!10、B【分析】根据0ab <及正比例函数与反比例函数图象的特点,可以从00a b ><,和00a b ,两方面分类讨论得出答案.【详解】∵0ab <,∴分两种情况:(1)当00a b ><,时,正比例函数y ax =数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当00a b ,时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项B 符合. 故选:B .【点睛】本题主要考查了反比例函数的图象性质和正比例函数的图象性质,解题的关键是掌握它们的性质.11、C【分析】逐一分析四个选项,根据二次函数图象的开口方向以及对称轴与y 轴的位置关系,即可得出a 、b 的正负性,由此即可得出一次函数图象经过的象限,即可得出结论.【详解】A. ∵二次函数图象开口向下,对称轴在y 轴左侧,∴a<0,b<0,∴一次函数图象应该过第二、三、四象限,故本选项错误;B. ∵二次函数图象开口向上,对称轴在y 轴右侧,∴a>0,b<0,∴一次函数图象应该过第一、三、四象限,故本选项错误;C. ∵二次函数图象开口向下,对称轴在y 轴左侧,∴a<0,b<0,∴一次函数图象应该过第二、三、四象限,故本选项正确;D. ∵二次函数图象开口向下,对称轴在y 轴左侧,∴a<0,b<0,∴一次函数图象应该过第二、三、四象限,故本选项错误.【点睛】本题主要考查二次函数图象与一次函数图象的综合,掌握二次函数与一次函数系数与图象的关系,是解题的关键.12、D【分析】概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.【详解】解:A、一颗质地硬币已连续抛掷了5次,其中抛掷出正面的次数为1次,则第6次一定抛掷出为正面,是随机事件,错误;B、某种彩票中奖的概率是2%,因此买100张该种彩票不一定会中奖,错误;C、下雨的概率是50%,是说明天下雨的可能性是50%,而不是明天将有一半时间在下雨,错误;D、正确.故选:D.【点睛】正确理解概率的含义是解决本题的关键.注意随机事件的条件不同,发生的可能性也不等.二、填空题(每题4分,共24分)13、1【解析】设四边形BCED的面积为x,则S△ADE=12﹣x,由题意知DE∥BC且DE=12BC,从而得2ADEABCS DES BC⎛⎫= ⎪⎝⎭,据此建立关于x的方程,解之可得.【详解】设四边形BCED的面积为x,则S△ADE=12﹣x,∵点D、E分别是边AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,且DE=12 BC,∴△ADE∽△ABC,则2ADEABCS DES BC⎛⎫= ⎪⎝⎭=14,即121124x-=,解得:x=1,即四边形BCED的面积为1,故答案为1.【点睛】本题主要考查相似三角形的判定与性质,解题的关键是掌握中位线定理及相似三角形的面积比等于相似比的平方的性质.【解析】由DE 与BC 平行,得到两对同位角相等,利用两对角相等的三角形相似得到三角形ADE 与三角形ABC 相似,利用相似三角形的面积之比等于相似比的平方即可得到结果.【详解】∵DE ∥BC ,∴∠ADE =∠B ,∠AED =∠C ,∴△ADE ∽△ABC ,∴S △ADE :S △ABC =(AD :AB )2=4:1. 故答案为:4:1.【点睛】本题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答本题的关键.15、4:1【分析】根据相似三角形周长的比等于相似比解答即可.【详解】∵△ABC ∽△DEF , ∴ABC DEF 49C AC DF C ==. 故答案为:4:1.【点睛】本题考查了相似三角形的性质,牢记相似三角形(多边形)的周长的比等于相似比是解题的关键.16、()4,3或()1,2【解析】由图可知P 到点A ,B 的距离为5,在第一象限内找到点P 的距离为5的点即可.【详解】解:由图可知P 到点A ,B 的距离为5,在第一象限内找到点P 的距离为5的点,如图所示,由于是钝角三角形,故舍去(5,2),故答案为()4,3或()1,2.【点睛】本题考查了三角形的外心,即到三角形三个顶点距离相等的点,解题的关键是画图找到C 点.17、1或﹣2【分析】分两种情况讨论:①当m ≠n 时,根据根与系数的关系即可求出答案;②当m =n 时,直接得出答案.【详解】由题意可知:m 、n 是方程x 1+1x ﹣1=0的两根,分两种情况讨论:①当m ≠n 时,由根与系数的关系得:m +n =﹣1,mn =﹣1, ∴原式222()2421m n m n mn mn mn ++-+====--2, ②当m =n 时,原式=1+1=1. 综上所述:n m m n+的值是1或﹣2. 故答案为:1或﹣2.【点睛】本题考查了构造一元二次方程求代数式的值,解答本题的关键是熟练运用根与系数的关系,本题属于中等题型. 18、1【分析】根据菱形的性质得出CD=AD ,BC ∥OA ,根据D (4,2)和反比例函数x k y =的图象经过点D 求出k=8,C 点的纵坐标是2×2=4,求出C 的坐标,即可得出答案.【详解】∵四边形ABCO 是菱形,∴CD =AD ,BC ∥OA ,∵D (4,2),反比例函数xk y =的图象经过点D , ∴k =8,C 点的纵坐标是2×2=4, ∴8xy =, 把y =4代入得:x =2,∴n =3−2=1,∴向左平移1个单位长度,反比例函数能过C 点,故答案为1.【点睛】本题主要考查了反比例函数图象上点的坐标特征,菱形的性质,坐标与图形变化-平移,数形结合思想是关键.三、解答题(共78分)19、(1)1211x x =-+=-(2)1223x x ==,. 【分析】(1)方程整理配方后,开方即可求出解;(2)把方程整理后左边进行因式分解,求方程的解【详解】(1)22450x x +-=,方程整理得:2522x x +=, 配方得:252112x x ++=+, 即27(1)2x +=,开方得:12x +=±,解得:121122x x =-+=--; (2)()23(2)2x x x -=- ,移项得:()23(2)?20x x x ---=, 提公因式得:()()2320x x x ⎡⎤---=⎣⎦,即()()2260x x --=,∴20x -=或260x -=,解得:1223x x ==,.【点睛】本题主要考查了解一元二次方程-配方法、因式分解法,熟练掌握一元二次方程的各种解法是解题的关键.20、(1)34x ;(2)1(1)x x -. 【分析】(1)先分别求出两个不等式的解,再找出它们的公共部分即为不等式组的解集;(2)根据分式的减法法则即可得.【详解】(1)2531(3)23x x -≤⎧⎪⎨-<⎪⎩①②, 解不等式①得:4x ≤,解不等式②得:3x >-,则不等式组的解集为34x ;(2)22131x x x x x ---+-, 13(1)(1)(1)x x x x x x --+=-+-,2(1)(3)(1)(1)(1)(1)x x x x x x x x x ---+=+--, 22213(1)(1)x x x x x x x -+-+-=+, 1(1)(1)x x x x ++-=, 1(1)x x =-. 【点睛】本题考查了解一元一次不等式组、分式的减法运算,熟练掌握不等式组的解法和分式的运算法则是解题关键.21、(1)AD=2;(2)S △ABC =1.【分析】(1)由高的定义可得出∠ADC =∠ADB =90°,在Rt △ACD 中,由AC 的长及cosC 的值可求出CD 的长,再利用勾股定理即可求出AD 的长;(2)由∠B ,∠ADB 的度数可求出∠BAD 的度数,即可得出∠B =∠BAD ,利用等角对等边可得出BD 的长,再利用三角形的面积公式即可求出△ABC 的面积.【详解】解:(1)∵AD ⊥BC ,∴∠ADC =∠ADB =90°.在Rt △ACD 中,AC =5,cosC =35, ∴CD =AC•cosC =3,∴AD 2.(2)∵∠B =25°,∠ADB =90°,∴∠BAD =90°﹣∠B =25°,∴∠B =∠BAD ,∴BD =AD =2,∴S △ABC =12AD•BC =12×2×(2+3)=1. 【点睛】本题考查了解直角三角形、勾股定理、等腰三角形的性质以及三角形的面积,解题的关键是:(1) 通过解直角三角形及勾股定理,求出CD 、AD 的长;(2) 利用等腰三角形的性质,找出BD 的长.22、(1)抽样调查;12;3;(2)60;(3)25. 【解析】试题分析:(1)根据只抽取了4个班可知是抽样调查,根据C 在扇形图中的角度求出所占的份数,再根据C的人数是5,列式进行计算即可求出作品的件数,然后减去A 、C 、D 的件数即为B 的件数;(2)求出平均每一个班的作品件数,然后乘以班级数14,计算即可得解;(3)画出树状图或列出图表,再根据概率公式列式进行计算即可得解.试题解析:(1)抽样调查,所调查的4个班征集到作品数为:5÷150360=12件,B 作品的件数为:12﹣2﹣5﹣2=3件,故答案为抽样调查;12;3;把图2补充完整如下:(2)王老师所调查的四个班平均每个班征集作品x =12÷4=3(件),所以,估计全年级征集到参展作品:3×14=42(件);(3)画树状图如下:列表如下:共有20种机会均等的结果,其中一男一女占12种,所以,P (一男一女)=1220=35,即恰好抽中一男一女的概率是35. 考点:1.条形统计图;2.用样本估计总体;3.扇形统计图;4.列表法与树状图法;5.图表型.23、(1)4;(2)3x =;(3)18x <<.【分析】(1)原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,特殊角的三角函数值,以及二次根式性质计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(3)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集即可.【详解】解:(1)()2013.1444512sin π-⎛⎫-+⎪⎝⎭, (214122=-⨯-+, 114=-,4=+(2)21321x x x---=-, 去分母得:()()1132x x +-=-,解得:3x =,经检验3x =是原方程的根.(3)()742 2531x x x x +⎧<⎪⎨⎪+>-⎩①②, 解不等式①得1x >,解不等式②得8x <,∴原不等式组的解集为为:18x <<.【点睛】此题考查了解分式方程,以及实数的运算、不等式组的解法,熟练掌握运算法则是解本题的关键.24、(1)详见解析;(2)详见解析【分析】(1)根据题意得出DOE CFE ∠=∠,DE CE =,根据AAS 即可证明;(2)由(1)可得到OD FC =,再根据菱形的性质得出90DOC ︒∠=,即可证明平行四边形OCFD 是矩形.【详解】证明:(1)CF BD ∥,DOE CFE ∴∠=∠,.E 是CD 中点,DE CE ∴=,又DEO CEF ∠=∠ODE FCE ∴∆≅∆(AAS)(2)ODE FCE ∆≅∆,OD FC ∴=,.CF BD ∥,∴四边形OCFD 是平行四边形,平行四边形ABCD 是菱形,90DOC ︒∴∠=.∴平行四边形OCFD 是矩形.【点睛】此题考查矩形的判定和全等三角形的判定与性质,平行四边形的性质,解题关键在于利用全等三角形的性质进行解答.25、 (1)4;(2)48.【分析】(1)根据中点值的定义进行求解即可;(2)根据中点值的定义可求得m 的值,再将方程的根代入方程可求得n 的值,由此即可求得答案.【详解】(1)2 x 8x 30-+=,x 2-2×4x+3=0,42-3=13>0,所以中点值为4,故答案为4;(2)由中点值的定义得:m 32=,m 6∴=, 2x 6x n 0∴-+=,将x 2=代入方程,得:412n 0-+=,n 8∴=,mn 48∴=.【点睛】本题考查了一元二次方程的根,新定义,弄懂新定义是解题的关键.26、(1)见解析;(2)AD =6. 【分析】(1)连接OC ,根据等边对等角,以及角平分线的定义,即可证得∠OCB =∠EBC ,则OC ∥BE ,从而证得OC ⊥CD ,即CD 是⊙O 的切线;(2)根据勾股定理和相似三角形的判定和性质即可得到结论.【详解】证明:(1)连接OC.∵OC=OB,∴∠ABC=∠OCB,又∵∠EBC=∠ABC,∴∠OCB=∠EBC,∴OC∥BE,∵BE⊥CD,∴OC⊥CD,∴CD是⊙O的切线;(2)设AB=x,∵AB是⊙O的直径,∴∠ACB=90°,∴直角△ABC中,AC=AB•cos∠CAB=55x,∴BC22AB AC-2255x x⎛⎫- ⎪⎪⎝⎭25x,∵∠BCE+∠BCO=∠CAB+∠ABC=90°,∵OC=OB,∴∠OCB=∠OBC,∴∠CAB=∠BCE,∵∠E=∠ACB=90°,∴△ACB∽△CEB,∴ACCE=ABBC,∴5x55=255xx,∴x=552,∴AB=552,BC=5,∵△ACB∽△CEB,∴∠CAB =∠ECB= cos∠CAB=CE BC∴BE=25,∵OC∥BE,∴△DOC∽△DBE,∴OCBE=ODBD,∴55425=554552ADAD++,∴AD=556.【点睛】本题考查了切线的判定,三角函数以及圆周角定理,相似三角形的判定及性质等,证明切线的问题常用的思路是转化成证明垂直问题.。
2022-2023学年度第一学期其中质量检测初三数学试题一、单选题1.下列从左边到右边的变形,属于因式分解的是()A.(x+1)(x﹣1)=x2﹣1B.x2﹣2x+1=x(x﹣2)+1C.x2﹣4y2=(x+4y)(x﹣4y)D.(x﹣1)(x﹣3)+1=(x﹣2)22.下列式子:﹣3x,,,﹣,x﹣,a−2b,其中是分式的个数有()A.2个B.3个C.4个D.5个3.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.如图,将直角三角形ABC沿AB方向平移得到直角三角形DEF.已知AD=4,AE=13,则DB长为()A.4B.5C.9D.135.在篮球选修课上,男、女各有5名编号分别为1,2,3,4,5的学生进行投篮练习,每人均投10次,命中次数如图所示,试根据折线统计图所提供的信息,通过计算比较本次投篮练习中男生、女生的投篮水平,则下列说法正确的是()A.男生投篮水平比女生投篮水平高B.男生、女生投篮命中次数的极差相等C.男生、女生投篮命中次数的中位数均为6D.男生、女生投篮水平相当,但女生比男生稳定6.若样本x1,x2,x3,⋯,x n的平均数为8,方差为4,则对于样本x1﹣3,x2﹣3,x3﹣3,x n﹣3,下列结论正确的是()A.中位数变小,方差不变B.平均数为5,方差为1C.平均数为8,方差为1D.众数不变,方差为47. 在平面直角坐标系中,将点A(m,n+2)先向左平移3个单位,再向上平移2个单位,得到点A′,若点A'位于第二象限,则m、n的取值范围分别是()A.m<0,n>0B.m<3,n>﹣4C.m<0,n<﹣2D.m<﹣3,n<﹣4 8.如图,在正方形网格中,△ABC绕某点旋转一定的角度得到△A′B′C′,则旋转中心是点()A.O B.P C.Q D.M9.如图,从起点A到终点B有多条路径,其中第一条路径为线段AB,其长度为a,第二条路径为折线ACB,其长度为b,第三条路径为折线ADEFGHIJKLB,其长度为c,第四条路径为图中半圆,其长度为d ,则这四条路径的长度关系为( )A .a <b <c <dB .a <c <d <bC .a <b =c <dD .a <b <c =d10.如图,将△ABC 绕点A 逆时针方向旋转110°,得到△AB 'C ',若点B '在线段BC 的延长线上,则∠BB 'C '的度数为( )A .80°B .75°C .70°D .65°11. 小王从甲地到相距50千米的乙地办事,乘出租车去,乘公共汽车回来.已知出租车的平均速度比公共汽车的平均速度快15千米/小时,去时路上所用的时间比返回时少了13.设公共汽车的平均速度为x 千米/小时,则下面列出的方程中,正确的是( ) A .50250153x x =⨯+ B .50250315x x =⨯+ C .50150153x x+=+ D .50501153x x =−+ 12.如图,在△ABC 中,AB =AC ,若M 是BC 边上任意一点,将△ABM 绕点A 逆时针旋转得到△ACN ,点M 的对应点为点N ,连接MN ,则下列结论不一定成立的是( )A .AM =ANB .∠AMN =∠ANMC .CA 平分∠BCND .MN ⊥AC二、填空题 13.若分式的值为零,则x 的值为 .14.已知关于x 的分式方程=的解为x =0,则a= .15.一家公司打算招聘一名部门经理,现对甲、乙两名应聘者从笔试、面试、实习成绩三个方面变现进行综合评分,综合评分中笔试占20%、面试占30%、实习成绩占50%.各项成绩如表所示:则综合评分高的是应聘者 . 16.如果方程的解是正数,那么k 的取值范围为 .17.已知2113x x =+,则241x x +的值为 .18.如图,在△ABC 中,AB =8,将△ABC 绕点B 按逆时针方向旋转30°后得到△A 1BC 1,则阴影部分面积为 .三、解答题19.(12分)因式分解: (1)3xy ﹣6xy 2; (2)a ²b -25b (3)4a 2x +ax +a(4)5a 2(x ﹣y )+10a (y ﹣x ); (5)()()1124x x +++ 20.(8分)回答下列问题:(1)已知m 、n 满足mn =4,m ﹣n =﹣1,求2m 3n ﹣4m 2n 2+2mn 3的值. (2)已知=+,求4A ﹣B 的值.21.(8分)计算(1)先化简22a 1a 1(a 1)a 3a 6a 9−+−−÷−−+ ,然后从-1,0,1,3中选一个合适的数作为a 的值代入求值.(2)先化简,再求值:(+)÷,其中﹣1≤x<3,任选一个合适的整数x 代入求值.22.(7分)某校德育处利用班会课对全校学生进行了一次防疫知识测试活动,现从初二、初三两个年级各随机抽取了15名学生的测试成绩,得分用x表示,共分成4组:A:60≤x<70,B:70≤x<80,C:80≤x<90,D:90≤x≤100,对得分进行整理分析,给出了下面部分信息:初二的测试成绩在C组中的数据为:80,86,88.初三的测试成绩:76,83,100,88,81,100,82,71,95,90,100,93,89,86,86.年级平均数中位数最高分众数初二88a9898初三8888c b (1)a=,b=,c=;(2)通过以上数据分析,你认为初二、初三年级中哪个年级学生掌握防疫知识更好?请写出理由;(3)若初二、初三共有3000名学生,请估计此次测试成绩达到90分及以上的学生约有多少人?23.(7分)目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗,还可以通过运动做公益(如图).对比手机数据发现小明步行12000步与小红步行9000步消耗的能量相同.若每消耗1千卡能量小明行走的步数比小红多10步,求小红,小明每消耗1千卡能量分别需要行走多少步?24.(12分)“程,课程也,二物者二程,三物者三程,皆如物数程之,并列为行,故谓之方程.”这是我国古代著名数学家刘徽在《九章算术》对方程一词给出的注释.对于一些特殊的方程,我们给出两个定义:①若两个方程有相同的一个解,则称这两个方程为“相似方程”;②若两个方程有相同的整数解,则称这两个方程为“相伴方程”.(1)判断一元一次方程3﹣2(1﹣x)=4x与分式方程是否是“相似方程”,并说明理由;(2)已知关于x,y的二元一次方程y=mx+6与y=x+4m是“相伴方程”,求正整数m的值.25.(12分)在△ABC中,∠C=90°,AC=BC=4,将一块三角板的直角顶点放在斜边AB的中点P处,将此三角板绕点P旋转,三角板的两直角边分别交射线AC、CB与点D、点E,图①,②,③是旋转得到的三种图形.(1)观察线段PD和PE之间的有怎样的大小关系,并以图②为例,加以说明;(2)观察线段CD、CE和BC之间有怎样的数量关系,并以图③为例,加以说明;(3)把三角板绕P点旋转,点E从C点沿射线CB方向移动,△PBE是否构成等腰三角形?若能,请直接写出∠PEB的度数;若不能,请说明理由.。
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)1.如图,ABC ∆中,//,2,3DE BC AD BD ==,则DE AE BC AC=的值为( ) A .2:3 B .1:2 C .3:5 D .2:52.下面四个几何体中,左视图是四边形的几何体共有()A .1个B .2个C .3个D .4个3.如图,线段AB 两个端点的坐标分别为A (6,6),B (8,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD ,则线段CD 的长为( )A .2B 3C .3D 54.下列运算中,结果正确的是( )A .()222a b a b +=+B .()3263a b a b -=C .()236a a =D .623a a a ÷=5.若关于x 的一元二次方程x 2+2x+k =0有两个不相等的实数根,则k 的最大整数是( )A .1B .0C .﹣1D .﹣26.如图,▱ABCD 的对角线相交于点O ,且AB AD ≠,过点O 作OE BD ⊥交BC 于点E ,若CDE 的周长为10,则▱ABCD 的周长为( )A .14B .16C .20D .187.如图,AB 是半圆的直径,点D 是AC 的中点,∠ABC =50°,则∠DAB 等于( )A .65°B .60°C .55°D .50°8.下列汽车标志图片中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .9.如图,点I 是△ABC 的内心,∠BIC =130°,则∠BAC =( )A .60°B .65°C .70°D .80° 10.对于二次函数214y x =的图象,下列结论错误的是( ) A .顶点为原点 B .开口向上 C .除顶点外图象都在x 轴上方 D .当0x =时,y 有最大值11.如图,已知抛物线y=x 2+px+q 的对称轴为直线x=﹣2,过其顶点M 的一条直线y=kx+b 与该抛物线的另一个交点为N (﹣1,﹣1).若要在y 轴上找一点P ,使得PM+PN 最小,则点P 的坐标为( ).A .(0,﹣2)B .(0,﹣43)C .(0,﹣53)D .(0,﹣54) 12.将抛物线265y x x =-+向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线解析是( )A .()246y x =+-B .()242y x =--C .()242y x =-+D .()213y x =--二、填空题(每题4分,共24分)13.在函数y 2x 1=-中,自变量x 的取值范围是 .14.已知点B 位于点A 北偏东30°方向,点C 位于点A 北偏西30°方向,且AB =AC =8千米,那么 BC =________千米.15.一男生推铅球,铅球行进高度y 与水平距离x 之间的关系是21251233y x x =-++,则铅球推出的距离是_____.此时铅球行进高度是_____.16.二次函数223y x x =--,当03x ≤≤时,y 的最大值和最小值的和是_______. 17.如果方程x 2-4x+3=0的两个根分别是Rt △ABC 的两条边,△ABC 最小的角为A ,那么tanA 的值为_______.18.如图,若以平行四边形一边AB 为直径的圆恰好与对边CD 相切于点D ,则∠C=_______度.三、解答题(共78分)19.(8分)已知关于x 的方程2(1)220k x kx -++= (1)求证:无论k 为何值,方程总有实数根.(2)设1x ,2x 是方程2(1)220k x kx -++=的两个根,记211212x x S x x x x =+++,S 的值能为2吗?若能,求出此时k 的值;若不能,请说明理由.20.(8分)如图,66⨯网格的每个小正方形边长均为1,每个小正方形的顶点称为格点.已知Rt ABC ∆和11Rt BB C ∆的顶点都在格点上,线段1AB 的中点为O .(1)以点O 为旋转中心,分别画出把11Rt BB C ∆顺时针旋转90︒,180︒后的122Rt B B C ∆,23Rt B AC ∆;(2)利用变换后所形成的图案,解答下列问题:①直接写出四边形123CC C C ,四边形12ABB B 的形状; ②直接写出12123ABB B CC C C S S 四边形四边形的值.21.(8分)如图,正比例函数13y x =-的图像与反比例函数2k y x=的图像交于A,B 两点.点C 在x 轴负半轴上,,AC AO ACO =∆的面积为12.(1)求k 的值;(2)根据图像,当12y y >时,写出x 的取值范围;(3)连接BC ,求ABC ∆的面积.22.(10分)如图,∠AED =∠C ,DE = 4,BC = 12,CD = 15,AD = 3,求AE 、BE 的长.23.(10分)已知关于x 的一元二次方程x 2+2x+m=1.(1)当m=3时,判断方程的根的情况;(2)当m=﹣3时,求方程的根.24.(10分)如图,Rt ABC ∆中,90C =∠,23AC =,6BC =,解这个直角三角形.25.(12分)如图,Rt ABC ∆中,90C ∠=︒,15AC =,面积为1.(1)尺规作图:作C ∠的平分线交AB 于点D ;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,求出点D 到两条直角边的距离.26.(1)如图①,点A ,B ,C 在O 上,点D 在O 外,比较A ∠与BDC ∠的大小,并说明理由;(2)如图②,点A ,B ,C 在O 上,点D 在O 内,比较A ∠与BDC ∠的大小,并说明理由;(3)利用上述两题解答获得的经验,解决如下问题:在平面直角坐标系中,如图③,已知点()1,0M ,()4,0N ,点P 在y 轴上,试求当MPN ∠度数最大时点P 的坐标.参考答案一、选择题(每题4分,共48分)1、D【解析】根据相似三角形的判定和性质,即可得到答案.【详解】解:∵//DE BC ,∴ADE ∆∽ABC ∆, ∴22235DE AE AD AD BC AC AB AD DB =====++; 故选:D.【点睛】本题考查了相似三角形的判定和性质,解题的关键是掌握相似三角形的判定和性质.2、B【解析】简单几何体的三视图.【分析】左视图是从左边看到的图形,因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体2个.故选B .3、D【分析】直接利用A ,B 点坐标得出AB 的长,再利用位似图形的性质得出CD 的长.【详解】解:∵A (6,6),B (8,2),∴AB =2242+5∵以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD ,∴线段CD 的长为:12× 故选:D .【点睛】本题考查了位似图形,解题的关键是熟悉位似图形的性质.4、C 【解析】A:完全平方公式: ()222+2a b a ab b +=+,据此判断即可B: 幂的乘方,底数不变,指数相乘,据此判断即可C:幂的乘方,底数不变,指数相乘D:同底数幂相除,底数不变指数相减【详解】()222+2a b a ab b +=+选项A 不正确; ()3263-a b a b -=选项B 不正确; ()236a a =选项C 正确 624a a a ÷=选项D 不正确.故选:C【点睛】此题考查幂的乘方,完全平方公式,同底数幂的除法,掌握运算法则是解题关键5、B【分析】根据题意知,>0∆,代入数据,即可求解.【详解】由题意知:一元二次方程x 2+2x+k =1有两个不相等的实数根,∴240b ac ∆=->4410k解得44k∴1k <.∴k 的最大整数是1.故选B .【点睛】本题主要考查了利用一元二次方程根的情况求参数范围,正确掌握利用一元二次方程根的情况求参数范围的方法是解题的关键.6、C【解析】由平行四边形的性质得出AB CD =,BC AD =,OB OD =,再根据线段垂直平分线的性质得出BE DE =,由CDE 的周长得出BC CD 6cm +=,即可求出平行四边形ABCD 的周长. 【详解】解:四边形ABCD 是平行四边形,AB CD ∴=,BC AD =,OB OD =,OE BD ⊥,BE DE ∴=, CDE 的周长为10,DE CE CD BE CE CD BC CD 10∴++=++=+=,∴平行四边形ABCD 的周长()2BC CD 20=+=;故选:C .【点睛】本题考查了平行四边形的性质、线段垂直平分线的性质以及三角形、平行四边形周长的计算;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.7、A【分析】连结BD ,由于点D 是AC 的中点,即CD AD =,根据圆周角定理得∠ABD =∠CBD ,则∠ABD =25°,再根据直径所对的圆周角为直角得到∠ADB =90°,然后利用三角形内角和定理可计算出∠DAB 的度数.【详解】解:连结BD ,如图,∵点D 是AC 的中点,即CD AD =,∴∠ABD =∠CBD ,而∠ABC =50°,∴∠ABD =12×50°=25°, ∵AB 是半圆的直径,∴∠ADB =90°,∴∠DAB =90°﹣25°=65°.故选:A .【点睛】本题考查了圆周角定理及其推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角为直角. 8、C【解析】根据轴对称图形和中心对称图形的性质进行判断即可.【详解】A.既不是轴对称图形,也不是中心对称图形,错误;B.是轴对称图形,不是中心对称图形,错误;C.既是轴对称图形,也是中心对称图形,正确;D.是轴对称图形,不是中心对称图形,错误;故答案为:C .【点睛】本题考查了轴对称图形和中心对称图形的问题,掌握轴对称图形和中心对称图形的性质是解题的关键.9、D【分析】根据三角形的内接圆得到∠ABC=2∠IBC ,∠ACB=2∠ICB ,根据三角形的内角和定理求出∠IBC+∠ICB ,求出∠ACB+∠ABC 的度数即可;【详解】解:∵点I 是△ABC 的内心,∴∠ABC =2∠IBC ,∠ACB =2∠ICB ,∵∠BIC =130°,∴∠IBC +∠ICB =180°﹣∠CIB =50°,∴∠ABC +∠ACB =2×50°=100°,∴∠BAC =180°﹣(∠ACB +∠ABC )=80°.故选D .【点睛】本题主要考查了三角形的内心,掌握三角形的内心的性质是解题的关键.10、D【分析】根据二次函数的性质逐项判断即可.【详解】根据二次函数的性质,可得: 二次函数214y x =顶点坐标为(0,0),104>开口向上,故除顶点外图象都在x 轴上方,故A、B、C正确;当x=0时,y有最小值为0,故D错误.故选:D.【点睛】本题考查二次函数的性质,熟练掌握二次函数顶点坐标,开口方向,最值与系数之间的关系是解题的关键.11、B【解析】根据线段垂直平分线的性质,可得N,′根据待定系数法,可得函数解析式,根据配方法,可得M点坐标,根据两点之间线段最短,可得MN′,根据自变量与函数值的对应关系,可得P点坐标.【详解】如图,作N点关于y轴的对称点N′,连接MN′交y轴于P点,将N点坐标代入抛物线,并联立对称轴,得2{211pp p-=--+-=,解得4 {2pq==,y=x2+4x+2=(x+2)2-2,M(-2,-2),N点关于y轴的对称点N′(1,-1),设MN′的解析式为y=kx+b,将M、N′代入函数解析式,得22 {1k bk b-+-+-==,解得13{43kb-==,MN′的解析式为y=13x-43, 当x=0时,y=-43,即P (0,-43), 故选:B .【点睛】 本题考查了二次函数的性质,利用了线段垂直平分线的性质,两点之间线段最短得出P 点的坐标是解题关键. 12、B【分析】把265y x x =-+配成顶点式,根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线()2265=34y x x x =-+--向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线的解析式为:()()22-3-1-4+2=-4-2y x x =故选:B【点睛】考查的是二次函数的图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.二、填空题(每题4分,共24分)13、1x 2≥ 【解析】试题分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负12x 10x 2-≥⇒≥. 14、8【解析】因为点B 位于点A 北偏东30°方向,点C 位于点A 北偏西30°方向,所以∠BAC =60°,因为AB =AC ,所以△ABC 是等边三角形,所以BC=AB=AC =8千米,故答案为:8.15、1 2【分析】铅球落地时,高度0y =,把实际问题理解为当0y =时,求x 的值即可.【详解】铅球推出的距离就是当高度0y =时x 的值当0y =时,212501233x x -++= 解得:1210,2x x ==-(不合题意,舍去)则铅球推出的距离是1.此时铅球行进高度是2故答案为:1;2.【点睛】本题考查了二次函数的应用,理解铅球推出的距离就是当高度0y=时x的值是解题关键.16、4-【分析】首先求得抛物线的对称轴,抛物线开口向上,在顶点处取得最小值,在距对称轴最远处取得最大值.【详解】抛物线的对称轴是x=1,则当x=1时,y=1−2−3=−1,是最小值;当x=3时,y=9−6−3=0是最大值.y的最大值和最小值的和是-1故答案为:-1.【点睛】本题考查了二次函数的图象和性质,正确理解取得最大值和最小值的条件是关键.17、13或24【解析】解方程x2-4x+3=0得,x1=1,x2=3,①当3是直角边时,∵△ABC最小的角为A,∴tanA=13;②当3是斜边时,根据勾股定理,∠A的邻边=223122-=,∴tanA=12422=;所以tanA的值为13或24.18、3.【解析】试题分析:解:连接OD.∵CD是⊙O切线,∴OD⊥CD,∵四边形ABCD是平行四边形,∴AB∥CD,∴AB⊥OD,∴∠AOD=90°,∵OA=OD,∴∠A=∠ADO=3°,∴∠C=∠A=3°.故答案为3.考点:3.切线的性质;3.平行四边形的性质.三、解答题(共78分)19、(1)见解析;(2)2k=时,S的值为2【解析】(1)分两种情况讨论:①当k=1时,方程是一元一次方程,有实数根;②当k≠1时,方程是一元二次方程,所以证明判别式是非负数即可;(2)由韦达定理得121222,,11k x x x x k k +=-=--,代入到2112122x x x x x x +++=中,可求得k 的值. 【详解】解:(1)①当10k -=,即k=1时,方程为一元一次方程220x +=,∴1x =-是方程的一个解.②当10k -≠时,1k ≠时,方程为一元二次方程,则222(2)42(1)4884(1)40k k k k k ∆=-⨯-=-+=-+>,∴方程有两不相等的实数根.综合①②得,无论k 为何值,方程总有实数根.(2)S 的值能为2,根据根与系数的关系可得 121222,11k x x x x k k +=-⋅=-- ∴22211212121212()x x x x S x x x x x x x x +=+++=++=22121212()22()2211x x k k x x x x k k +++=--=--, 即2320k k -+=,解得11k =,22k =∵方程有两个根,∴10k -≠∴1k =应舍去,∴2k =时,S 的值为2【点睛】本题考查了根与系数的关系及根的判别式,熟练掌握12b x x a +=-,12c x x a⋅=是解题的关键. 20、(1)见解析;(2)①四边形123CC C C 是正方形,四边形12ABB B 是正方形;②59 【分析】(1)根据题意画出图形即可.(2)①根据图形写出答案即可,②根据表格的格数算出四边形面积再代入求解即可.【详解】(1)如图:(2)①四边形123CC C C 是正方形,四边形12ABB B 是正方形;②由图象得四边形123CC C C =18, 四边形12ABB B =10 ∴12123ABB B CC C C S S 四边形四边形=59. 【点睛】本题考查作图能力,关键在于理解题意画出图形.21、(1)12k =-;(2)2x <-或02x <<;(3)24【分析】(1)过点A 作AD 垂直于OC ,由AC=AO ,得到CD=DO ,确定出三角形ADO 与三角形ACD 面积,即可求出k 的值;(2)根据函数图象,找出满足题意x 的范围即可;(3)分别求出△AOC 和△BOC 的面积即可.【详解】解:(1)如图,过点A 作AD OC ⊥,∵AC AO =,∴CD DO =,∴6ADO ACD S S ∆∆==,∴12k =-;(2)根据题意,得:123y x y x⎧=-⎪⎨⎪=-⎩,解得:26x y =-⎧⎨=⎩或26x y =⎧⎨=-⎩,即(2,6),(2,6)A B --, 根据图像得:当12y y >时,x 的范围为2x <-或02x <<.(3)连接BC ,121224ABC AOC BOC S S S ∆∆∆=+=+=.【点睛】此题考查了反比例函数与一次函数的交点问题,以及坐标系中的三角形面积,利用数形结合的思想,熟练掌握各函数的性质是解本题的关键.22、AE=6,BE=3.【解析】先根据已知条件求证△ABC ∽△ADE ,然后根据相似三角形对应边成比例,代入数值即可求解.【详解】∵∠AED =∠C ,∠A 为公共角∴△ABC ∽△ADE ∴DE AE AD BC AC AB ==又∵DE=4,BC=12,CD=15,AD=3,∴AC=15+3=18 ∴431218AE AB== ∴AE=6,AB=9∴BE=9-6=3【点睛】本题考查了相似三角形的性质和判定,利用相似三角形对应边成比例即可解题.23、(1)原方程无实数根.(2)x 1=1,x 2=﹣3.【分析】(1)判断一元二次方程根的情况,只要看根的判别式△=b 2-4ac 的值的符号即可判断:当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.(2)把m 的值代入方程,用因式分解法求解即可.【详解】解:(1)∵当m=3时,△=b 2﹣4ac=22﹣4×3=﹣8<1, ∴原方程无实数根.(2)当m=﹣3时,原方程变为x 2+2x ﹣3=1,∵(x ﹣1)(x+3)=1,∴x ﹣1=1,x+3=1.∴x 1=1,x 2=﹣3.24、60;30;43A B AB ∠=∠==.【分析】根据勾股定理求出AB ,根据解直角三角形求出∠B ,由余角的性质求出∠A ,即可得到答案.【详解】解:如图:∵90,23,6C AC BC ∠===,∴22(23)643AB =+=,∵233tan 63AC B BC ===, ∴30B ∠=︒,∴903060A ∠=︒-︒=︒,【点睛】本题考查了解直角三角形,以及勾股定理,解题的关键是熟练掌握解直角三角形.25、(1)见解析;(2)607【分析】(1)利用尺规作图的步骤作出∠ACB 的平分线交AB 于点D 即可;(2)作DE AC ⊥于E ,DF BC ⊥于F,根据面积求出BC 的长.法一:根据角平分线的性质得出DE=DF ,从而得出四边形CEDF 为正方形.再由BDF BAC ∆∆∽,得出DF BF AC BC=,列方程可以求出结果;法二:根据150∆∆+=BCD ACD S S ,利用面积法可求得DE,DF 的值.【详解】解:(1)∠ACB 的平分线CD 如图所示:(2)已知15AC =,面积为1,∴20BC =.法一:作DE AC ⊥,DF BC ⊥,∵CD 是ACB ∠角平分线,∴DF DE =,90DFC DEC ∠=∠=︒,而90ACB ∠=︒,∴四边形CEDF 为正方形.设DF 为x ,则由DF AC , ∴BDF BAC ∆∆∽,∴DF BF AC BC =. 即201520x x -=,得607x =. ∴点D 到两条直角边的距离为607. 法二:150∆∆+=BCD ACD S S , 即15022⋅⋅+=BC DF DE AC , 又由(1)知AC=15,BC=20, ∴201515022DF DF +=, ∴607=DF . 故点D 到两条直角边的距离为607. 【点睛】本题考查了尺规作图,角平分线的性质,直角三角形的面积等知识,解题的关键是熟练掌握基本性质,属于中考常考题型.26、(1)B BAC DC >∠∠;理由详见解析;(2)BDC BAC ∠>∠;理由详见解析;(3)()10,2P , ()30,2P -【分析】(1)根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,构建圆周角,然后利用三角形外角性质比较即可;(2)根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,构建圆周角,然后利用三角形外角性质比较即可;(3)根据圆周角定理,结合(1)(2)的结论首先确定圆心的位置,然后即可得出点P 的坐标.【详解】(1)CD 交O 于点E ,连接BE ,如图所示:BDE ∆中BEC BDC ∠>∠又BAC BEC ∠=∠∴B BAC DC >∠∠(2)延长CD 交O 于点F ,连接BF ,如图所示:BDF ∆中BDC BFC ∠>∠又BFC BAC ∠=∠∴BDC BAC ∠>∠(3)由(1)(2)结论可知,当OP=2.5时,∠MPN 最大,如图所示:∴OM=2.5,MH=1.5 ∴()()2222 2.5 1.52OH OM MH =-=-=∴()10,2P ,()20,2P -【点睛】本题考查了圆周角定理、三角形的外角性质的综合应用,熟练掌握,即可解题.。
2022—2023学年第一学期九年级数学期末考试题参考答案一、选择题:本大题共10小题,每小题3分,共30分.在每小题列出的四个选项中只有一个是符合题目要求的.1-10.BDDCD AABBC二、填空题:本大题共5小题,每小题3分,共15分.11.x1=4,x2=﹣312.2:313.4914.28°15.6三、解答题(一):本大题共3小题,每小题8分,共24分.16.解:方程整理得:x2+2x﹣4=0,…………..1分这里a=1,b=2,c=﹣4,…………..2分∵Δ=22﹣4×1×(﹣4)=4+16=20>0,…………..4分∴x=−2±2√52=−1±√5,…………..7分解得:x1=﹣1+√5,x2=﹣1−√5.…………..8分17.解:四边形AEDF是菱形。
…………..1分理由:∵EF垂直平分AD交AB于E,∴AE=ED,AF=FD,AO=DO,…………..3分∵DE∥AC,∴∠FAD=∠EDA,…………..4分在△EDO和△FAO中{∠FAO=∠EDO AO=DO∠AOF=∠EOD,∴△EDO≌△FAO(ASA),…………..6分∴AF=ED,∴AE=AF=ED=DF,…………..7分∴四边形AEDF是菱形.…………..8分20222023学年第一学期九年级期末考试题—数学参考答案第1页(共7页)20222023学年第一学期九年级期末考试题—数学参考答案 第2页(共7页)18.解:由已知可得:∠AEB =∠CED , …………..1分又∵∠ABE =∠CDE =90°, ∴△ABE ∽△CDE , …………..3分∴AB CD =BE DE ,即1.5CD=158,…………..5分 解得:CD =87,…………..6分∴87÷2.9=30(层), 答:这栋楼房有30层.…………..8分四、解答题(二):本大题共3小题,每小题9分,共27分. 19.(1)证明:∵Δ=(k +6)2﹣4(3k +9)=k 2≥0, ∴方程总有两个实数根.…………..4分(2)解:当x =4时,原方程为:16﹣4(k +6)+3k +9=0, 解得k =1,…………..5分当k =1时,原方程为x 2﹣7x +12=0, ∴x 1=3,x 2=4.…………..6分由三角形的三边关系,可知3、4、4能围成等腰三角形, ∴k =1符合题意;…………..7分当Δ=k 2=0时,k=0,原方程为x 2﹣6x +9=0,解得:x 1=x 2=3. 由三角形的三边关系,可知3、3、4能围成等腰三角形, ∴k =0符合题意.…………..8分 综上所述:k 的值为1或0. …………..9分 20.解:(1) 120,99;…………..2分(2)条形统计图中,选修“厨艺”的学生人数为:120×54°360°=18(名), 则选修“园艺”的学生人数为:120﹣30﹣33﹣18﹣15=24(名), 补全条形统计图如下:20222023学年第一学期九年级期末考试题—数学参考答案 第3页(共7页)…………..5分(3)把“礼仪”“陶艺”“园艺”“厨艺”及“编程”等五门校本课程分别记为A 、B 、C 、D 、E , 画树状图如下:…………..7分共有25种等可能的结果,其中小刚和小强两人恰好选到同一门课程的结果有5种, ∴小刚和小强两人恰好选到同一门课程的概率为525=15.…………..9分21.解:(1)如图1,FO=6.65-1.65=5m AC=BD=12m CO=DE=18-12=6m ∵∠GAO =∠FCO =α, ∴CF ∥AG …………..2分∴GF FO=AC CO即GF 5=126解得GF =10m ∴条幅GF 的长度为10m.…………..4分(2)设经过t 秒后,以F 、C 、O 为顶点的三角形与△GAO 相似。
2022-2023学年度第一学期九年级期末检测数学试题一、选择题(本题共10小题,每小题3分,共30分。
每小题给出的四个选项中只有一项是符合题目要求的)1.(3分)抛物线y=﹣(x+1)2+2的对称轴是()A.直线x=1B.直线x=2C.直线x=﹣1D.直线x=﹣2 2.(3分)在平面直角坐标系中,将点P(3,﹣4)绕原点旋转180°后,得到对应点Q的坐标是()A.(﹣3,4)B.(﹣3,﹣4)C.(﹣4,3)D.(4,﹣3)3.(3分)下列不是中心对称图形的是()A.B.C.D.4.(3分)已知反比例函数y=,下列结论不正确的是()A.该函数图象经过点(﹣1,1)B.该函数图象位于第二、四象限C.y的值随着x值的增大而增大D.该函数图象关于原点成中心对称5.(3分)在一次同学聚会上,每人都向其他人赠送了一份小礼品,共互送110份小礼品,如果参加聚会的同学有x名.根据题意列出的方程是()A.x(x+1)=110B.x(x﹣1)=110C.2x(x+1)=110D.x(x﹣1)=110×26.(3分)如图,AC,BE是⊙O的直径,弦AD与BE交于点F,连接AB,AE,DE,CF,下列三角形中,外心是点O的是()A.△ABF B.△ACF C.△ADE D.△AEF7.(3分)下列图形都是由相同的小正方形按照一定规律摆放而成,其中第1个图共有3个小正方形,第2个图共有8个小正方形,第3个图共有15个小正方形,第4个图共有24个小正方形,,照此规律排列下去,则第个8图中小正方形的个数是()A. 48B. 63C. 80D. 998.(3分)如图,DE∥BC,则下列比例式正确的是()A.=B.=C.=D.=9.(3分)飞机着陆后滑行的距离s(单位:m)与滑行的时间t(单位:s)的函数解析式是s=60t﹣1.5t2,那么飞机着陆后滑行多长时间才能停下来()A.10s B.20s C.30s D.40s10.(3分)(3分)二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(1,﹣4a),点A(4,y1)是该抛物线上一点,若点D(x2,y2)是抛物线上任意一点,有下列结论:①4a﹣2b+c>0;②若y2>y1,则x2>4;③若0≤x2≤4,则0≤y2≤5a;④若方程a(x+1)(x﹣3)=﹣1有两个实数根x1和x2,且x1<x2,则﹣1<x1<x2<3.其中正确结论的个数是()A.1个B.2个C.3个D.4个二、填空题(本题共6小题,每小题3分,共18分。
2022-2023学年第一学期九年级数学期末模拟测试题(附答案)一.选择部分(共30分)1.下列函数中y是x的二次函数的是()A.y=﹣2x2B.y=C.y=ax2+bx+c D.y=(x﹣2)2﹣x22.下列图形中,既是轴对称图形又是中心对称图形的有()A.B.C.D.3.若关于x的一元二次方程(k﹣1)x2+x+1=0有两个实数根,则k的取值范围是()A.k≤B.k>C.k<且k≠1D.k≤且k≠1 4.已知a>1,点A(a﹣1,y1),B(a,y2),C(a+1,y3)都在二次函数y=﹣2x2的图象上,则()A.y1<y2<y3B.y1<y3<y2C.y3<y2<y1D.y2<y1<y35.参加足球联赛的每两支球队之间都要进行两场比赛,共要比赛110场,设参加比赛的球队有x支,根据题意,下面列出的方程正确的是()A.x(x+1)=110B.x(x﹣1)=110C.x(x+1)=110D.x(x﹣1)=1106.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是()A.B.C.D.7.如图,⊙O的直径CD=20,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,则AB的长为()A.8B.12C.16D.28.如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为()A.10°B.20°C.30°D.40°9.已知抛物线y=ax2+bx+3在坐标系中的位置如图所示,它与x,y轴的交点分别为A,B,P是其对称轴x=1上的动点,根据图中提供的信息,以下结论中不正确的是()A.2a+b=0B.a>﹣C.△P AB周长的最小值是D.x=3是ax2+bx+3=0的一个根10.二次函数y=ax2+bx+c的图象如图所示,其对称轴是直线x=1.下列结论:①abc<0;②a+c>b;③4a+c>0;④a+b≤m(am+b)(m为实数).其中结论正确的个数为()A.4个B.3个C.2个D.1个二.填空题(共33分)11.一个三角形的两边长分别为3和6,第三边长是方程x2﹣10x+21=0的根,则三角形的周长为.12.若x1,x2方程x2﹣4x﹣2021=0的两个实数根,则代数式x12﹣2x1+2x2的值等于.13.把二次函数y=2x2﹣1的图象向左平移1个单位长度,再向下平移2个单位长度,平移后抛物线的解析式为.14.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△DEC,连接AD,若∠BAC =25°,则∠BAD=.15.如图,将△ABC绕点A逆时针旋转得到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD=.16.抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,则当y<0时,x的取值范围是.17.已知点P(x,y)在二次函数y=2(x+1)2﹣3的图象上,当﹣2<x≤1时,y的取值范围是.18.如图,⊙O的半径为2,弦AB=,E为弧AB的中点,OE交AB于点F,则OF 的长为.19.如图,直线a⊥b,垂足为H,点P在直线b上,PH=4cm,O为直线b上一动点,若以1cm为半径的⊙O与直线a相切,则OP的长为.20.若一个圆锥的底面半径为1cm,它的侧面展开图的圆心角为90°,则这个圆锥的母线长为cm.21.如图,二次函数y=ax2+bx+c的图象与x轴的两个交点分别为(﹣1,0),(3,0)对于下列命题:①b﹣2a=0;②abc<0;③a﹣2b+4c<0④8a+c<0,其中正确的有.三.解答题(共57分)22.如图,已知△ABC是锐角三角形(AC<AB).(1)请在图1中用无刻度的直尺和圆规作图:作直线l,使l上的各点到B、C两点的距离相等;设直线l与AB、BC分别交于点M、N,作一个圆,使得圆心O在线段MN上,且与边AB、BC相切;(不写作法,保留作图痕迹)(2)在(1)的条件下,若BM=,BC=2,则⊙O的半径为.23.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABO的三个顶点坐标分别为A(﹣1,3),B(﹣4,3),O(0,0).(1)画出△ABO关于x轴对称的△A1B1O,并写出点A1的坐标;(2)画出△ABO绕点O顺时针旋转90°后得到的△A2B2O,并写出点A2的坐标;(3)在(2)的条件下,求点A旋转到点A2所经过的路径长(结果保留π).24.已知关于x的一元二次方程x2+(2m﹣1)x+m2﹣1=0(1)若该方程有两个实数根,求m的取值范围.(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2﹣10m=2,求m的值.25.已知:如图,在正方形ABCD中,G是CD上一点,延长BC到E,使CE=CG,连接BG并延长交DE于F.(1)求证:△BCG≌△DCE;(2)将△DCE绕点D顺时针旋转90°得到△DAE′,判断四边形E′BGD是什么特殊四边形,并说明理由.26.已知:如图,A是⊙O上一点,半径OC的延长线与过点A的直线交于B点,OC=BC,AC=OB.(1)求证:AB是⊙O的切线;(2)若∠ACD=45°,OC=2,求弦CD的长.27.山西转型综合改革示范区的一工厂里,生产的某种产品按供需要求分为十个档次.若生产第一档次(最低档次)的产品,一天可生产76件,每件的利润为10元,每提高一个档次,每件的利润增加2元,每天的产量将减少4件.设产品的档次(每天只生产一个档次的产品)为x,请解答下列问题.(1)用含x的代数式表示:一天生产的产品件数为件,每件产品的利润为元;(2)若该产品一天的总利润为1080元,求这天生产产品的档次x的值.28.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点左侧,B点的坐标为(4,0),与y轴交于C(0,﹣4)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式;(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.参考答案一.选择部分(共30分)1.解:A、是二次函数,故此选项符合题意;B、不是二次函数,故此选项不合题意;C、a=0时,不是二次函数,故此选项不合题意;D、不是二次函数,故此选项不合题意;故选:A.2.解:A.该图形是轴对称图形,不是中心对称图形,故此选项不合题意;B.该图形是轴对称图形,不是中心对称图形,故此选项不合题意;C.该图形既是轴对称图形,又是中心对称图形,故此选项符合题意;D.该图形是中心对称图形,不是轴对称图形,故此选项不合题意.故选:C.3.解:∵关于x的一元二次方程(k﹣1)x2+x+1=0有两个实数根,∴,解得:k≤且k≠1.故选:D.4.解:∵a>1,∴0<a﹣1<a<a+1,∵y=﹣2x2,﹣2<0,∴当x>0时,y随x值的增大而减少,∴y3<y2<y1.故选:C.5.解:设有x个队参赛,则x(x﹣1)=110.故选:D.6.解:∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴当小明到达该路口时,遇到绿灯的概率P==,故选:D.7.解:连接OA,∵⊙O的直径CD=20,OM:OC=3:5,∴OC=10,OM=6,∵AB⊥CD,∴AM===8,∴AB=2AM=16.故选:C.8.解:∵∠BAC=90°,∠B=50°,∴∠C=40°,∵△ADB与△ADB'关于直线AD对称,点B的对称点是点B',∴∠AB'B=∠B=50°,∴∠CAB'=∠AB'B﹣∠C=10°,故选:A.9.解:A、根据图象知,对称轴是直线x=﹣=1,则b=﹣2a,即2a+b=0.故A正确;B、根据图象知,点A的坐标是(﹣1,0),对称轴是直线x=1,则根据抛物线关于对称轴对称的性质知,抛物线与x轴的另一个交点的坐标是(3,0),∴x=3时,y=9a+3b+3=0,∴9a﹣6a+3=0,∴3a+3=0,∵抛物线开口向下,则a<0,∴2a+3=﹣a>0,∴a>﹣,故B正确;C,点A关于x=1对称的点是A′为(3,0),即抛物线与x轴的另一个交点.连接BA′与直线x=1的交点即为点P,则△P AB周长的最小值是(BA′+AB)的长度.∵A(﹣1,0),B(0,3),A′(3,0),∴AB=,BA′=3.即△P AB周长的最小值是+3,故C错误;D、根据图象知,点A的坐标是(﹣1,0),对称轴是直线x=1,则根据抛物线关于对称轴对称的性质知,抛物线与x轴的另一个交点的坐标是(3,0),所以x=3是ax2+bx+3=0的一个根,故D正确;故选:C.10.解:∵函数开口方向向上,a>0,∵对称轴为x=1,则﹣=1,∴b=﹣2a<0,∵与y轴交点在y轴负半轴,∴c<0,∴abc>0,故①错;当x=﹣1时,y=a﹣b+c>0,即a+c>b,故②正确;对称轴为x=1,则﹣=1,即b=﹣2a,由上知,a﹣b+c>0,则a+2a+c>0,即3a+c>0,∴4a+c>a>0,故③正确;由图象可得,当x=1时,函数取得最小值,∴对任意m为实数,有am2+bm+c≥a+b+c,∴am2+bm≥a+b,即a+b≤m(am+b),故④正确.综上,正确的个数有三个.故选:B.二.填空题(共33分)11.解:解方程x2﹣10x+21=0得x1=3、x2=7,∵3<第三边的边长<9,∴第三边的边长为7.∴这个三角形的周长是3+6+7=16.故答案为:16.12.解:∵x1,x2是方程x2﹣4x﹣2021=0的两个实数根,∴x1+x2=4,x12﹣4x1﹣2021=0,即x12﹣4x1=2021,则原式=x12﹣4x1+2x1+2x2=x12﹣4x1+2(x1+x2)=2021+2×4=2021+8=2029.故答案为:2029.13.解:由“左加右减”的原则可知,将二次函数y=2x2﹣1的图象向左平移1个单位长度所得抛物线的解析式为:y=2(x+1)2﹣1;由“上加下减”的原则可知,将抛物线y=2(x+1)2﹣1向下平移2个单位长度所得抛物线的解析式为:y=2(x+1)2﹣1﹣2=2(x+1)2﹣3,故答案为:y=2(x+1)2﹣3.14.解:∵Rt△ABC绕其直角顶点C按顺时针方向旋转90°后得到Rt△DEC,∴AC=CD,∴△ACD是等腰直角三角形,∴∠CAD=45°,则∠BAD=∠BAC+∠CAD=25°+45°=70°,故答案为:70°.15.解:∵将△ABC绕点A逆时针旋转的到△ADE,点C和点E是对应点,∴AB=AD=1,∠BAD=∠CAE=90°,∴BD===.故答案为.16.解:∵抛物线y=ax2+bx+c(a≠0)与x轴的一个交点坐标为(﹣3,0),对称轴为直线x=﹣1,∴抛物线与x轴的另一个交点为(1,0),由图象可知,当y<0时,x的取值范围是﹣3<x<1.故答案为:﹣3<x<1.17.解:∵二次函数y=2(x+1)2﹣3,∴该函数对称轴是直线x=﹣1,当x=﹣1时,取得最小值,此时y=﹣3,∵点P(x,y)在二次函数y=2(x+1)2﹣3的图象上,∴当﹣2<x≤1时,y的取值范围是:﹣3≤y≤5,故答案为:﹣3≤y≤5.18.解:∵E为弧AB的中点,∴OE⊥AB于F,∵AB=2,∴AF=BF=,在Rt△OAF中,OA=2,,故答案为:1.19.解:∵直线a⊥b,O为直线b上一动点,∴⊙O与直线a相切时,切点为H,∴OH=1cm,当点O在点H的左侧,⊙O与直线a相切时,如图1所示:OP=PH﹣OH=4﹣1=3(cm);当点O在点H的右侧,⊙O与直线a相切时,如图2所示:OP=PH+OH=4+1=5(cm);∴⊙O与直线a相切,OP的长为3cm或5cm,故答案为:3cm或5cm.20.解:设母线长为lcm,则=2π×1解得:l=4.故答案为:4.21.解:根据图象可得:a>0,c<0,对称轴:x=﹣>0,①∵它与x轴的两个交点分别为(﹣1,0),(3,0),∴对称轴是直线x=1,∴﹣=1,∴b+2a=0,故①错误;②∵a>0,∴b<0,∵c<0,∴abc>0,故②错误;③∵a﹣b+c=0,∴c=b﹣a,∴a﹣2b+4c=a﹣2b+4(b﹣a)=2b﹣3a,又由①得b=﹣2a,∴a﹣2b+4c=﹣7a<0,故此选项正确;④根据图示知,当x=4时,y>0,∴16a+4b+c>0,由①知,b=﹣2a,∴8a+c>0;故④错误;故正确为:③1个.故答案为:③.三.解答题(共57分)22.解:(1)如图直线l,⊙O即为所求.(2)过点O作OE⊥AB于E.设OE=ON=r,∵BM=,BC=2,MN垂直平分线段BC,∴BN=CN=1,∴MN===,∵s△BNM=S△BNO+S△BOM,∴×1×=×1×r+××r,解得,r=.故答案为:.23.解:(1)如图,△A1B1O即为所求,点A1的坐标(﹣1,﹣3);(2)如图,△A2B2O即为所求,点A2的坐标(3,1);(3)点A旋转到点A2所经过的路径长==π24.解:(1)由题意可知:Δ=(2m﹣1)2﹣4(m2﹣1)≥0,∴﹣4m+5≥0,∴m≤;(2)由题意可知:x1+x2=1﹣2m,x1x2=m2﹣1,∵(x1﹣x2)2﹣10m=2,∴(x1+x2)2﹣4x1x2﹣10m=2,∴(1﹣2m)2﹣4(m2﹣1)﹣10m=2,解得:m=;25.(1)证明:∵四边形ABCD是正方形,∴BC=CD,∠BCD=90°.∵∠BCD+∠DCE=180°,∴∠BCD=∠DCE=90°.又∵CG=CE,∴△BCG≌△DCE.(2)解:四边形E′BGD是平行四边形.理由如下:∵△DCE绕D顺时针旋转90°得到△DAE′,∴CE=AE′.∵CE=CG,∴CG=AE′.∵四边形ABCD是正方形,∴BE′∥DG,AB=CD.∴AB﹣AE′=CD﹣CG.即BE′=DG.∴四边形E′BGD是平行四边形.26.(1)证明:如图,连接OA;∵OC=BC,AC=OB,∴OC=BC=AC=OA.∴△ACO是等边三角形.∴∠O=∠OCA=60°,∵AC=BC,∴∠CAB=∠B,又∠OCA为△ACB的外角,∴∠OCA=∠CAB+∠B=2∠B,∴∠B=30°,又∠OAC=60°,∴∠OAB=90°,∴AB是⊙O的切线;(2)解:作AE⊥CD于点E,∵∠O=60°,∴∠D=30°.∵∠ACD=45°,AC=OC=2,∴在Rt△ACE中,CE=AE=;∵∠D=30°,∴AD=2,∴DE=AE=,∴CD=DE+CE=+.27.解(1)一天生产的产品件数为[76﹣4(x﹣1)]=(80﹣4x)件,每件产品的利润为[10+2(x﹣1)]=(8+2x)元,故答案为(80﹣4x),(8+2x);(2)当利润是1080元时,即:[10+2(x﹣1)][76﹣4(x﹣1)]=1080,整理得:﹣8x2+128x+640=1080,解得x1=5,x2=11,因为x=11>10,不符合题意,舍去.因此取x=5,当生产产品的质量档次是在第5档次时,一天的总利润为1080元.28.解:(1)将B、C两点的坐标代入y=x2+bx+c得:,解得:,所以二次函数的表达式为:y=x2﹣3x﹣4;(2)存在点P,使四边形POP′C为菱形;设P点坐标为(x,x2﹣3x﹣4),PP′交CO于E若四边形POP′C是菱形,则有PC=PO;如图,连接PP′,则PE⊥CO于E,∵C(0,﹣4),∴CO=4,又∵OE=EC,∴OE=EC=2∴y=﹣2;∴x2﹣3x﹣4=﹣2,解得:x1=,x2=(不合题意,舍去),∴P点的坐标为(,﹣2).。
第1页,共4页 第2页,共4页………○…………○…………内…………○…………装…………○…………订…………○…………线…………○………………○…………○…………外…………○…………装…………○…………订…………○…………线…………○………考点考场考号姓 名座位号2022-2023学年第一学期期末质量监测试卷九年级 数学学科(考试时间:120分钟 考试分值:150分)一、选择题。
(每题5分,共45分)1.在下列图形中,是中心对称图形的是( )A.B.C.D.2.下列事件属于必然事件的是( )A.打开电视,正在播放新闻B.我们班的同学将会有人成为航天员C.实数0<a ,则02<aD.新疆的冬天不下雪3.若关于x 的一元二次方程01)12=++-x x k (有两个实数根,则k 的取值范围是( ) A.45≤k B.45>kC.45<k 且1≠kD.45≤k 且1≠k4.用配方法解方程0982=++x x ,变形后的结果正确的是 A.9)4(2-=+x B.7)4(2-=+x C.25)4(2=+xD.7)4(2=+x5.二次函数3)1(2+-=x y 的图象的顶点坐标是 A.)3,1(-B.)3,1(C.)3,1(--D.)3,1(-6.如图,在圆O 中,所对的圆周角50=∠ACB ,若P 为上一点,55=∠AOP ,则=∠POB ( ) A.30B.45 C.55D.60第6题图 第7题图7.小红要过生日了,为了筹备生日聚会,准备自己动手用纸板制作圆锥形生日礼帽.如图,圆锥帽底面半径为cm 9,母线长为cm 36,请你帮助他们计算制作一个这样的生日礼帽需要纸板的面积为( ) A.2648cm ΠB.2432cm ΠC.2324cm ΠD.2216cm Π8.下列各图是在同一直角坐标系内,二次函数c x c a ax y +++=)(2与一次函数c ax y +=的大致图象,有且只有一个是正确的,正确的是( )A.B. C. D.9.宾馆有50间房供游客居住,当毎间房每天定价为180元时,宾馆会住满;当毎间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的毎间房每天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价定为x 元.则有( )A.10890)1050)(20180=--+xx ( B.10890)1018050)(20=---x x (C.180902050)108050(=⨯---x xD.108902050)1050)(180=⨯--+xx (二、 填空题。
2022-2023学年第一学期九年级数学期末模拟测试题(附答案)一、选择题(共计24分)1.已知sinα=,若α是锐角,则α的度数为()A.30°B.45°C.60°D.90°2.如图所示几何体的主视图是()A.B.C.D.3.圆形物体在阳光下的投影可能是()A.三角形B.圆形C.矩形D.梯形4.如图,l1∥l2∥l3,直线AC和DE分别交l1、l2、l3于点A、B、C和点D、B、E,AB=4,BC=8,DB=3,则DE的长为()A.4B.5C.6D.95.反比例函数y=﹣图象上的两点为(x1,y1),(x2,y2),且x1<x2<0,则y1与y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.不能确定6.如图,图形甲与图形乙是位似图形,点O是位似中心,点A、B的对应点分别为点A′、B′,若OA'=2OA,则图形乙的面积是图形甲的面积的()A.2倍B.3倍C.4倍D.5倍7.如图,四边形ABCD为菱形,若CE为边AB的垂直平分线,则∠ADB的度数为()A.20°B.25°C.30°D.40°8.已知反比例函数的图象在每个象限内y随x的增大而增大,则关于x的一元二次方程的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法确定二、填空题(共计15分)9.若关于x的方程ax2﹣2ax+1=0的一个根是﹣1,则a的值是.10.如图,在正方形网格中,△AOC的顶点均在格点上,则tan∠CAO的值为.11.在一个不透明的盒子中装有黑球和白球共200个,这些球除颜色外其余均相同,将球搅匀后任意摸出一个球,记下颜色后放回,通过大量重复摸球试验后,发现摸到白球的频率稳定在0.2,则盒子中白球有个.12.如图,点A为反比例函数的图象上一点,连接AO并延长交反比例函数的图象于另一点B,过点A、B分别作x轴、y轴的平行线,两平行线交于点C,则△ABC的面积为.13.如图,将矩形ABCD放置在平面直角坐标系的第一象限内,使顶点A,B分别在x轴、y轴上滑动,矩形的形状保持不变,若AB=2,BC=1,则顶点C到坐标原点O的最大距离为.三、解答题(计81分)14.解方程:(2x﹣9)2=5(2x﹣9).15.如图,AD是△ABC的高,cos B=,sin C=,AC=10,求AD及AB的长.16.如图,在四边形ABCD中,AD∥BC,点E在BC上,∠C=∠DEA.(1)求证:△DEC∽△ADE;(2)若CE=2,DE=4,求△DEC与△ADE的周长之比.17.已知反比例函数y=(k为常数).(1)若函数图象在第二、四象限,求k的取值范围;(2)若x>0时,y随x的增大而减小,求k的取值范围.18.如图,在正方形ABCD中,E,F分别为AB,AD上的点,且AE=AF,点M是EF的中,点,连接CM、CF、CE.求证:CM⊥EF.19.《城镇污水处理厂污染物排放标准》中硫化物的排放标准为1.0mg/L.某污水处理厂在自查中发现,所排污水中硫化物浓度超标,因此立即整改,并开始实时监测.据监测,整改开始第60小时时,所排污水中硫化物的浓度为5mg/L;从第60小时开始,所排污水中硫化物的浓度y(mg/L)是监测时间x(小时)的反比例函数,其图象如图所示.(1)求y与x之间的函数关系式;(2)按规定所排污水中硫化物的浓度不超过0.8mg/L时,才能解除实时监测,此次整改实时监测的时间至少要多少小时?20.如图,▱ABCD的对角线AC、BD交于点O,点E在边CB的延长线上,连接AE,且∠EAC=90°,AE2=EB•EC.求证:四边形ABCD是矩形.21.2021年是中国共产党建党100周年,全国各地积极开展以“弘扬红色文化,重走长征路”为主题的教育学习活动,郑州市“二七纪念堂“成为重要的活动基地.据了解,今年3月份该基地接待参观人数10万,5月份接待参观人数增加到12.1万.求这两个月参观人数的月平均增长率.22.一个阳光明媚的午后,王婷和李力两个人去公园游玩,看见公园里有一棵古老的大树,于是,他们想运用所学知识测量这棵树的高度,如图,李力站在大树AB的影子BC的末端C处,同一时刻,王婷在李力的影子CE的末端E处做上标记,随后两人找来米尺测得BC=10米,CE=2米.已知李力的身高CD=1.6米,B、C、E在一条直线上,DC⊥BE,AB⊥BE,请你运用所学知识,帮助王婷和李力求出这棵树的高度AB.23.随着信息技术的迅猛发展,移动支付已成为一种常见的支付方式.在一次购物中,陈老师和陆老师都随机从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付.(1)陆老师选择用“微信”支付的概率是;(2)请用画树状图或列表的方法表示所有结果,并求出两位老师恰好一人用“微信”支付,一人用“银行卡”支付的概率.24.晓琳想用所学知识测量塔CD的高度.她找到一栋与塔CD在同一水平面上的楼房,在楼房的A处测得塔CD底部D的俯角为26.6°,测得塔CD顶部C的仰角为45°,AB ⊥BD,CD⊥BD,BD=30m,求塔CD的高度.(参考数据:sin26.6°≈0.45,c0s26.6°≈0.89,tan26.6°≈0.50)25.如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于A、B两点,其中点A的坐标为(﹣1,4),点B的坐标为(4,n).(1)求这两个函数的表达式;(2)一次函数y=k1x+b的图象交y轴于点C,若点P在反比例函数y=的图象上,使得S△COP=9,求点P的坐标.26.如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF 的顶点E与△ABC的斜边BC的中点重合,将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)当点Q在线段CA上时,如图1,求证:△BPE∽△CEQ;(2)当点Q在线段CA的延长线上时,如图2,△BPE和△CEQ是否相似?说明理由;(3)在(2)的条件下,若BP=1,CQ=,求PQ的长.参考答案一、选择题(共计24分)1.解:∵sinα=,α是锐角,∴α的度数为:45°.故选:B.2.解:由题意知,几何体的主视图为,故选:D.3.解:∵同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变.∴圆形物体在阳光下的投影可能是圆形、线段和椭圆形,故选:B.4.解:∵l1∥l2∥l3,∴,∵AB=4,BC=8,DB=3,∴,∴BE=6,∴DE=DB+BE=3+6=9,故选:D.5.解:∵反比例函数y=﹣中,k=﹣6<0,∴此函数的图象在二、四象限,在每一象限内y随x的增大而增大,∵x1<x2<0,∴(x1,y1)、(x2,y2)两点均位于第二象限,∴y1<y2.故选:B.6.解:由题意可得,甲乙两图形相似,且相似比为,根据相似图形的面积比是相似比的平方可得,图形乙的面积是图形甲的面积的4倍,故选:C.7.解:如图,连接AC,∵四边形ABCD为菱形,∴AB=BC=AD,∵CE为边AB的垂直平分线,∴AC=BC,∴AB=AC=BC,∴△ABC是等边三角形,∴∠ABC=60°,∴∠ABD=30°,∵AB=AD,∴∠ADB=∠ABD=30°,故选:C.8.解:∵在每一个象限内y随着x增大而增大,∴k<0,∴一元二次方程的判别式Δ=b2﹣4ac=(2k−1)2−4(k2+14)=﹣4k>0,∴方程有两个不相等的实数根,故选:C.二、填空题(共计15分)9.解:∵关于x的方程ax2﹣2ax+1=0的一个根是﹣1,∴a+2a+1=0,∴3a+1=0,解得a=﹣,故答案为:﹣.10.解:∵正方形网格中,△AOC的顶点均在格点上,∴∠ACO=90°,∴,故答案为:.11.解:因为通过大量重复摸球试验后,发现摸到白球的频率稳定在0.2,所以摸到白球的概率约为0.2,所以白球有200×0.2=40,故答案为:40.12.解:设点A的坐标为(﹣a,),根据中心对称的性质知点B的坐标为(a,﹣),∴点C的坐标为(a,),∴AC=2a,BC=,则△ABC的面积为:×2a×=12.故答案为:12.13.解:如图,取AB的中点E,连接CE,OE,∵∠AOB=90°,在Rt△AOB中,OE=AB=1,∵∠ABC=90°,AE=BE=CB=1,∴在Rt△CBE中,CE==,∵OC≤CE+OE=1+,∴OC的最大值为1+,即点C到原点O距离的最大值是1+,故答案为:1+.三、解答题(共计81分)14.解:方程移项得:(2x﹣9)2﹣5(2x﹣9)=0,分解因式得:(2x﹣9)(2x﹣9﹣5)=0,所以2x﹣9=0或2x﹣14=0,解得:x1=4.5,x2=7.15.解:在Rt△ACD中,,∵,∴,∴AD=6.在Rt△ABD中,,∴∠B=60°,∴∠BAD=90°﹣∠B=30°.∴,∴,∴.16.证明:(1)∵AD∥BC,∴∠DEC=∠ADE.又∵∠C=∠DEA,∴△DEC∽△ADE.解:(2)∵△DEC∽△ADE,∴△DEC与△ADE的周长之比===.17.解:(1)∵函数图象在第二、四象限,∴k﹣5<0,解得:k<5,∴k的取值范围是k<5;(2)∵若x>0时,y随x的增大而减小,∴k﹣5>0,解得:k>5,∴k的取值范围是k>5.18.证明:∵四边形ABCD是正方形∴AB=AD=BC=CD,∠B=∠D=90°∵AE=AF,∴BE=DF.在△BCE和△DCF中,,∴△BCE≌△DCF(SAS),∴CE=CF,∵点M是EF的中点,∴CM⊥EF.19.解:(1)设y与x之间的函数关系式为,根据题意,得:k=xy=60×5=300,∴y与x之间的函数关系式为.(2)当y=0.8时,.20.证明:∵AE2=EB•EC,∴,又∵∠AEB=∠CEA,∴△AEB∽△CEA,∴∠EBA=∠EAC而∠EAC=90°,∴∠EBA=∠EAC=90°,又∵∠EBA+∠CBA=180°,∴∠CBA=90°,而四边形ABCD是平行四边形,∴四边形ABCD是矩形.21.解:设这两个月参观人数的月平均增长率为x,根据题意,得:10(1+x)2=12.1,解得:x1=0.1=10%,x2=﹣2.1(舍去),答:这两个月参观人数的月平均增长率为10%.22.解:根据题意可得,AC∥DE,∴∠DEC=∠ACB.又∵DC⊥BE,AB⊥BE,即∠DCE=∠ABC=90°,∴△ABC∽△DCE,∴.∵BC=10米,CE=2米,CD=1.6米.∴,∴AB=8米,即这棵树的高度AB为8米.23.解:(1)陆老师选择用“微信”支付的概率是,故答案为:;(2)将“微信”、“支付宝”、“银行卡”三种支付方式分别记为:A、B、C,画树状图如下:共有9种等可能的结果,其中两位老师恰好一人用“微信”支付,一人用“银行卡”支付的结果有2种,∴两位老师恰好一人用“微信”支付,一人用“银行卡”支付的概率为.24.解:过A点作AE⊥CD于E点,由题意得,四边形ABDE为矩形,∵∠DAE=26.6°,BD=30m,∴,∴DE=tan26.6°⋅AE≈0.50×30=15m,∵∠CAE=45°,∴∠ACE=45°,∴AE=EC=30m,∴CD=CE+ED=30+15=45(m),∴塔CD的高度是45m.25.解:(1)把点A(﹣1,4)代入反比例函数得,,∴k2=﹣4,∴反比例函数的表达式为,将点B(4,n)代入得,,∴B(4,﹣1),将A、B的坐标代入y=k1x+b得,解得∴一次函数的表达式为y=﹣x+3.(2)在y=﹣x+3中,令x=0,则y=3,∴直线AB与y轴的交点C为(0,3),设P(x,y),由题意得,∴|x|=6,∴x=6或x=﹣6,当x=6时,,此时点P的坐标为;当x=﹣6时,,此时点P的坐标为.∴点P的坐标或.26.(1)证明:如图1中,∵△ABC和△DEF是两个全等的等腰直角三角形,∴∠B=∠C=∠DEF=45°,∵∠BEQ=∠BEP+∠DEF=∠EQC+∠C,∴∠BEP+45°=∠EQC+45°,∴∠BEP=∠EQC,∵∠B=∠C,∴△BPE∽△CEQ;(2)解:结论:△BPE∽△CEQ.理由:如图2中,∵∠BEQ=∠EQC+∠C,即∠BEP+∠DEF=∠EQC+∠C,∴∠BEP+45°=∠EQC+45°,∴∠BEP=∠EQC,又∵∠B=∠C,∴△BPE∽△CEQ;(3)解:∵△BPE∽△CEQ,∴,∵BE=CE,∴,解得:BE=CE=,∴BC=,∴AB=AC=,∴AQ=CQ﹣AC=,AP=AB﹣BP=3﹣1=2,在Rt△APQ中,PQ=.。
2022-2023学年度第一学期期末质量检测九年级数学试卷(考试时间:120分钟;满分:120分)友情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!本次考试只交答题纸,请同学们务必将学校、班级、姓名写在答题纸的卷面上,务必在答题纸规定的位置上写答案,在其它位置写答案不得分!一、单选题(本题满分24分,共有8道小题,每小题3分) 请将1—8各小题所选答案涂在答题纸规定的位置.1.两个形状相同、大小相等的小木块放置于桌面上,则其左视图是( ) .A .B .C .D .2.如图,在Rt △ABC 中,∠C =90°,BC =3,AB =2,则下列结论正确的是( )A .23sin =B B .21tan =BC .23cos =A D .3tan =A 3.小丽和小强在阳光下行走,小丽身高1.6米,她的影长2.0米,小丽比小强矮10cm,此刻小强的影长是( )米.A .817 B .178 C .815 D .158 4.在一个不透明的袋子中有除颜色外均相同的6个白球和若干黑球,通过多次摸球试验后,发现摸到白球的频率约为30%,估计袋中黑球有( )个.A .8B .9C .14D .15ACB第2题图 第1题图5.方程22x -5x +m = 0没有实数根,则m 的取值范围是( )A.m >825 B.m <825 C.m ≤825 D.m ≥825 6.如图,□ABCD 中,O 是对角线AC 、BD 的交点,△ABO 是等边三角形,若AC =8cm ,则□ABCD 的面积是( )cm 2 . A .16 B .43C .83D .1637.某校科技小组进行野外考察,利用铺垫木板的方式通过了一片烂泥湿地.当人和木板对湿地的压力一定时,人和木板对地面的压强P (Pa )是木板面积S (m 2)的反比例函数,其图象如图,点A 在反比例函数图象上,坐标是(8,30),当压强P (Pa )是4800Pa 时,木板面积为( )m 2A . 0.5B .2C .0.05D . 20第7题图8.如图,在□ABCD 中,AB =6,BC =9,∠ABC ,∠BCD 的角平分线分别交AD 于E 和F ,BE 与CF 交于点O ,则△EFO 与△BCO 面积之比是( )A .1:3B . 1:9C .2:3D . 9:1 二、填空题(本题满分24分,共有8道小题,每小题3分) 请将 9—16各小题的答案填写在答题纸规定的位置.9.计算:tan45°+3sin60°=__________.10.由于手机市场的迅速成长,某品牌的手机为了赢得消费者,在一年之内连续两次降价,从5980元降到4698元,如果每次降低的百分率相同,求每次降低的百分率是 多少?设这个降低百分率为x ,则根据题意,可列方程: . 11.如图,△ABC 中,D 、E 分别是AB 、AC 上的点,且DE //BC , 若AD = 6,DB = 8,AE =4,则AC = .12.在平面直角坐标系中,已知点A (﹣4,﹣4),B (﹣6,2),以原点O 为位似中心,ADE 第11题图B C A (8,30)AODCB第6题图AODCB第8题图F E位似比为2:1,将△ABO 缩小,则点B 的对应点B ′的坐标是 .13.如图所示,某小区想借助互相垂直的两面墙(墙体足够长),在墙角区域40m 长的篱笆围成一个面积为384m 2矩形花园.设宽AB =x m ,且AB <BC ,则x = m . 14.如图,在水平的地面BD 上有两根与地面垂直且长度相等的电线杆AB ,CD ,以点B 为坐标原点,直线BD 为x 轴建立平面直角坐标系.已知电线杆之间的电线可近似地看成抛物线62.38.02+-=x x y 则电线最低点离地面的距离是 米.15.已知二次函数c bx ax y ++=2的图象如图所示,它与x 轴的两个交点的坐标分别为 (﹣1,0)(2,0).下列结论:①0<abc ;②042>-ac b ;③当021<<x x 时,21y y <;④当﹣1<x <2时,y <0.正确的有 .(填正确结论的序号).16.如图,在菱形ABCD 中,对角线AC =8cm ,BD =4cm , AC ,BD 相交于点O ,过点A 作AE ⊥CD 交CD 的延长线于点E ,过点O 作OF ⊥AE 交AE 于点F ,下列结论: ①tan ∠FOA =21; ②GO FG =; ③558=FO cm ;④S 梯形ABCE =5104cm 2. 正确的有 . (填正确结论的序号).F D OCGBAE第15题图 -1Oxy2第14题图ABxy(米) DC第13题图ABDOC第16题图三、作图题(本题满分4分)(保留作图痕迹,不写做法) 17.已知:线段m .求作:正方形ABCD,使正方形ABCD 边长AB=m .四、解答题(本题满分68分)18.解方程:(本小题满分8分,每小题4分)(1)872=-x x (用配方法). (2)282-22+=+x x x (用适当方法).19.(本小题满分6分)在一个不透明的盒子里,装有四个分别标有数字3、-3、6、-6的小球,小球的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为x ,放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y .(1)用列表法或树状图法表示出(x ,y )所有可能出现的结果; (2)求小明、小华各取一次小球所确定的数字和为0的概率.m如图,在矩形ABOC 中,AB =4,AC =6,点D 是边AB 的中点,反比例函数xky =1(x <0)的图象经过点D ,交AC 边于点E ,直线DE 的关系式为2y =m x +n (m ≠0).(1)求反比例函数的关系式和直线DE 的关系式;(2)在第二象限内,根据图象直接写出当x 时,21y y >.21.(本题满分8分)为全面实施乡村振兴战略,促进农业全面升级、农村全面进步、农民全面发展.如图,四边形ABCD 是某蔬菜大棚的侧面示意图,已知墙BC 与地面垂直,且长度为5米,现测得∠ABC =112°,∠D =67°,AB =4米,,求此蔬菜大棚的宽CD 的长度.(精确到0.1米)(参考数据:sin22°≈83,cos22°≈1615,tan22°≈53,sin67°≈1312, cos67°≈135,tan67°≈512)CB D ABDBOxy CDA E如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,DE ⊥AC ,BF ⊥AC ,垂足分别为E 、F .延长BF 至G ,使FG =BF ,连结DG .(1)求证:GF =DE .(2)当OF :BF =1 :2时,判断四边形DEFG 是什么特殊四边形?并说明理由.23.(本小题满分10分)“互联网+”时代,网上购物备受消费者青睐.越来越多的人可以足不出户就能进行网上购物,网上支付,中国电子商务的发展走在了世界的前列.某网店专售一种书包,其成本为每个40元,已知销售过程中,当售价为每个50元时,每月可销售500个.据市场调查发现,销售单价每涨2元,每月就少售20个.物价部门规定:销售单价不低于成本单价,且这种商品的利润率不得高于60%.设每个书包售x 元,每月销售量y 个.(1)求出y 与x 的函数关系式;(2)设该网店每月获得的利润为W 元,当销售单价为多少元时,每月获得的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定每月从利润中捐出100元资助贫困学生.为了保证捐款后每月获得的利润不低于6650元,且让消费者得到最大的实惠,如何确定该商品的销售单价?D A CBGOEF(1)阅读下面的材料:如果函数y =f (x )满足:对于自变量x 的取值范围内的任意1x ,2x , (1)若1x <2x ,都有f (1x )<f (2x ),则称f (x )是增函数; (2)若1x <2x ,都有f (1x )>f (2x ),则称f (x )是减函数. 例题:证明函数f (x )=x5(x >0)是减函数. 证明:设0<1x <2x , f (1x )﹣f (2x )=2155x x -=211255x x x x -=21125x x x x )(-. ∵0<1x <2x ,∴2x ﹣1x >0,1x 2x >0. ∴21125x x x x )(->0.即f (1x )﹣f (2x )>0.∴f (1x )>f (2x ). ∴函数f (x )=x5(x >0)是减函数. (2)根据以上材料,解答下面的问题: 已知:函数f (x )=x x 31212++(x <0), ①计算:f (﹣1)= ,f (﹣2)= ; ②猜想:函数f (x )=x x 31212++(x <0)是 函数(填“增”或“减”); ③验证:请仿照例题证明你对②的猜想.如图,矩形ABCD 中,AB =4cm ,AD =5cm ,E 是AD 上一点,DE =3cm ,连接BE 、CE .点P 从点C 出发,沿CE 方向向点E 匀速运动,运动速度2 cm/s ,同时点Q 从点B 出发,沿BC 方向匀速运动,运动速度均为1cm/s ,连接PQ . 设点P 、Q 的运动时间为t (s )(0<t <2.5).(1)当t 为何值时,△PQC 是等腰三角形?(2)设五边形ABQPE 的面积为y (cm 2),求y 与t 之间的函数关系式. (3)是否存在某一时刻t ,使得S五边形ABQPE:S矩形ABCD=23:50?若存在,求出t的值,并求出此时PQ 的长;若不存在,请说明理由.APD CBEQA DCBE备用图参考答案及评分标准一、选择题(本题满分24分,共有8道小题,每小题3分)二、填空题(本题满分24分,共有8道小题,每小题3分 ) 9.25 10.5980(1-x )2=4698 11.328 12.(-3,1),(3,-1) 13.16 14. 2.8 15.①①① 16.①①① 三、作图题(本题满分4分)17.作图正确3分,结论1分 四、解答题(本题满分68分)18.(本题满分8分,每小题4分 )本题只给出最后结果,阅卷时注意分步得分. (1)1,821-==x x …………4分 (2) 313,13321-=+=x x ……………4分19.(本题满分6分)20. (本小题满分8分)解:(1)∵点D 是边AB 的中点,AB =4,∴B D =2,∵四边形ABOC 是矩形,AC =6, ∴D (-6,2), ∵反比例函数xky =1(x <0)的图象经过点D , ∴k =-12,∴反比例函数的关系式为xy 121-=(x <0),…….4分 当y =4时,x =-3, ∴E (-3,4),把D (-6,2)和E (-3,4)代入y 2=mx +n (m ≠0)得,⎩⎨⎧=+-=+-4326n m n m∴⎪⎩⎪⎨⎧==632n m 解得∴直线DE 的解析式为6322+=x y …….6分 (2)03-6<<-<x x 或或(03-69<<-<<-x x 或)(两个答案都可以)……8分BOxyCD AE21. (本小题满分8分)解:如图,过点A 作AE ⊥BC 于点E ,过点B 作BF ⊥AE 于点F ,…….1分 根据题意可知:AB =4,,CB=5,∠ABF =22°,分米。
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题3分,共30分)1.已知抛物线24y x bx =-++经过(2,)n -和(4, )n 两点,则n 的值为( )A .﹣2B .﹣4C .2D .4 2.如图,ABC ∆中,点D ,E 分别是边AB ,AC 上的点,//DE BC ,点H 是边BC 上的一点,连接AH 交线段DE 于点G ,且12BH DE ==,8DG =,12ADG S ∆=,则S 四边形BCED ( )A .24B .22.5C .20D .25 3.如图,抛物线2144y x =-与x 轴交于A 、B 两点,P 是以点C (0,3)为圆心,2为半径的圆上的动点,Q 是线段PA 的中点,连结OQ .则线段OQ 的最大值是( )A .3B .412C .72D .44.若一个圆内接正多边形的内角是108︒,则这个多边形是( )A .正五边形B .正六边形C .正八边形D .正十边形5.如图,在Rt △ABC 中,∠ACB=90°,CD 为AB 边上的高,CE 为AB 边上的中线,AD=2,CE=5,则CD=( )A.2 B.3 C.4 D.23 6.如图,点B、D、C是⊙O上的点,∠BDC=130°,则∠BOC是()A.100°B.110°C.120°D.130°7.函数ayx=与20()y ax a a=--≠在同一直角坐标系中的大致图象可能是()A.B.C.D.8.在一个不透明的布袋中装有60个白球和若干个黑球,除颜色外其他都相同,小红每次摸出一个球并放回,通过多次试验后发现,摸到黑球的频率稳定在0.6左右,则布袋中黑球的个数可能有()A.24 B.36 C.40 D.909.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是()A.4B.5C.6D.710.将抛物线的图象先向右平移2个单位,再向上平移3个单位后,得到的抛物线的解析式是()A. B.C.D.二、填空题(每小题3分,共24分)11.如图,直线l1∥l2,直线l3与l1、l2分别交于点A、B.若∠1=69°,则∠2的度数为_____.12.在一个不透明的袋中有2个红球,若干个白球,它们除颜色外其它都相同,若随机从袋中摸出一个球,摸到红球的概率是14,则袋中有白球_________个. 13.函数2y x =-中,自变量x 的取值范围是_____. 14.设,m n 分别为一元二次方程2320220x x +-=的两个实数根,则24m m n ++=______.15.如图,半径为3的圆A 经过原点O 和点02B (,),点C 是y 轴左侧圆A 优弧上一点,则tan OCB ∠=_____.16.在一个不透明的袋中装有12个红球和若干个白球,它们除颜色外都相同.从袋中随机摸出一个球,记下颜色后放回,并搅均,不断重复上述的试验共5000次,其中2000次摸到红球,请估计袋中大约有白球______个.17.如图,⊙O 的半径OC=10cm ,直线l ⊥OC ,垂足为H ,交⊙O 于A ,B 两点,AB=16cm ,直线l 平移____________cm时能与⊙O 相切.18.已知α,β是方程x 2﹣3x ﹣4=0的两个实数根,则α2+αβ﹣3α的值为_____.三、解答题(共66分)19.(10分)有四张正面分别标有数字1,2,3,4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,则抽到数字“2”的概率是___________;(2)从四张卡片中随机抽取2张卡片,请用列表或画树状图的方法求抽到“数字和为5”的概率.20.(6分)如图,大圆的弦AB 、AC 分别切小圆于点M 、N .(1)求证:AB=AC ;(2)若AB =8,求圆环的面积.21.(6分)已知,如图,△ABC 中,AD 是中线,且CD 2=BE·BA.求证:ED·AB=AD·BD.22.(8分)数学兴趣小组对矩形面积为9,其周长m 的范围进行了探究.兴趣小组的同学们已经能用“代数”的方法解决,以下是他们从“图形”的角度进行探究的部分过程,请把过程补充完整.(1)建立函数模型.设矩形相邻两边的长分别为x ,y ,由矩形的面积为9,得xy =9,即y =9x ;由周长为m ,得2(x+y )=m ,即y =﹣x+2m .满足要求的(x ,y )应是两个函数图象在第 象限内交点的坐标. (2)画出函数图象. 函数y =9x (x >0)的图象如图所示,而函数y =﹣x+2m 的图象可由直线y =﹣x 平移得到,请在同一直角坐标系中画出直线y =﹣x .(3)平移直线y=﹣x,观察函数图象.①当直线平移到与函数y=9x(x>0)的图象有唯一交点(3,3)时,周长m的值为;②在直线平移过程中,直线与函数y=9x(x>0)的图象交点个数还有哪些情况?请写出交点个数及对应的周长m的取值范围.(4)得出结论面积为9的矩形,它的周长m的取值范围为.23.(8分)在Rt△ABC中,∠ACB=90°,AC=1,记∠ABC=α,点D为射线BC上的动点,连接AD,将射线DA 绕点D顺时针旋转α角后得到射线DE,过点A作AD的垂线,与射线DE交于点P,点B关于点D的对称点为Q,连接PQ.(1)当△ABD为等边三角形时,①依题意补全图1;②PQ的长为;(2)如图2,当α=45°,且BD=43时,求证:PD=PQ;(3)设BC =t ,当PD =PQ 时,直接写出BD 的长.(用含t 的代数式表示)24.(8分)如图,在四边形ABCD 中,AB DC ,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE .(1)求证:四边形ABCD 是菱形;(2)若5AB =,2BD =,求OE 的长.25.(10分)定义:若函数()20y x bx c c =++≠与x 轴的交点,A B 的横坐标为A x ,B x ,与y 轴交点的纵坐标为C y ,若A x ,B x 中至少存在一个值,满足A C x y =(或B C x y =),则称该函数为友好函数.如图,函数223y x x =+-与x轴的一个交点A 的横坐标为-3,与y 轴交点C 的纵坐标为-3,满足A C x y =,称223y x x =+-为友好函数.(1)判断243y x x =-+是否为友好函数,并说明理由;(2)请探究友好函数2y x bx c =++表达式中的b 与c 之间的关系;(3)若2y x bx c =++是友好函数,且ACB ∠为锐角,求c 的取值范围. 26.(10分)(1)问题发现 如图1,在Rt ABC ∆中,2290AB AC BAC ==∠=︒,,点D 为BC 的中点,以CD 为一边作正方形CDEF ,点E 恰好与点A 重合,则线段BE 与AF 的数量关系为______________;(2)拓展探究在(1)的条件下,如果正方形CDEF 绕点C 旋转,连接BE CE AF ,,,线段BE 与AF 的数量关系有无变化?请仅就图2的情形进行说明;(3)问题解决.当正方形CDEF 旋转到B E F 、、三点共线时,直接写出线段AF 的长.参考答案一、选择题(每小题3分,共30分)1、B【分析】根据(2, )n -和(4, )n 可以确定函数的对称轴=1x ,再由对称轴的2b x =即可求解; 【详解】解:抛物线24y x bx =-++经过(2, )n -和(4, )n 两点,可知函数的对称轴=1x , 12b ∴=, 2b ∴=;224y x x ∴=-++,将点(2, )n -代入函数解析式,可得=-4n ;故选B .【点睛】本题考查二次函数图象上点的坐标;熟练掌握二次函数图象上点的对称性是解题的关键.2、B【分析】由12BH DE ==,8DG =,求得GE=4,由//DE BC 可得△ADG ∽△ABH ,△AGE ∽△AHC ,由相似三角形对应成比例可得DG AG GE ==BH AH HC,得到HC=5,再根据相似三角形的面积比等于相似比的平方可得,S △ABC =40.5,再减去△ADE 的面积即可得到四边形BCED 的面积.【详解】解:∵12BH DE ==,8DG =,∴GE=4∵//DE BC∴△ADG ∽△ABH ,△AGE ∽△AHC ∴DG AG GE ==BH AH HC即84=12HC , 解得:HC=6∵DG :GE=2:1∴S △ADG :S △AGE =2:1∵S △ADG =12∴S △AGE =6,S △ADE = S △ADG +S △AGE =18∵//DE BC∴△ADE ∽△ABC∴S △ADE :S △ABC =DE 2:BC 2解得:S △ABC =40.5S 四边形BCED = S △ABC - S △ADE =40.5-18=22.5故答案选:B.【点睛】本题考查相似三角形的性质和判定.3、C【分析】根据抛物线解析式可求得点A (-4,0),B (4,0),故O 点为AB 的中点,又Q 是AP 上的中点可知OQ=12BP ,故OQ 最大即为BP 最大,即连接BC 并延长BC 交圆于点P 时BP 最大,进而即可求得OQ 的最大值. 【详解】∵抛物线2144y x =-与x 轴交于A 、B 两点 ∴A (-4,0),B (4,0),即OA=4.在直角三角形COB 中5==∵Q 是AP 上的中点,O 是AB 的中点∴OQ 为△ABP 中位线,即OQ=12BP 又∵P 在圆C 上,且半径为2,∴当B、C、P共线时BP最大,即OQ最大此时BP=BC+CP=7OQ=12BP=72.【点睛】本题考查了勾股定理求长度,二次函数解析式求点的坐标及线段长度,中位线,与圆相离的点到圆上最长的距离,解本题的关键是将求OQ最大转化为求BP最长时的情况.4、A【分析】根据正多边形的内角求得每个外角的度数,利用多边形外角和为360°即可求解.【详解】解:∵圆内接正多边形的内角是108︒,∴该正多边形每个外角的度数为18010872︒-︒=︒,∴该正多边形的边数为:3605 72︒=︒,故选:A.【点睛】本题考查圆与正多边形,掌握多边形外角和为360°是解题的关键.5、C【解析】分析:根据直角三角形的性质得出AE=CE=1,进而得出DE=3,利用勾股定理解答即可.详解:∵在Rt△ABC中,∠ACB=90°,CE为AB边上的中线,CE=1,∴AE=CE=1,∵AD=2,∴DE=3,∵CD为AB边上的高,∴在Rt△CDE中,,故选C.点睛:此题考查直角三角形的性质,关键是根据直角三角形的性质得出AE=CE=1.6、A【分析】首先在优弧BC上取点E,连接BE,CE,由点B、D、C是⊙O上的点,∠BDC=130°,即可求得∠E的度数,然后由圆周角定理,即可求得答案.【详解】解:在优弧BC上取点E,连接BE,CE,如图所示:∵∠BDC=130°,∴∠E=180°-∠BDC=50°,∴∠BOC=2∠E=100°.故选A .【点睛】此题考查了圆周角定理以及圆的内接四边形的性质.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.7、B【分析】分a>0与a<0两种情况分类讨论即可确定正确的选项.【详解】解:当a>o 时,函数a y x =的图象位于一、三象限,20()y ax a a =--≠的开口向下,交y 轴的负半轴,选项B 符合;当a<o 时,函数a y x =的图象位于二、四象限,20()y ax a a =--≠的开口向上,交y 轴的正半轴,没有符合的选项. 故答案为:B.【点睛】本题考查的知识点是反比例函数的图象与二次函数的图象,理解掌握函数图象的性质是解此题的关键.8、D【分析】设袋中有黑球x 个,根据概率的定义列出方程即可求解.【详解】设袋中有黑球x 个,由题意得:60x x +=0.6,解得:x =90, 经检验,x =90是分式方程的解,则布袋中黑球的个数可能有90个.故选D .【点睛】此题主要考查概率的计算,解题的关键是根据题意设出未知数列方程求解.9、C【分析】设这种植物每个支干长出x 个小分支,根据主干、支干和小分支的总数是43,即可得出关于x 的一元二次方程,解之取其正值即可得出结论【详解】设这种植物每个支干长出x 个小分支,依题意,得:2143x x ++=,解得: 17x =-(舍去),26x =.故选C .【点睛】此题考查一元二次方程的应用,解题关键在于列出方程10、B【解析】根据“左加右减,上加下减”的规律求解即可.【详解】y =2x 2向右平移2个单位得y=2(x ﹣2)2,再向上平移3个单位得y =2(x ﹣2)2+3.故选B.【点睛】本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶点式y=a (x -h )2+k (a ,b ,c 为常数,a ≠0),确定其顶点坐标(h ,k ),在原有函数的基础上“h 值正右移,负左移; k 值正上移,负下移”.二、填空题(每小题3分,共24分)11、111°【分析】根据平行线的性质求出∠3=∠1=69°,即可求出答案.【详解】解:∵直线l 1∥l 2,∠1=69°,∴∠3=∠1=69°,∴∠2=180°﹣∠3=111°,故答案为111°.【点睛】此题主要考查平行线的性质,解题的关键是熟知两直线平行,同位角相等.12、6【分析】根据概率公式结合取出红球的概率即可求出袋中球的总个数.【详解】解:设袋中有x 个球. 根据题意得214x =,解得x=8(个),8-2=6个,∴袋中有8个白球.故答案为:6.【点睛】此题考查了概率的计算方法,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n . 13、2x ≥【分析】根据被开方式是非负数列式求解即可.【详解】依题意,得20x -≥,解得:2x ≥,故答案为2x ≥.【点睛】本题考查了函数自变量的取值范围,函数有意义时字母的取值范围一般从几个方面考虑:①当函数解析式是整式时,字母可取全体实数;②当函数解析式是分式时,考虑分式的分母不能为0;③当函数解析式是二次根式时,被开方数为非负数.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义. 14、1【分析】先根据m 是2320220x x +-=的一个实数根得出2320220m m +-= ,利用一元二次方程根与系数的关系得出3m n +=- ,然后对原式进行变形后整体代入即可得出答案.【详解】∵m 是一元二次方程2320220x x +-=的一个实数根,∴2320220m m +-=,即232022m m +=.由一元二次方程根与系数的关系得出3m n +=-,∴2243()2022(3)2019m m n m m m n ++=+++=+-=.故答案为:1.【点睛】本题主要考查一元二次方程的根及根与系数的关系,掌握一元二次方程根与系数的关系是解题的关键.15【分析】由题意运用圆周角定理以及锐角三角函数的定义进行分析即可得解.【详解】解:假设圆与下轴的另一交点为D ,连接BD ,∵90BOD ︒∠=,∴BD 为直径,6BD =,∵点B 02(,), ∴OB=2, ∴226242OD =-=,∵OB 为BDO △和BCO 公共边,∴OCB ODB ∠=∠, ∴2tan tan 442OB OCB ODB OD ∠=∠===. 故答案为:24. 【点睛】 本题考查的是圆周角定理、锐角三角函数的定义,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等以及熟记锐角三角函数的定义是解题的关键.16、1【解析】根据口袋中有12个红球,利用小球在总数中所占比例得出与实验比例应该相等求出即可. 【详解】解:通过大量重复摸球试验后发现,摸到红球的频率是2000250005=,口袋中有12个红球, 设有x 个白球, 则122125x =+, 解得:12x =,答:袋中大约有白球1个.故答案为:1.此题主要考查了用样本估计总体,根据已知得出小球在总数中所占比例得出与实验比例应该相等是解决问题的关键.17、4或1【分析】要使直线l与⊙O相切,就要求CH与DH,要求这两条线段的长只需求OH弦心距,为此连结OA,由直线l⊥OC,由垂径定理得AH=BH,在Rt△AOH中,求OH即可.【详解】连结OA∵直线l⊥OC,垂足为H,OC为半径,∴由垂径定理得AH=BH=12AB=8∵OA=OC=10,在Rt△AOH中,由勾股定理得OH=2222OA-AH=10-8=6,CH=OC-OH=10-6=4,DH=2OC-CH=20-4=1,,直线l向左平移4cm时能与⊙O相切或向右平移1cm与⊙O相切.故答案为:4或1.【点睛】本题考查平移直线与与⊙O相切问题,关键是求弦心距OH,会利用垂径定理解决AH,会用勾股定理求OH,掌握引辅助线,增加已知条件,把问题转化为三角形形中解决.18、1【分析】根据根与系数的关系得到得α+β=3,再把原式变形得到a(α+β)-3α,然后利用整体代入的方法计算即可.【详解】解:∵α,β是方程x2﹣3x﹣4=1的两个实数根,∴α+β=3,αβ=-4,∴α2+αβ﹣3α=α(α+β)-3α=3α-3α=1.故答案为1本题主要考查了根与系数的关系,解题的关键是利用整体法代值计算,此题难度一般.三、解答题(共66分)19、(1)14;(2)P=13.【解析】(1)根据概率公式直接解答;(2)画出树状图,找到所有可能的结果,再找到抽到“数字和为5”的情况,即可求出其概率.【详解】解:(1)∵四张正面分别标有数字1,2,3,4的不透明卡片,∴随机抽取一张卡片,抽到数字“2”的概率=14;(2)随机抽取第一张卡片有4种等可能结果,抽取第二张卡片有3种等可能结果,列树状图为:所有可能结果:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1)(4,2),(4,3),总的结果共12种,数字和为“5”的结果有4种:(1,4), (2,3), (3,2), (4,1)抽到数字和为“5”的概率P=13.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.20、(1)证明见解析;(2)S圆环=16π【解析】试题分析:(1)连结OM、ON、OA由切线长定理可得AM=AN,由垂径定理可得AM=BM,AN=NC,从而可得AB=AC.(2)由垂径定理可得AM=BM=4,由勾股定理得OA2-OM2=AM 2=16,代入圆环的面积公式求解即可.(1)证明:连结OM、ON、OA∵AB、AC分别切小圆于点M、N.∴AM=AN,OM⊥AB,ON⊥AC,∴AM=BM,AN=NC,∴AB=AC(2)解:∵弦AB切与小圆⊙O相切于点M∴AM=BM=4∴在Rt△AOM中,OA2-OM2=AM 2=16 ∴S圆环=πOA2-πOM2=πAM 2=16π21、证明见解析【解析】试题分析:由AD是中线以及CD2=BE·BA可得BE BDBD AB=,从而可得△BED∽△BDA,根据相似三角形的性质问题得证.试题解析:∵AD是中线,∴BD=CD,又CD2=BE·BA,∴BD2=BE·BA,即BE BD BD AB=,又∠B=∠B,∴△BED∽△BDA,∴ED BD AD AB=,∴ED·AB=AD·BD.【点睛】本题考查了相似三角形的判定与性质,根据已知得到△BED∽△BDA是解决本题的关键.22、(1)一;(2)见解析;(3)①1;②0个交点时,m<1;1个交点时,m=1;2个交点时,m>1;(4)m≥1.【分析】(1)x,y都是边长,因此,都是正数,即可求解;(2)直接画出图象即可;(3)在直线平移过程中,交点个数有:0个、1个、2个三种情况,联立y=9x和y=﹣x+2m整理得:2x﹣12mx+9=0,即可求解;(4)由(3)可得.【详解】解:(1)x,y都是边长,因此,都是正数,故点(x,y)在第一象限,故答案为:一;(2)图象如下所示:(3)①当直线平移到与函数y =9x (x >0)的图象有唯一交点(3,3)时, 由y =﹣x+2m 得:3=﹣3+12m ,解得:m =1, 故答案为1;②在直线平移过程中,交点个数有:0个、1个、2个三种情况,联立y =9x 和y =﹣x+2m 并整理得:x ²﹣12mx+9=0, ∵△=14m ²﹣4×9, ∴0个交点时,m <1;1个交点时,m =1; 2个交点时,m >1;(4)由(3)得:m≥1,故答案为:m≥1.【点睛】本题是反比例函数综合运用题,涉及到一次函数、一元二次方程、函数平移等知识点,此类探究题,通常按照题设条件逐次求解即可.23、(1)①详见解析;②1;(1)详见解析;(3)BD =2223t t+. 【分析】(1)①根据题意画出图形即可.②解直角三角形求出PA ,再利用全等三角形的性质证明PQ =PA 即可.(1)作PF ⊥BQ 于F ,AH ⊥PF 于H .通过计算证明DF =FQ 即可解决问题.(3)如图3中,作PF ⊥BQ 于F ,AH ⊥PF 于H .设BD =x ,则CD =x ﹣t , ()21AD x t =+-的性质构建方程求解即可解决问题.【详解】(1)解:①补全图形如图所示:②∵△ABD是等边三角形,AC⊥BD,AC=1 ∴∠ADC=60°,∠ACD=90°∴23sin603ACAD==︒∵∠ADP=∠ADB=60°,∠PAD=90°∴PA=AD•tan60°=1∵∠ADP=∠PDQ=60°,DP=DP.DA=DB=DQ ∴△PDA≌△PDQ(SAS)∴PQ=PA=1.(1)作PF⊥BQ于F,AH⊥PF于H,如图:∵PA⊥AD,∴∠PAD=90°由题意可知∠ADP=45°∴∠APD=90°﹣45°=45°=∠ADP∴PA=PD∵∠ACB=90°∴∠ACD =90°∵AH ⊥PF ,PF ⊥BQ∴∠AHF =∠HFC =∠ACF =90°∴四边形ACFH 是矩形∴∠CAH =90°,AH =CF∵∠ACH =∠DAP =90°∴∠CAD =∠PAH又∵∠ACD =∠AHP =90°∴△ACD ≌△AHP (AAS )∴AH =AC =1∴CF =AH =1 ∵43BD =,BC =1,B ,Q 关于点D 对称 ∴13CD BD BC =-=,43DQ BD == ∴2132DF CF CD DQ =-== ∴F 为DQ 中点∴PF 垂直平分DQ∴PQ =PD .(3)如图3中,作PF ⊥BQ 于F ,AH ⊥PF 于H .设BD =x ,则CD =x ﹣t ,()21AD x t =+-∵PD =PQ ,PF ⊥DQ∴12DF FQ x == ∵四边形AHFC 是矩形 ∴()12AH CF CD DF x t x t ==+=-+-∵△ACB ∽△PAD ∴PA AD AC CB= ∴1PA =∴PA =∵△PAH ∽△DAC∴PA AH AD AC=321x t -= 解得2223t x t+= ∴2223t BD t +=. 故答案是:(1)①详见解析;②1;(1)详见解析;(3)2223t BD t+=. 【点睛】本题是三角形综合题目,主要考查了三角形的旋转、等边三角形的性质、锐角三角函数、勾股定理、全等三角形的判定和性质、矩形的判定和性质,构造全等三角形、相似三角形、直角三角形是解题的关键.24、(1)证明见解析;(2)2.【解析】分析:(1)根据一组对边相等的平行四边形是菱形进行判定即可.(2)根据菱形的性质和勾股定理求出2OA =.根据直角三角形斜边的中线等于斜边的一半即可求解. 详解:(1)证明:∵AB ∥CD ,∴CAB ACD ∠=∠∵AC 平分BAD ∠∴CAB CAD ∠=∠,∴CAD ACD ∠=∠∴AD CD =又∵AD AB =∴AB CD =又∵AB ∥CD ,∴四边形ABCD 是平行四边形又∵AB AD =∴ABCD 是菱形(2)解:∵四边形ABCD 是菱形,对角线AC 、BD 交于点O .∴AC BD ⊥.12OA OC AC ==,12OB OD BD ==, ∴112OB BD ==. 在Rt AOB 中,90AOB ∠=︒.∴2OA ==.∵CE AB ⊥,∴90AEC ∠=︒.在Rt AEC 中,90AEC ∠=︒.O 为AC 中点. ∴122OE AC OA ===. 点睛:本题考查了平行四边形的性质和判定,菱形的判定与性质,直角三角形的性质,勾股定理等,熟练掌握菱形的判定方法以及直角三角形斜边的中线等于斜边的一半是解题的关键.25、(1)是,理由见解析;(2)1b c +=-;(1)1c <-或0c >,且1c ≠【分析】(1)根据友好函数的定义,求出函数与x 轴交点的横坐标以及与y 轴交点的纵坐标,即可进行判断; (2)先求出函数与y 轴交点的纵坐标为c ,再根据定义,可得当x=c 时,y=0,据此可得出结果;(1)分一下三种情况求解:(ⅰ)当C 在y 轴负半轴上时,由(2)可得:1c b =-,进而可得出结果;(ⅱ)当C 在y 轴正半轴上时,且A 与B 不重合时,画出图像可得出结果;(ⅲ)当C 与原点重合时,不符合题意.【详解】解:(1)243y x x =-+是友好函数.理由如下:当0x =时,3y =;当0y =时,1x =或1,∴243y x x =-+与x 轴一个交点的横坐标和与y 轴交点的纵坐标都是1. 故243y x x =-+是友好函数.(2)当0x =时,y c =,即与y 轴交点的纵坐标为c .∵2y x bx c =++是友好函数.∴x c =时,0y =,即(),0c 在2y x bx c =++上.代入得:20c bc c =++,而0c ≠,∴1b c +=-.(1)(ⅰ)当C 在y 轴负半轴上时,由(2)可得:1c b =-,即21y x bx b =+--,显然当1x =时,0y =,即与x 轴的一个交点为(1,0).则45ACO ∠=︒,∴只需满足45BCO ∠<︒,即BO CO <.∴1c <-.(ⅱ)当C 在y 轴正半轴上时,且A 与B 不重合时,∴显然都满足ACB ∠为锐角.∴0c >,且1c ≠.(ⅲ)当C 与原点重合时,不符合题意.综上所述,1c <-或0c >,且1c ≠.【点睛】本题主要考查二次函数的新定义问题以及二次函数与坐标轴的交点问题,解题的关键是理解题意.26、(1)2BE AF =;(2)无变化,说明见详解;(36262【分析】(1)先利用等腰直角三角形的性质得出2AD ,再得出AD=AF ,即可得出结论;(2)先利用等腰直角三角形和正方形的性质得:CA CF CB CE=,并证明夹角相等即可得出△ACF ∽△BCE ,进而得出结论; (3)分当点E 在线段BF 上时和当点E 在线段BF 的延长线上时讨论即可求得线段AF 的长.【详解】解:(1)在Rt △ABC 中,AB=AC ,∵D 是BC 的中点,∴AD=12BC=BD ,AD ⊥BC , ∴△ABD 是等腰直角三角形,∴AD ,∵正方形CDEF ,∴DE=EF ,当点E 恰好与点A 重合,∴AF ,即AF ,故答案为:AF ;(2)无变化;如图2,在Rt ABC ∆中,AB AC =∴45ABC ACB ∠=∠=︒,∴2CA sin ABC CB ∠== 在正方形CDEF 中,1452FCE FCD ∠=∠=︒ 在Rt CEF ∆中,2CF cos FCE CE ∠== ∴CA CF CB CE= ∵45FCA ACE ACE ECB ∠+∠=∠+∠=︒∴FCA ECB ∠=∠在FCA ∆和ECB ∆中CA CF CB CE FCA ECB⎧=⎪⎨⎪∠=∠⎩ ∴FCA ∆∽ECB ∆∴BE =∴线段BE 和AF 的数量关系无变化.(3)+当点E 在线段BF 上时,如图2,∵正方形CDEF,由(1)知AB=2AD=2AF,∴CF=EF=CD=2,在Rt△BCF中,CF=2,BC=4,根据勾股定理得,BF=23,∴BE=BF-EF=23-2,由(2)得,2=,BE AF-;∴AF=62当点E在线段BF的延长线上时,如图,同理可得,BF=23BE=BF+EF=23∴62、、三点共线时,线段AF6262综上所述,当正方形CDEF旋转到B E F【点睛】此题是四边形综合题,主要考查了等腰直角三角形的性质,正方形的性质,旋转的性质,相似三角形的判定和性质,解题的键是判断出△ACF∽△BCE.。