长行程直线电机的迭代学习控制_石阳春
- 格式:pdf
- 大小:704.84 KB
- 文档页数:5
基于经验模态分解算法的永磁直线同步电机迭代学习控制王丽梅;孙璐;初升
【期刊名称】《电工技术学报》
【年(卷),期】2017(032)006
【摘要】在永磁直线同步电机驱动伺服系统的迭代学习控制(ILC)过程中,针对由于每次运行时跟踪误差的累积,导致系统出现收敛速度降低甚至发散的现象,提出一种基于经验模态分解(EMD)算法的迭代学习控制方法.首先设计闭环ILC控制器,然后利用EMD算法分解ILC过程中的跟踪误差,筛选并消除其中发散的分量,保证ILC 的收敛性,提高ILC的收敛速度.仿真和实验结果表明,与传统ILC相比,所提出的控制方法能够使系统的跟踪效果更好,且保证了伺服系统的输出轨迹在较少的迭代次数下快速精确地收敛到期望轨迹.
【总页数】8页(P164-171)
【作者】王丽梅;孙璐;初升
【作者单位】沈阳工业大学电气工程学院沈阳 110870;沈阳工业大学电气工程学院沈阳 110870;沈阳工业大学电气工程学院沈阳 110870
【正文语种】中文
【中图分类】TP273
【相关文献】
1.基于经验模态分解算法的电机故障判断方法 [J], 郭硕达;崔庆育;岳嘉兴;葛托
2.基于改进掩膜信号优化的经验模态分解算法的有载分接开关机械故障诊断 [J],
陈明;马宏忠;徐艳;潘信诚;陈冰冰;许洪华;王梁
3.基于改进掩膜信号优化的经验模态分解算法的有载分接开关机械故障诊断 [J], 陈明; 马宏忠; 徐艳; 潘信诚; 陈冰冰; 许洪华; 王梁
4.基于经验模态分解算法的高铁沉降数据处理模型研究 [J], 申彦民
5.基于自适应集合经验模态分解算法的局部放电信号降噪研究 [J], 孙聪;鞠鹏飞;李大华;李栋
因版权原因,仅展示原文概要,查看原文内容请购买。
光刻机工件台直线电机的完全跟踪控制陈兴林;刘川;耿长青;徐加彦【摘要】提出一种将完全跟踪控制(PTC)和扩张状态观测器(ESO)相结合的复合控制方法以提高宏动直线电机的跟踪性能.利用多速率采样系统的特性构建宏动系统状态传递函数矩阵的精确逆矩阵,以避免传统的近似逆模型和插值带来的限制,从而实现完全跟踪控制;利用扩张状态观测器观测系统内部的动态变化,补偿系统中的各种扰动,从而减小扰动可能带来的稳态跟踪误差.研究结果表明:该方法保证了系统的动态跟踪精度和良好的鲁棒性,提高了系统的动态性能.【期刊名称】《中南大学学报(自然科学版)》【年(卷),期】2015(046)009【总页数】7页(P3238-3244)【关键词】完全跟踪控制;扩张状态观测器;精密伺服;光刻机;工件台【作者】陈兴林;刘川;耿长青;徐加彦【作者单位】哈尔滨工业大学航天学院,黑龙江哈尔滨,150001;哈尔滨工业大学航天学院,黑龙江哈尔滨,150001;青岛市工程咨询院,山东青岛,266071;哈尔滨工业大学航天学院,黑龙江哈尔滨,150001【正文语种】中文【中图分类】TP273+.3光刻机的工件台是高动态精密伺服运动平台,它要求在高速运动的情况下,采用长行程直线电机宏动跟随平面洛伦兹电机高精密微动的驱动方式,在较短行程内实现平台纳米级的精确定位与跟踪。
以阿斯麦(ASML)商用的最先进光刻机Twinscan XT 1950i机型为例,工作时最高速度大于0.5 m/s,加速度大于 15 m/s2,定位精度在几nm左右,稳定时间小于20 ms。
因此,选择一种能够抗击干扰,准确控制平台运动的控制算法显得尤为重要。
对于光刻机的控制,迭代算法取得了许多的成果,涉及到很多方面[1−3]。
Heertjes等[1]将迭代学习控制应用在ASML光刻机工件台洛伦兹电机的控制中,取得了比较好的效果;石阳春等[2]将迭代学习控制应用在光刻机的直线电机控制中;武志鹏等[3]将迭代学习控制应用在光刻机工件台和掩膜台的同步控制中。
第27卷㊀第10期2023年10月㊀电㊀机㊀与㊀控㊀制㊀学㊀报Electri c ㊀Machines ㊀and ㊀Control㊀Vol.27No.10Oct.2023㊀㊀㊀㊀㊀㊀基于自适应非线性跟踪微分器的直线电机位置和速度检测方法周世炯1,2,㊀李耀华1,2,㊀史黎明1,㊀范满义1,㊀张明远1,2,㊀刘进海1,2(1.中国科学院电工研究所中国科学院电力电子与电力驱动重点实验室,北京100190;2.中国科学院大学,北京100049)摘㊀要:为了解决直线电机的位置和速度检测的问题,设计了基于激光器阵列的光栅传感器位置检测系统,提出一种利用非线性跟踪微分器的直线电机速度测量方法,对电机动子位置进行准确跟踪以及对动子的速度进行测量㊂针对传统的非线性跟踪微分器在一定速度下处理测量噪声干扰和相位延迟存在矛盾的问题,设计了一种自适应非线性跟踪微分器,其参数能够跟随电机动子的运动速度自动调整,频率特性分析证明了其良好的微分特性㊂仿真和实验结果均证明了所设计的直线电机光栅位置检测方法和自适应非线性跟踪微分器测速的有效性,在电机运行的全速范围内都能够很好地抑制测量误差以及滤波效应带来的延迟,获得全程精确且快速的电机动子位置信号和速度输出信号㊂关键词:直线电机;光栅传感器;位置和速度检测;自适应参数;非线性跟踪微分器;全速范围DOI :10.15938/j.emc.2023.10.003中图分类号:TM359.4文献标志码:A文章编号:1007-449X(2023)10-0024-10㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀收稿日期:2021-10-30基金项目:中国科学院电工研究所科研基金(2021E1393201)作者简介:周世炯(1995 ),男,博士研究生,研究方向为大功率电力电子变换技术与直线电机驱动控制;李耀华(1966 ),男,博士,研究员,博士生导师,研究方向为电机与控制㊁大功率电力电子变流器;史黎明(1964 ),男,博士,研究员,博士生导师,研究方向为特种电机设计和驱动控制㊁无线电能传输技术;范满义(1988 ),男,博士,助理研究员,研究方向为直线电机驱动控制㊁无线电能传输技术;张明远(1995 ),男,博士,研究方向为大功率电力电子变换技术与直线电机驱动控制;刘进海(1995 ),男,博士研究生,研究方向为大功率电力电子变换技术与直线电机驱动控制㊂通信作者:周世炯Linear motor position and speed measurement method based onadaptive nonlinear tracking differentiatorZHOU Shijiong 1,2,㊀LI Yaohua 1,2,㊀SHI Liming 1,㊀FAN Manyi 1,㊀ZHANG Mingyuan 1,2,㊀LIU Jinhai 1,2(1.Key Laboratory of Power Electronics and Electric Drive,Institute of Electrical Engineering,Chinese Academy ofSciences,Beijing 100190,China;2.University of Chinese Academy of Sciences,Beijing 100049,China)Abstract :To solve the problems of linear motor s position and speed measurement,a grating sensor posi-tioning system based on the laser array is designed,and a linear motor speed measurement method using a nonlinear tracking differentiator is proposed to track the mover position and measure the mover speed.Considering the contradictory problem of the traditional nonlinear tracking differentiator in dealing with measurement noise interference and phase delay at a certain speed,an adaptive nonlinear tracking differ-entiator is designed and its parameters can be adjusted automatically following the speed of the mover.Its good differential characteristic is proved by the frequency characteristic analysis.The effectiveness of the designed linear motor grating positioning method and adaptive nonlinear tracking differentiator for speedmeasurement is proved by both simulation and experimental results.The measurement error and the lagproblem caused by the filtering effect are well suppressed in the full speed range,and the accurate and fast mover position and speed output signals throughout the entire process are obtained. Keywords:linear motor;grating sensor;position and speed measurement;adaptive parameters;nonlin-ear tracking differentiator;full speed range0㊀引㊀言直线电机具有传动机构简单㊁运行效率高㊁动态响应快等优点㊂直线电机在很多场合已经得到了应用,如高速直线电机电磁驱动系统㊁磁悬浮列车㊁直线电机电梯以及工业运用的各种机械传送设备等㊂直线电机的速度闭环是实现电机高精度闭环控制的重要一环,特别是在速度较高㊁运行距离较远的场合,需要精准的直线电机位置和速度检测系统来满足位置和速度控制所需要求㊂随着直线电机的广泛应用,直线电机的位置和速度检测技术在不断发展㊂文献[1]采用相位差光栅涡流传感器进行位置的跟踪,文中提出一种特定的组合码,采用单轨编码定位方法实现光栅涡流传感器线圈的粗定位,但是这种方法只是进行电机位置的粗跟踪,在很多精度要求高的场合不适用㊂文献[2-3]利用图尔克公司的电感式接近开关构成传感器阵列,根据直线感应电机次级感应板运动过程中与传感器的电涡流效应来生成直线感应电机的位置信号,这种方法虽然能够适应十分苛刻的工况,但是测量的精度不高㊂霍尔传感器是一种磁场传感器,检测准确度依赖于霍尔元件离磁场的距离,如果距离太近易受直线电机漏磁场干扰,尤其是在高速电磁驱动强磁场㊁大电流的工况下,位置检测精度并不高[4]㊂文献[5-6]利用了磁栅式的速度传感器,也有一定的抗振和抗干扰能力,且结构较为简单,但是无法适应动子高速运动带来的横向振动,同时这种传感器的磁头容易退磁,因此使用寿命不长㊂文献[7]研究表明激光位移传感器的位置检测精度受测量距离的限制,距离过长导致检测精度下降㊂由于其位置测量信号是连续的,易受周遭环境的影响而存在噪声,会被微分作用放大,淹没速度测量信息㊂文献[8-9]在电机动子上安装高速摄像机,随着动子运动扫描刻在定子两侧的非周期正弦条纹图像,利用特定的算法将二维图像转化成简单的一维信号处理,快速㊁高精度地解码出速度与位置,同样这种方法也不适合高速运动的直线电机带来的抖振㊂而基于直线光栅传感器的位置检测方法简单有效,成本低,不受长行程㊁强磁场限制,测量精确度较高[10],特别适用于长定子直线电机㊂但是在高速大推力的电磁驱动工况下,光栅传感器的机械强度受到考验,且所用激光的光斑大小会限制光栅的栅格宽度[11],光栅格的设计往往相对于精密伺服系统设计的要宽,因此不能单纯的从减小光栅的栅格宽度来提高位置检测的精度,有必要从检测位置和速度的算法上着手㊂速度信号常由对位置信号的微分获得,普通的微分处理主要是采用差分方法,极易因为测量误差而对噪声进行放大作用,获得的速度信号误差大而无法采用㊂针对这个问题,韩京清等[12]提出跟踪微分器(tracking differentiator,TD),不直接对输入信号进行微分运算,而是先对给定输入信号进行跟踪,随后对跟踪信号处理并输出微分信号,这样可以有效抑制微分的噪声放大效应㊂文献[13]又在此基础上根据最优控制原理设计了基于离散最速控制函数的非线性跟踪微分器(nonlinear tracking differentia-tor,NL-TD),进一步抑制了测量噪声,且有效降低了信号延迟,使得跟踪信号总能在有效的最短步长内跟上给定信号㊂但是,根据文献[14]发现,传统控制参数固定的NL-TD输出信号的精确性会因为输入信号的变化速度而发生改变:速度较低时,会有较大的测量误差,延迟较小;随着速度升高,误差减小,但输出信号延迟越来越明显㊂因此,低速时需要提高微分器的滤波因子来改善,但很可能会造成输出信号延迟;高速时需要提高速度因子加快信号跟踪,但很可能会造成测量误差增大㊂因此,这种微分器在同时处理测量误差和输出延迟问题上存在矛盾,想要在被测目标运动的全过程都能够较为准确快速地测量比较困难㊂目前解决的方法主要分为两大类,第一类主要是从NL-TD的可调控制参数着手,如文献[15]提出通过获得输入输出信号差值构造自适应函数控制速度因子,随着被测目标速度增大而增大,使得微分器的跟踪速度能够满足要求,但是未考虑滤波作用,易受噪声影响㊂文献[16]提出速度因子和滤波因子都能跟随输入信号的变化速率自适应调整的改进型52第10期周世炯等:基于自适应非线性跟踪微分器的直线电机位置和速度检测方法微分器,很好地解决了上述矛盾,但是由于其用到了复杂的统计学函数而不利于实现㊂第二类则是从NL-TD本身的控制函数着手,文献[17]利用二阶连续系统最速控制设计中的综合函数,提出一种新型快速离散非线性跟踪微分器,经分析表明,这种跟踪微分器在良好跟踪输入信号的前提下,可较好地滤除噪声提取微分信号,且相位延迟小㊂文献[18-19]重新设计了一种基于边界特征线且特征点可变的二阶离散非线性跟踪微分器,并且运用在磁悬浮列车的位置和速度检测系统当中㊂文献[20]采用反双曲正弦函数离散化得到二阶微分器,严格证明了所设计的微分器具有良好的跟踪性能,但仅仅局限于仿真阶段㊂此外,第二类方法采用更为复杂的控制函数设计跟踪微分器,因此实用性不强㊂本文采用第一类方法,设计了自适应非线性跟踪微分器(adaptive nonlinear tracking differentiator,ANL-TD),采用相对简单的自适应控制函数,拟合速度因子和滤波因子的变化规律,并将其应用于长定子直线电机的位置和速度检测系统中㊂本文利用基于激光器阵列的光栅传感器位置和速度检测系统具有精度高㊁检测速度快㊁设计相对简单经济且不受电磁干扰的优点,经过仿真和实验证明,在电机加速㊁匀速和减速的全过程中,与传统的NL-TD相比,本文提出的ANL-TD都能很好地对直线电机的动子进行位置和速度的检测,测量误差小且延迟低㊂1㊀光栅传感器位置速度检测系统图1给出了利用基于激光器阵列的光栅传感器进行位置和速度检测的系统㊂由于定子长度较长,供电和控制系统都固定在地面上,将激光器阵列安装于定子上,光栅条安装于动子上,这种简单的传感器形式能较为方便地重构出电机动子的位移,并作为跟踪微分器的信号输入,随后跟踪微分器经计算输出动子更平滑的位置跟踪信号和速度测量信号,作为电机控制的反馈信号输入㊂光栅条安装在动子板上(图1中简化了动子,以光栅条代替),激光收发器阵列安装在定子上,如图1中所示的灰色部分㊂光栅条分为白色透光区域和黑色不透光区域(宽度等长,均设为D),当动子产生位移时,光栅条就会遮挡或者不遮挡激光,对应的每对激光收发器会得到一系列高低电平的变化,经信号处理模块产生对应的脉冲序列㊂计数模块能够对每列脉冲进行计数(跳变沿计数得到的脉冲数设为N),累加(ND得到动子的位移粗信号)并经过线性插值得到位移输入信号(如图2所示),通过下文设计的非线性跟踪微分器跟踪输出得到电机动子平滑的位置信号和速度信号㊂最后,根据具体情况在不同时刻都选通输出某一对激光器得到的电机动子位置和速度信号作为最终信号输出㊂图1㊀光栅传感器位置和速度的检测系统结构Fig.1㊀Structure of the grating sensor speed and posi-tion measurementsystem图2㊀位置线性插值Fig.2㊀Position linear interpolation图2中:X1为光栅传感器位置和速度的检测系统重构出的位置(X1=ND);X2为对X1进行插值得到的位置信号,X2作为跟踪微分器的位移输入信号㊂如果直接采用光栅传感器输出的位置X1作为电机控制的位置反馈信号输入,如图2所示带有明显的阶梯形状会对控制系统造成额外的影响㊂2㊀自适应非线性跟踪微分器2.1㊀非线性跟踪微分器原理根据文献[21],经典的微分作用通过下式实现:y=s Ts+1u=1T(1-1Ts+1)u㊂(1)式中:u为输入信号;T为惯性环节的时间常数,若T 越小,则使微分信号y(t)越接近u㊃(t)㊂但是当输入信号中混入噪声时,y(t)中会存在与T成反比的62电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀噪声放大信号,不利于对电机动子速度的测量㊂为了解决微分放大噪声的影响,文中还提出通过减少积分的步长来抑制噪声的方法,但是需要较长的调节时间进入稳态㊂为了加快进入稳态的时间,出现了跟踪微分器的概念[22],跟踪微分器是对经典微分器的高阶扩展㊂跟踪微分器一方面能够利用其中的惯性环节来跟踪输入信号,另一方面能够通过求解微分方程来输出微分信号㊂但是,这种跟踪微分器跟踪信号的能力依然有限㊂为了使微分器能够快速地跟踪输入信号,文献[23]将最优快速控制综合函数代入二阶积分串联型系统并且经过离散化得到非线性跟踪微分器㊂当跟踪点远离目标点时,非线性结构的控制函数能够使其以幂级数的曲线轨迹快速逼近,而当跟踪点靠近目标点时,它又能以一次函数的轨迹以较低的速度缓慢接近目标,因此,相比于传统的跟踪微分器,NL-TD 的跟踪信号能力和抑制噪声的效果都比较好,即NL-TD 的效率要高于传统的跟踪微分器[24]㊂NL-TD 的表达式为:x ㊃1=x 2;x ㊃2=u ,|u |ɤr ㊂}(2)式中:u 为控制输入的函数;r 为常数㊂而实际中应用更多的是NL-TD 的离散形式,表达式为:x 1(k +1)=x 1(k )+Tx 2(k );x 2(k +1)=x 2(k )+T fhan(x 1(k )-u (k ),x 2(k ),r ,h )㊂üþýïïï(3)d =rh ;d 0=hd ;y =x 1-u +hx 2;a 0=d 2+8r |y |;a =x 2+y h ,|y |ɤd 0;x 2+0.5(a 0-d )sgn(y ),|y |>d 0㊂{fhan =-r sgn(a ),|a |>d ;-r a d,|a |ɤd ㊂{üþýïïïïïïïïïïïïïï(4)式中:u (k )为位置输入信号;x 1(k )为对u (k )的跟踪信号;x 2(k )为对x 1(k )的微分信号,当x 1(k )能够快速跟踪u (k )时,x 2(k )便可以作为u (k )的近似微分,最后输出信号x 1(k )作为系统的位置信号,输出信号x 2(k )作为系统的速度信号;T 为微分器离散化步长;r 为速度因子,增大r 可以更快地跟踪输入信号;h 为滤波因子,增大h 可以更好地滤除噪声;fhan(x 1,x 2,r ,h )为离散最优快速控制综合函数[25]㊂由式(3)和式(4)可以看出,NL-TD 只需调节速度因子r 和滤波因子h 两个参数,调节简单㊂2.2㊀自适应设计当采用一组固定的速度因子r 和滤波因子h 参数时,在测量目标的移动速度较低时,NL-TD 输出的速度微分信号x 2(k )误差较大,位置跟踪信号x 1(k )的滞后相对较小;随着目标移动速度的不断增大,速度微分信号x 2(k )的误差越来越小,而位置跟踪信号x 1(k )的滞后越来越明显[14,16]㊂为了解决NL-TD 存在的问题,需要根据输入信号的情况实时调整速度因子r 和滤波因子h 的值㊂因此提出自适应非线性跟踪微分器,使非线性跟踪微分器的两个可调参数r 和h 跟随测量目标运动速度而改变,即r =r (v )和h =h (v ),其中r (v )跟随目标移动速度v 成正比变化,h (v )跟随目标移动速度v 成反比变化㊂根据以上分析,被测目标速度较低时速度因子取较小值,滤波因子取较大值;速度升高时,速度因子能够快速增大以便能够快速跟踪输入信号,并且速度较低时较大的滤波因子能够减小噪声㊂如此,ANL-TD 在高㊁低速时都可以输出高精度㊁低延时的跟踪信号x 1(k )和微分信号x 2(k )㊂文献[14]根据统计学的原理提出自适应律,函数结构显得复杂,为了简化系统运算,节省硬件逻辑资源,本文重新提出可调参数的自适应规律,表达式为:α(x )=arctan(xγ1);β(x )=e -(x γ2)2㊂üþýïïï(5)式中:α(x )随x 的增大而快速增大;β(x )随x 的增大快速减小;γ1和γ2为可调参数,调整他们的大小可以改变α(x )和β(x )的变化速率㊂α(x )由简单的反正切函数所得,β(x )由标准正态分布简化而得㊂利用α(x )和β(x )拟合速度因子r 和滤波因子h 的变化㊂经设计,自适应非线性跟踪微分器的形式变为:x 1(k +1)=x 1(k )+Tx 2(k );x 2(k +1)=x 2(k )+T fhan(x 1(k )-u (k ),x 2(k ),r (x 2),h (x 2))㊂üþýïïï(6)72第10期周世炯等:基于自适应非线性跟踪微分器的直线电机位置和速度检测方法其中:r =α(x 2,γ1)=A arctan(x 2γ1)+B ;h =β(x 2,γ2)=1γ2e -12(x 2γ2)2㊂üþýïïïï式(6)中A 和B 分别为速度因子r 的变化范围和初始值㊂根据系统实际要求的输入信号的带宽,调节γ1和γ2的大小,使ANL-TD 获得全程精确且快速的输出信号㊂2.3㊀频率特性ANL-TD 的跟踪信号和抑制噪声的能力能够通过系统的开环频率特性反映,由于是非线性的环节,无法常规获取伯德图,本文采用扫频法[26]㊂假设正弦输入信号为y =A sin(ωt +Φ),在输入信号的某一个周期内选取对应的输出信号的最大值A (ω)和其对应的时间t ,计算获得输出信号的幅值和相位㊂这样,通过改变频率便可以得到输出信号的一系列不同的幅值和相位,得到输出信号近似的幅频㊁相频信号[26]㊂ANL-TD 的频域特性已用MATLAB 绘制而出,如图3所示㊂图3㊀ANL-TD 伯德图Fig.3㊀ANL-TD Bode diagram图3中,保持γ1的值不变,改变γ2的值分别得到ANL-TD1㊁ANL-TD2㊁ANL-TD3的曲线㊂代表常规微分作用s 的幅频和相频曲线也在图中给出作为参考㊂对于正弦输入信号,改变γ1的值只决定跟踪信号能否跟上输入信号变化,对ANL-TD 输出信号的频率响应没有影响㊂从幅频曲线可以看出,幅频特性近似于一条折线,在高频处的最高点(称为转折频率)出现转折,所以该跟踪微分器可以有效地滤除高频噪声㊂从相频曲线可以看出,在转折频率之前一段区间内几乎保持超前90ʎ的相角,且在转折频率之后快速降低至-90ʎ,所以该跟踪微分器在一定范围内具有良好的微分作用㊂因此,ANL-TD 的频率特性类似于二阶带通滤波器㊂对比常微分s 的频率特性曲线,ANL-TD 在一定的频带范围内能够表现出良好的近似微分的作用,并且能够有效地抑制高频噪声㊂除此之外,ANL-TD1㊁ANL-TD2㊁ANL-TD3对应的参数γ2满足条件:γ21<γ22<γ32㊂可以发现,增大γ2的值可以增加通频带的范围㊂3㊀仿真结果分析为了验证新设计的ANL-TD(见式(6))的效果,本文取动子的参考速度V ref (m /s)㊂首先动子速度由0以50m /s 2的加速度匀加速至100m /s,随后匀速运行1s,然后又以50m /s 2的加速度匀减速至0,如图4所示㊂图4㊀动子运动参考速度Fig.4㊀Reference speed of mover图5为基于跟踪微分器位置和速度检测方法的结构框图㊂由图可知,输入速度参考信号V ref 经过积分得到位置输入信号X 1,模拟光栅传感器每1e -4s更新一次数据得到离散位置信号,并以5e -9s 的周期线性插值之后输出位置信号X 2㊂图5㊀跟踪微分器的位置和速度检测方法结构框图Fig.5㊀Block diagram of the position and speed detec-tion method of the tracking differentiator82电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀X 2作为跟踪微分器ANL-TD 的输入,利用传统跟踪微分器得到低质量的微分速度信号,经过自适应控制函数得到随速度输入信号变化的速度因子和滤波因子,从而有效地调节ANL-TD(式(6)所示),在目标物体高㊁低速运动时都可以保持比传统的NL-TD 更加精确的输出信号㊂X 2经傅里叶分析如图6所示㊂图6㊀输入位置信号傅里叶分析Fig.6㊀Fourier analysis of input position signal根据图6,该输入位置信号频谱的主要成分大致集中在2Hz 以内,通过上节对跟踪微分器的频率特性分析,可以选择合适的参数来使得ANL-TD 对该输入信号具有良好的微分作用,这里γ1和γ2分别取10和110较为合适㊂根据式(6),经过调试取A =1e 6,B =2e 6,T =1e -4s,由ANL-TD 得到的位置跟踪信号及速度输出信号,相比于传统的NL-TD 更加精确㊂位置㊁速度㊁自适应控制函数r =α(x 2,γ1),h =β(x 2,γ2)跟随时间变化的Simulink 仿真波形如图7~图9所示㊂加速度阶段,动子位置和速度经过放大后的波形也分别在图7和图8中给出㊂图7和图8中,X ref (X ref =X 2)和V ref 分别为电机动子位置和速度的参考信号㊂图9中,速度因子随着动子的运动速度呈正比变化,滤波因子呈反比变化㊂调节γ1和γ2可以改变r 和h 的变化速率和轨迹㊂图7㊀位置及加速段放大结果Fig.7㊀Position and acceleration section zoom insimulation图8㊀速度及加速段放大结果Fig.8㊀Speed and acceleration section zoom in simulation在电机动子的初始运动状态下,ANL-TD 首先选择合适的速度因子r 和滤波因子h 初始值,寻找合适的参数γ1和γ2来得到合适的r 和h 的变化规92第10期周世炯等:基于自适应非线性跟踪微分器的直线电机位置和速度检测方法律㊂根据前文的分析,随着电机动子的运动速度增大,测量的位置和速度信号的滞后越来越明显,滤波因子较小可以适当牺牲微分器的降噪性,速度因子快速增大使微分器跟上输入信号,如图7所示,位置信号滞后随着速度升高而增大,但是ANL-TD 的滞后明显小于NL-TD;当被测物运动速度较低时,速度因子较小可以适当牺牲跟踪的快速性,而较大的滤波因子能够滤除一些低速段的测量噪声,如图8所示,虽然初始速度较低时误差较大,但是ANL-TD 的误差明显小于NL-TD㊂所以,由图7~图9可以看出,本文设计的ANL-TD 在速度全程可以获得比NL-TD 质量更好的测量信号㊂图9㊀自适应控制函数仿真结果Fig.9㊀Simulation results of adaptive control functions另外,为了更加直观地验证ANL-TD 的效果,将图7中的ANL-TD 和NL-TD 的位置跟踪信号分别与位置参考信号X ref (X ref =X 2)作比较,得到位置误差信号ΔX 1和ΔX 2;将图8中ANL-TD 和NL-TD 的速度检测信号分别与速度参考信号V ref 比较,得到速度误差信号ΔV 1和ΔV 2,如图10所示㊂图10㊀位置和速度误差仿真结果Fig.10㊀Simulation results of position and speed error由图10可知,NL-TD 存在输出滞后输入信号随着速度增大越来越明显的问题,而ANL-TD 能够明显改善这个问题,它的位置滞后更小,位置跟踪误差在稳速时比NL-TD 减小了0.68m,位置跟踪精度提高了大约70%;速度误差主要集中在低速区域,且相比NL-TD,ANL-TD 在整个运行过程的速度测量误差都较小,它的速度误差比NL-TD 减小了0.2m /s,速度检测精度提高了大约30%㊂进一步证明,相比于传统的NL-TD,ANL-TD 能够在全程获得更加准确的位置信号和速度信号,这也与理论分析的结果一致㊂4㊀实验验证为了进一步验证本文提出ANL-TD 的有效性,采用基于RT-LabOP5607的半实物平台进行验证㊂实验机器主要包含CPU 板卡和Xilinx Virtex7的FP-GA 板卡(如图11所示)㊂在FPGA 板卡中搭建基于激光器阵列的光栅传感器位置和速度检测系统,CPU 控制系统中建立ANL-TD 和NL-TD 算法,跟踪微分器离散化步长为500ns㊂根据表1给出的光栅传感器参数以及图1的系统设计算法,具体流程为:上位机根据速度参考信号03电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀V ref 生成位置参考信号下发给FPGA,FPGA 中的传感器模型产生位置检测信号,以500ns 的周期线性插值后,进入CPU 中的传统NL-TD 和ANL-TD 进行计算得到位置跟踪信号和速度检测信号,最后两者反馈回上位机,分别与速度和位置的参考信号进行比较,跟踪微分器相关的控制参数设计同Simulink 仿真㊂图11㊀基于RT-Lab OP5607的实验平台Fig.11㊀Experiment platform based on the RT-LabOP5607表1㊀光栅传感器参数Table 1㊀Parameters of grating sensor㊀㊀参数数值光栅条长度l /mm 4200栅格宽度D /mm 10激光器间距L /mm1707输出全程的位置和速度波形如图12所示㊂匀速段(高速段)的局部放大图如图13所示㊂低速时位置和速度的波形图如图14所示㊂由图12和图13可知,从3.5~5.5s 处,随着动子运动速度的增大,NL-TD 所测得速度和位置信号滞后越来越明显,最终在最高速处导致速度测量信号误差太大(如5.5~6.5s 处),因而微分放大噪声的作用被进一步放大,最终导致高速下误差也增大㊂然而ANL-TD 全程输出的位置信号和速度信号滞后较小且速度信号更加精确,相较于传统的NL-TD 都有明显的提升,尤其在高速段时与参考信号几乎吻合,这说明ANL-TD 通过参数自适应调整克服了传统跟踪微分器在高速段延迟大的缺点㊂图12㊀位置和速度实验波形Fig.12㊀Position and speed experimentwaveform图13㊀位置和速度高速段放大图Fig.13㊀Enlarged view of position and velocity in thehigh-speed section13第10期周世炯等:基于自适应非线性跟踪微分器的直线电机位置和速度检测方法。
直线电机进给系统伺服参数与控制参数的设计高峰;斯迎军【摘要】简单介绍了直线电机的分类和优点,设计了一种直线电机伺服系统的结构,说明了驱动器的使用方法及其基本工作原理.研究了直线电机进给系统的控制响应特性,建立了系统的传递函数模型,分析了伺服参数对于响应特性的影响,采用PID控制器对电机位置输出进行控制以减小电机位置输出误差,运用Matlab/Simulink进行系统建模和仿真分析.【期刊名称】《山西电子技术》【年(卷),期】2018(000)003【总页数】4页(P34-37)【关键词】直线电机;伺服系统;速度环;位置控制;参数整定【作者】高峰;斯迎军【作者单位】中国电子科技集团公司第二研究所,山西太原030024;中国电子科技集团公司第二研究所,山西太原030024【正文语种】中文【中图分类】TM359.41 直线电机系统分类及其伺服系统的优点早在1845年,Wheatstone提出了直线电机的概念。
20世纪50年代中期,控制、材料技术的飞速发展为直线电机的应用提供了技术基础。
直至20世纪90年代,随着设备向高速化、精密化方向的发展,直线电机被用于设备伺服系统中,并且发展迅速[1]。
直线电机分为直线直流电动机、直线感应电动机、直线同步电动机、直线步进电动机、直线压电电动机、直线磁阻电动机。
目前使用比较广泛的是直线感应电动机和直线同步电动机。
直线同步电动机虽然比直线感应电动机工艺复杂、成本较高,但是效率较高、次级不用冷却、控制方便,更容易达到要求的性能。
因此随着钕铁硼永磁材料的出现和发展,永磁同步电机已成为主流。
在数控设备等需要高精度定位的场合,基本上采用的都是永磁交流直线同步电动机。
直线电机伺服系统的优点主要是结构简单、定位精度高、反应速度快、灵敏度高、随动性好。
2 直线电机伺服系统模型直线电机进给驱动系统结构如图1所示,主要由导轨、滑块、定子、动子、霍尔元件和光栅组成。
相对于传动的滚珠丝杠进给系统,它取消了中间的传动装置从而大大提高了电机的响应特性。
基于迭代学习控制的永磁直线同步电机伺服系统
曹勇;李华德;刘刚
【期刊名称】《电气自动化》
【年(卷),期】2007(29)5
【摘要】针对永磁直线同步电机伺服系统,采用迭代学习控制策略来实现参考位置信号的跟踪控制.详细分析了迭代学习ILc伺服控制器的模型结构,并给出伺服控制器的迭代学习更新法则.采用高性能Ds1103控制器作为控制核心,搭建永磁直线伺服系统.实验结果表明,迭代学习控制下的永磁直线伺服系统具有准确的位置跟踪能力,对外部扰动具有很强的鲁棒性.
【总页数】3页(P11-13)
【作者】曹勇;李华德;刘刚
【作者单位】北京科技大学信息工程学院,北京,100083;北京科技大学信息工程学院,北京,100083;北京科技大学信息工程学院,北京,100083
【正文语种】中文
【中图分类】TM921.54+1
【相关文献】
1.基于周期学习扰动观测器的永磁直线同步电机伺服系统控制 [J], 赵希梅;武文斌
2.基于经验模态分解算法的永磁直线同步电机迭代学习控制 [J], 王丽梅;孙璐;初升
3.永磁直线同步电机伺服系统的分段变论域模糊迭代学习控制 [J], 赵希梅;金鸿雁
4.基于Smith预估和性能加权函数的永磁直线同步电机鲁棒迭代学习控制 [J], 赵希梅;马志军;朱国昕
5.基于改进型速度滑模控制器的永磁直线同步电机伺服系统 [J], 罗志伟;谷爱昱;洪俊杰;李文玉
因版权原因,仅展示原文概要,查看原文内容请购买。
永磁直线同步电机的自适应迭代学习控制
蔡满军;赵成圆
【期刊名称】《微特电机》
【年(卷),期】2014(042)006
【摘要】永磁直线同步电机驱动的伺服随动系统,既要对周期性的输入信号具有跟踪能力,又要对周期性的扰动具有抑制能力.对这一问题,从迭代学习控制的本质出发,与自适应算法相结合,提出了一种自适应迭代学习控制策略,解决了伺服系统中对周期性输入信号的跟踪问题,以及对参数摄动和不确定性干扰,尤其是对周期性扰动的抑制问题.在永磁直线同步电机位置控制实验中,将该方法与传统控制进行对比试验,实验结果表明,该方法能够有效地提高系统的位置控制精度.
【总页数】5页(P48-51,54)
【作者】蔡满军;赵成圆
【作者单位】燕山大学,秦皇岛066004;燕山大学,秦皇岛066004
【正文语种】中文
【中图分类】TM351;TM359.4
【相关文献】
1.永磁直线同步电机自适应PD型迭代学习控制 [J], 赵希梅;马志军;朱国昕
2.永磁直线同步电机的自适应滤波迭代学习控制∗ [J], 赵希梅;马志军;朱国昕
3.基于经验模态分解算法的永磁直线同步电机迭代学习控制 [J], 王丽梅;孙璐;初升
4.永磁直线同步电机伺服系统的分段变论域模糊迭代学习控制 [J], 赵希梅;金鸿雁
5.基于Smith预估和性能加权函数的永磁直线同步电机鲁棒迭代学习控制 [J], 赵希梅;马志军;朱国昕
因版权原因,仅展示原文概要,查看原文内容请购买。
把技术追根原理 将决策精确到数字——专访欧佩德伺服电机节能系统有限公司董事长石华山⊙ 本刊记者 李玉峰 李嘉伟 赵琬青对于走过“十三五”、正筑梦“十四五”的造纸企业来说,生产过程中的节能减排已经从被动遵从升华到主动提升,可以说目前的造纸行业,不缺市场,缺的是具有市场竞争力的节能减排技术,缺的是烙有自主创新拥有自己D N A的优良产品。
在这样的市场背景下,好的技术和产品总是能快速的引起关注,就像在第十一届中华纸业浆纸技术论坛上的一个来自欧佩德伺服电机节能的技术报告,该报告为造纸行业带来了一个新的名词——伺服电机,瞬间便抓住了在座嘉宾的注意力,何为伺服电机?伺服电机与传统电机有何不同?伺服电机真的能助力“全球节能纸机领导者”的生产吗?......成为了现场嘉宾非常想弄明白的问题。
甚至在论坛结束之后,还有不少读者联系到杂志社询问该技术的详细情况。
为了进一步解读伺服电机技术,探讨该技术与造纸行业的碰撞会产生什么样的火花,本刊记者特别走进了欧佩德伺服电机INTERVIEW42第42卷第1期 2021年1月传费用。
这两个关于数字的故事也足以看出石董事长是一位将决策精确到数字的数字型领导者,而后面的采访过程也正如“剥洋葱”一样,层层解开了石董事长的另外一个特点——大道至简、追根溯源的“技术狂人”。
当造纸行业遇上伺服电机,碰撞出来的是节能和精准对于造纸行业来说,伺服电机还是一个比较新的名词。
作为专注于生产伺服电机的欧佩德公司董事长来说,自然是伺服电机的专家,在谈到什么是伺服电机、伺服电机的优势及其能为造纸行业带来哪些方节能系统有限公司(以下简称欧佩德),近距离地聆听欧佩德董事长石华山先生讲讲他、伺服电机和造纸行业的故事。
采访的地点选在地尔汉宇集团的办公大楼里,在这座大楼里石华山先生还有另一个身份,汉宇集团——一家发展势头强劲的上市企业的董事长。
在正式进入采访之前,石董事长关于两个数字的故事让我记忆深刻,一个是地尔汉宇集团大楼在建设之初,石董事长便做出整体大楼建筑里大门口退让两米的决定,而这一让,让出了后面十几年来停车位充足,保障了员工对美好生活的向往;另一个是石董事长敏锐地发现了地尔汉宇集团大楼地靠高速公路,大楼上面的广告牌效应可以为集团每年节省2000余万元的宣面的提升的时候,石董事长可谓侃侃而谈,娓娓道来。
专利名称:一种直线电机型控制棒驱动机构控制方法
专利类型:发明专利
发明人:余海涛,蔡晨,王劲松,孙鸿成,梁云川,吕新知,彭仁勇申请号:CN201611043343.1
申请日:20161121
公开号:CN106782689A
公开日:
20170531
专利内容由知识产权出版社提供
摘要:本发明公开了一种直线电机型控制棒驱动机构控制方法,所述方法包括:步骤1:根据外部输入的驱动机构运行速度和运行方向指令,计算出当前驱动机构的相位角;步骤2:根据计算出的相位角,使用SVPWM算法计算出三相PWM控制参数;步骤3:根据三相PWM控制参数生成对应PWM 控制信号;步骤4:基于生成的PWM控制信号对直线电机型控制棒驱动机构进行控制,实现了对直线电机型控制棒驱动机构精准、稳定控制。
申请人:中国核动力研究设计院
地址:610000 四川省成都市一环路南三段28号
国籍:CN
代理机构:成都行之专利代理事务所(普通合伙)
代理人:郭受刚
更多信息请下载全文后查看。
基于迭代学习的永磁直线伺服系统扰动抑制
杨俊友;师光洲;白殿春
【期刊名称】《组合机床与自动化加工技术》
【年(卷),期】2014(000)008
【摘要】针对具有重复运动特性的永磁直线同步电机( PMLSM)位置伺服系统,提出一种基于迭代学习( ILC)算法优化系统位置输入信号的控制策略。
该迭代算法具有级联式结构,可在不改变原直线伺服系统控制算法的前提下,更好地抑制齿槽效应力、端部效应力、摩擦力、波纹推力等重复性扰动对系统的影响,且能很好的消除由跟踪滞后造成的位置误差。
仿真实验结果表明,与原直线伺服控制方法相比,所提出的迭代学习控制策略能够显著提高PMLSM伺服系统位置跟踪精度和响应速度。
【总页数】4页(P59-61,66)
【作者】杨俊友;师光洲;白殿春
【作者单位】沈阳工业大学电气工程学院,沈阳 110870;沈阳工业大学电气工程学院,沈阳 110870;沈阳工业大学电气工程学院,沈阳 110870
【正文语种】中文
【中图分类】TH166;TG65
【相关文献】
1.基于迭代学习的永磁直线同步电动机扰动抑制 [J], 杨俊友;门博;马航;刘启宇
2.永磁同步直线电机伺服系统负载扰动建模与抑制 [J], 甄文喜;戴跃洪;唐传胜
3.基于迭代学习与小波滤波器的永磁直线伺服系统扰动抑制 [J], 杨俊友;刘永恒;白殿春;杨康;于吉帅
4.基于迭代学习控制的永磁直线同步电机伺服系统 [J], 曹勇;李华德;刘刚
5.基于自适应迭代学习的直线伺服系统摩擦扰动抑制方法研究 [J], 庄丽;陈林
因版权原因,仅展示原文概要,查看原文内容请购买。