一维搜索法
- 格式:pptx
- 大小:374.56 KB
- 文档页数:28
§4.3 一维搜索方法一维搜索问题:目标函数为单变量的非线性规划问题,即)(min max00t t t t ϕ≤≤≥ (4.3.1)对t 的取值为0≥t 的(4.3.1)称为一维搜索问题,即 )(min 0t t ϕ≥ ;对t 的取值为max 0t t ≤≤的(4.3.1)称为有效一维搜索问题,即 )(minmax0t t t ϕ≤≤。
1、0.618法(近似黄金分割法)单谷函数:称函数)(t ϕ是区间],[b a 上的单谷函数,若存在 ],[*b a t ∈,使得)(t ϕ在],[*t a 上严格递减,且在],[*b t 上严格递增。
区间],[b a 称为)(t ϕ的单谷区间。
求解一维搜索问题的方法:先设法给出一个搜索区间],[b a ,然后通过迭代不断缩小搜索区间,当区间的长度充分小是,可取这个区间中的任一点作为一个近似极小点。
考虑问题)(min t bt a ϕ≤≤ (4.3.2)其中],[b a 是)(t ϕ的单谷区间, 下面将通过迭代不断缩小搜索区间, 获得)(t ϕ的唯一极小点 *t 的近似解。
在],[b a 内任取两点 21,t t ,设 21t t <,由于)(t ϕ是区间],[b a 上的单谷函数,所以有<1> 若)()(21t t ϕϕ≤,则 ],[2*t a t ∈;<2> 若)()(21t t ϕϕ≥,则 ],[1*b t t ∈。
证<1>:若],[2*t a t ∉,则 2*t t >,所以*21t t t a <<<,因为)(t ϕ在],[*t a 上严格递减,所以)()(21t t ϕϕ>,矛盾。
同理可证 <2>。
通过比较)(1t ϕ和)(2t ϕ的大小,可将搜索区间缩小为],[2t a 或],[1b t 。
不妨设为],[2t a ,则在],[2t a 只需另找一个点 2t ',比较 1t 和2t '的目标函数值,又可以进一步缩小搜索区间。
第二章 一维搜索法● 概述● 确定初始单谷区间的进退法 ● 一维搜索法分类 ● 区间消去法 ● 函数逼近法概述求一元函数()F x 的极小点和极小值问题就是一维最优化问题。
求解一维优化问题的方法称为一维优化方法,又称一维搜索法。
一维搜索法是优化问题中最简单、最基本方法。
因为它不仅可以解决单变量目标函数的最优化问题,而且在求多变量目标函数的最优值时,大多数方法都要反复多次地进行一维搜索,用到一维优化法。
一般多维优化计算的迭代的基本格式:从一个已知点()k x 出发(()k x由上次迭代获得,开始时就是起始点(0)x),沿某一优化方法所规定的是目标函数值下降的搜索方向()k S,选择一个步长因子α,求得下一个新迭代点(1)k x +,(1)()()k k k xx S α+=+并且满足1()()k k F x F x +≤,即新点必须能够使目标函数值有所下降,这个新点就是下一次迭代的出发点,如此重复,直到求出目标函数的最优解为止。
理想步长kα可以通过()()()()k k F F x S αα=+的极小点获得min ()F α,使得目标函数达到最小()()min ()k k F x S α+,这种在第k 次迭代中求理想步长k α的过程,就是一维搜索过程。
大致分为两个步骤:1. 确定初始搜索区域[a,b],该区域应该包括一维函数极小点在内的单谷区域;2. 在单谷区域[a,b]上寻找极小点。
寻找极小点kα可以采用解析解和数值解等方法。
确定初始单谷区间的进退法单谷区域的定义:设函数()F x 在区域12[,]x x 内有定义,且(1) 在区域12[,]x x 内存在极小值x *,既有min ()()F x F x *=,12[,]x x x ∈; (2) 对区域1[,]x x *上任意自变量x ,有()()F x F x x >+∆,0x ∆>;对区域2[,]x x *上任意自变量x ,有()()F x F x x <+∆,0x ∆>;则称12[,]x x 为函数()F x 的单谷区域。