新北师大版九年级数学上册《菱形的性质与判定(三)》教学案
- 格式:doc
- 大小:121.50 KB
- 文档页数:2
第一章特殊平行四边形1.1菱形的性质与判定1.1.2菱形的判定教学目标【知识与技能】1.理解并掌握菱形的定义及两个判定方法;2.会用这些判定方法进行有关的论证和计算.【过程与方法】经历探索菱形判定思想的过程,领会菱形的概念以及应用方法,发展学生主动探究的思想和说理的基本方法.【情感态度】培养良好的思维意识以及推理的能力,感悟其应用价值及培养学生的观察能力、动手能力及逻辑思维能力.【教学重点】菱形的两个判定方法.【教学难点】判定方法的证明及运用.教学过程一、情境导入,初步认识回顾:(1)菱形的定义:一组邻边相等的平行四边形.(2)菱形的性质:性质1菱形的四条边都相等;性质2菱形的对角线互相平分,并且每条对角线平分一组对角.(3)运用菱形的定义进行菱形的判定,应具备几个条件?(判定:2个条件)【教学说明】通过对菱形的性质复习回顾,让学生养成勤复习的习惯.用以温故而知新.二、思考探究,获取新知活动1按下列步骤画出一个平行四边形:(1)画一条线段长AC=6cm;(2)取AC的中点O,再以点O为中点画另一条线段BD=8cm,且使BD⊥AC;(3)顺次连接A、B、C、D四点,得到平行四边形ABCD.猜猜你画的是什么四边形?【归纳结论】菱形的判定方法1:对角线互相垂直的平行四边形是菱形.注意此方法包括两个条件:(1)是一个平行四边形;(2)两条对角线互相垂直.【教学说明】首先教师活动让学生观察,然后让学生自己动手亲自体验活动从而猜想出结论来.已知:在□ABCD中,AC⊥BD.求证:□ABCD是菱形.证明:∵四边形ABCD是平行四边形,AC⊥BD,∴□ABCD是菱形.活动2画一画:作一条线段AC,分别以A、C为圆心,以大于AC的一半为半径画弧,两弧分别交于B、D两点,依次连接A、B、C、D.思考:四边形ABCD是什么四边形?你能证明吗?【归纳结论】菱形的判定方法2:四条边相等的四边形是菱形.【教学说明】让学生亲自动手体验活动,猜想出结论来并进行证明.从而加深印象.三、运用新知,深化理解1.见教材P6例2.2.如图,在菱形ABCD中,E、F、G、H分别是菱形四边的中点,连结EG 与FH交点于O,则图中的菱形共有(B)A.4个B.5个C.6个D.7个3.下列说法正确的是(B)A.对角线互相垂直且相等的四边形是菱形B.对角线互相垂直的平行四边形是菱形C.对角线互相平分且相等的四边形是菱形D.对角线相等的四边形是菱形4.如图,△ABC中,AC的垂直平分线MN交AB于点D,交AC于点O,CE∥AB交MN于E,连结AE、CD.求证:AD=CE;证明:∵MN是AC的垂直平分线.∴OA=OC,∠AOD=∠EOC=90°,∵CE∥AB,∴∠DAO=∠ECO,∴△ADO≌△CEO,∴AD=CE.5.如图,在△ABC中,∠BAC=90°,AD⊥BC于D,CE平分∠ACB,交AD于G,交AB于E,EF⊥BC于F,求证:四边形AEFG是菱形;证明:∵CE平分∠ACB,EA⊥CA,EF⊥BC,∴AE=FE,∵∠ACE=∠ECF,∴△AEC≌△FEC,∴AC=FC,∵CG=CG,∴△ACG≌△FCG,∴∠CAG=∠CFG=∠B,∴GF∥AE,∵AD⊥BC,EF⊥BC,∴AG∥EF,故四边形AGFE是平行四边形又∵AG=GF(或AE=EF),∴平行四边形AGFE是菱形(一组邻边相等的平行四边形是菱形).【教学说明】让学生先独立完成,然后将不会的问题各小组交流讨论得出结果.让学生从题目中找解题信息,从图形中找解决问题的突破口.四、师生互动、课堂小结1.师生共同回顾判定一个四边形是菱形的方法:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形.2.通过本节课的学习你还有哪些疑惑?请与同伴交流.课后作业1.布置作业:教材“习题1.2”中第2、3题.2.完成练习册中相应练习.教学反思本节课让学生动手操作,不仅可以调动学生的积极性,而且通过动手做一做,然后再说一说的过程,巩固了菱形的判定.只有这样,才能使学生在今后的学习中有更严密的思维,使他们的抽象概括能力有更好的提升.。
第一章特殊的平行四边形1.1 菱形的判定和面积第3课时一、教学目标1.巩固对菱形的性质定理和判定定理的理解。
2.认识菱形的性质定理和判定定理的区别,正确应用有关定理。
3.运用菱形的性质定理和判定定理解决一些问题。
二、教学重点及难点重点:熟悉菱形的性质定理和判定定理。
难点:灵活运用菱形的性质定理和判定定理解决问题.三、教学用具多媒体课件、直尺或三角板。
四、相关资《菱形的判定》微课五、教学过程【复习引入】在学习本节课之前,请同学们首先回顾一下菱形的性质和判定.师生活动:教师出示问题,学生回顾菱形的性质和判定,教师找学生代表回答.答:1.菱形的性质定理:(1)菱形的四条边相等(2)菱形的对角线互相垂直2.菱形的判定方法:(1)定义:有一组邻边相等的平行四边形叫做菱形.(2)判定定理1:对角线互相垂直的平行四边形是菱形.(3)判定定理2:四条边相等的四边形是菱形.这节课我们研究对菱形性质和判定的综合运用。
设计意图:通过复习菱形的性质和判定为本节课的学习作准备.【探究新知】做一做如图,两张等宽的纸条交叉重叠在一起,重叠的部分ABCD是菱形吗?为什么?师生活动:教师出示问题,引导学生完成解答.答:是菱形;理由:设两张等宽的纸条的宽为h,因为纸条的对应边平行,所以AD∥BC,AB∥DC.所以四边形ABCD是平行四边形.又因为S□ABCD=BC·h=AB·h,所以BC=AB.所以平行四边形ABCD是菱形(一组邻边相等的平行四边形是菱形).设计意图:巩固学生对菱形判定定理的理解.运用菱形的定义解决问题,也提供了一种制作菱形的方法。
【典例精析】例如图,四边形ABCD是边长为13 cm的菱形,其中对角线BD长10 cm.求:(1)对角线AC的长度;(2)菱形ABCD的面积.师生活动:教师分析、引导学生完成解题过程.分析:本例是菱形性质的应用和菱形面积的计算;学生对于第(1)个问题的解决比较容易,但是学生的书写过程可能不够规范;对于第(2)个问题,教师要注意引导学生用简便方法,并总结菱形面积的计算方法.解:(1)∵四边形ABCD是菱形,AC与BD相交于点E,∴∠AED=90°(菱形的对角线互相垂直),DE=BD=×10=5(cm)(菱形的对角线互相平分).∴在Rt△ADE中,由勾股定理,得∴AC=2AE=2×12=24(cm)(菱形的对角线互相平分).(2)S菱形ABCD=S△ABD+S△CBD=2×S△ABD=2××BD×AE=BD×AE=10×12=120(cm2).总结菱形面积的计算方法:(1)一边长与两对边之间的距离(即菱形的高)的积;(2)四个小直角三角形的面积之和(或一个小直角三角形面积的4倍);(3)两条对角线长度乘积的一半.设计意图:本例是菱形性质的应用与菱形面积的计算。
北师大版九年级上册菱形的性质与判定教学设计简介菱形是初中数学中的基础图形之一。
在北师大版九年级数学教材上,介绍了菱形的定义、性质和判定等内容。
本文将结合教材内容和教学经验,探讨针对北师大版九年级上册菱形的性质与判定的教学设计。
教学目标•理解菱形的定义和性质•掌握菱形对角线的性质•能够判定一个图形是否为菱形教学内容一、菱形的定义和性质1. 定义菱形是四边形的一种,有两组对边相等,四个角都是直角的四边形。
2. 性质•对角线相互垂直,即菱形的对角线互相垂直。
•对角线互相平分,即菱形的对角线互相平分。
•对角线相等,即菱形的对角线相等。
•对边平行,即菱形的对边互相平行。
•对角线分别平分角,即每个角的平分线同时也是对角线的中垂线,平分角的大小为45度。
二、菱形对角线的性质1. 性质1菱形的对角线互相垂直。
2. 性质2菱形的对角线互相平分。
3. 性质3菱形对角线的长度相等。
三、判定图形是否为菱形1. 利用菱形定义判定若一个四边形的四条边相等,则它是菱形。
2. 利用菱形的性质判定判定一个四边形是否为菱形,也可以利用菱形的性质,如对角线互相平分、对角线相等、对角线互相垂直等。
教学设计一、教学方法本节内容主要讲解菱形的性质和判定方法。
因此,采用讲授、演练和解题三种教学方法相结合,以让学生掌握菱形的定义和性质、理解性质强调的重点和应用方法、熟练掌握判定图形是否为菱形的方法。
二、教学过程1.引入通过认识四边形的分类,引入菱形的概念。
2.学习菱形的定义通过图形展示和讲解,介绍菱形的定义和概念。
3.掌握菱形的性质通过图形展示和讲解,引导学生掌握菱形的性质。
4.演练菱形的性质和应用通过讲解和练习,创设实际问题,让学生理解和应用菱形的性质。
5.判定图形是否为菱形通过讲解和实例演示,引导学生判定图形是否为菱形。
6.反思总结通过讨论和总结,让学生回顾学习内容和方法,检验自己的知识和技能掌握情况。
评价方式教师通过学生的书写、口头表达和举手等方式,对学生的掌握情况进行评价和检查,及时反馈学生的问题和不足。
《菱形的性质与判定》教案提供录像课:能教学目标:1. 理解菱形的概念,了解它与平行四边形之间的关系2. 经历菱形概念的抽象过程,以及它的性质的探索、猜测与证明的过程,丰富数学活动经验,进一步发展合情推理能力和演绎推理能力.3. 体会探索与证明过程中所蕴含的抽象、推理等数学思想教学重、难点:重点:菱形的性质定理的证明.难点:菱形的性质定理的应用.课前准备:教师准备:多媒体课件.学生准备:制作菱形纸片.设计意图:学生准备菱形纸片的过程,就是学生对平行四边形的回顾过程,以及对特殊的平行四边形一一菱形的初步认识教学过程:一、创设情境,导入新课D 活动内容1知识回顾1•什么叫做平行四边形?2.平行四边形有哪些性质?处理方式:让学生结合图形复述平行四边形的定义与性质. 在学生复述平行四边形的定义时,容易与平行四边形的判定定理混淆;对于平行四边形的性质,教师应及时引导学生从边、角、对角线、对称性四个方面复述,并能结合图形将文字语言转化成符号语言.设计意图:通过对平行四边形定义及性质的回顾,一方面利于学生尽快进入学习新课的状态,另一方面利于学生积累探究图形定义及性质的方法和经验活动内容2 :导入新课导语:在我们现实生活中,平行四边形的形象无处不在,请同学们观察下列图片中的平行四边形.'a r ■■你能发现它们有怎样的共同特征?你知道这样特殊的平行四边形叫做什么吗?它有哪些特殊的性质?本节课我们一起走进“菱形”,去探究菱形的性质与判定•【教师板书课题:1.1菱形的性质与判定(1)】处理方式:学生观察生活中常见的特殊平行四边形图片,并与一般平行四边形进行对比,找出与一般平行四边形的不同之处,对菱形的定义与性质先有感性认识设计意图:从生活中的菱形入手,让学生感受生活中的数学•使用疑问的语言导入新课,有利于激起学生的探究欲望,培养学生对新知识的兴趣•二、探究学习,获取新知活动内容1提出问题(多媒体出示)1. 结合以上特殊平行四边形的特征,你能给菱形一个定义吗?2. 因为菱形是特殊的平行四边形,所以它不仅具有平行四边形的所有性质,而且还具有它本身独特的性质.你认为菱形还具有哪些特殊的性质?处理方式:结合图片上图形的特征,引导学生在平行四边形的基础上归纳菱形的定义;通过对菱形的观察,与一般平行四边形进行对比,归纳菱形特有的性质,并口述,教师板书.设计意图:让学生通过与平行四边形的对比,对图形进行观察与抽象,归纳菱形的定义与性质,体会菱形与平行四边形之间的关系和菱形的“特殊”之处,为下步探索、证明菱形的性质做好铺垫. I 做一做:请同学们用你手中的菱形纸片折一折,回答下列问题:(1) 菱形是轴对称图形吗?如果是,它有几条对称轴?对称轴之间有什么位置关系? (2) 菱形中有哪些线段相等?处理方式:让学生利用课前准备的菱形纸片进行折叠, 折叠的过程中,让学生回顾轴对称图形的意义及轴对称图形的性质 ,从而发现菱形的“特殊”性质,感受折纸过程对性质的初步验证•设计意图:通过折纸这一过程,引导学生发现菱形的对称性, 即菱形不只是中心对称图 形,还是轴对称图形,在操作过程中验证菱形的特殊性质, 鼓励学生通过多种方法验证发现 的结论•活动内容2:菱形性质定理的证明如何推理证明“菱形的四条边相等,对角线互相垂直”这两个性质呢? (多媒体出示)已知:如图,在菱形 ABCD 中,AB =AD ,对角线 AC 与BD 相交于点 0.求证:(1) AB = BC = CD =AD ; (2) AC 丄 BD . 处理方式:让学生从平行四边形的性质出发,独立思 考、分析证明思路•第(2)题多数学生可能会应用全等三角形的性质,想不到利用“等腰三角形的三线合一” 性质,教师引导学生互相交流、确定证明 思路,最后找一名学生板书证明过程,教师规范解题过程的书写学生预设:证明:(1)∙∙∙四边形ABCD 是菱形,∙∙∙ AB=CD , AD=BC (菱形的对边相等)又∙∙∙ AB=AD ,AB=BC=CD=AD(2)τ AB=AD ,•••△ ABD 是等腰三角形. 又•••四边形ABCD 是菱形, • OB=OD (菱形的对角线互相平分) 在等腰三角形ABD 中,∙∙∙ OB=OD ,AO 丄 BD .即AC 丄BD .BC设计意图:通过对性质的分析与证明,一方面让学生养成独立思考问题的习惯, 能独立解决对于不的问题,引导学生发挥小组合作的作用,提高学生的交流能力;另一方面通过解题过程的板书提高学生的书写能力,养成规范书写的习惯教师强调:菱形的性质定理定理菱形的四条边相等•定理菱形的对角线互相垂直•活动内容3:定理的拓展延伸通过对“菱形的对角线互相垂直”的证明过程,你还能发现菱形对角线有什么性质?处理方式:学生在小组交流后说出自己的发现,若不能,教师引导学生观察等腰三角形ABD中,“三线合一”还能有什么结论?还可以引导学生再次通过对菱形纸片的折叠发现一些相等的角,从而总结出“菱形的每条对角线平分一组对角”设计意图:通过问题的延伸,结合推理或折叠,培养学生勇于探索、善于发现、善于总结的好习惯•教师强调:菱形的每条对角线平分一组对角.三、训练反馈,应用提升活动内容1:例1 在菱形ABCD中,对角线AC和BD相交于点0, ∠ BAD=60 ° , BD=6 ,求菱形的边长AB和对角线AC的长•处理方式:教师引导学生根据已知条件说出菱形的性质,发现本题线段和角的有关结论,再独立组织本题的解题过程.然后让一名学生板演解题过程,师生共同评价•学生还有可能会应用“菱形的每条对角线平分一组对角”结合直角三角形的其它知识解决此题, 教师都应给与肯定学生预设:解:•••四边形ABCD是菱形,∙∙∙ AB=AD (菱形的四条边相等),AC ⊥ BD (菱形的对角线互相垂直)OB =OD =1BD =1 6=3 (菱形的对角线互相平分)2 2在等腰三角形ABD中,τ∠ BAD=60 ° ,•••△ ABD是等边三角形.∙∙∙ AB=BD =6.在Rt△ AOB中,由勾股定理得OA OB= A2B•OA=J AB2 -OB2=J62 - 32=3. 3 .•AC=2OA=6-.3 (菱形的对角线互相平分)设计意图:让学生通过此例题的思考与分析,初步应用菱形的性质定理解决有关问题,在应用的过程中明确菱形与平行四边形的关系,同时鼓励学生一题多解,理解菱形的性质定活动内容2:方法提炼在菱形ABCD中,对角线AC和BD相交于点O,图中有多少个等腰三角形和直角三角形?请说说你的理由•处理方式:让学生在小组内完成,并进行说理•教师强调:菱形的问题经常会转化为等腰三角形和直角三角形的问题来解决设计意图:让学生再次巩固菱形性质定理的同时,明确菱形问题可以转化为等腰三角形和直角三角形问题,体会数学中的转化思想.活动内容3:巩固训练在菱形ABCD中,对角线AC和BD相交于点O,已知AB=5cm, AO =4cm ,求BD 的长.处理方式:学生独立完成本题目的思考、分析及书写的过程,一生在黑板板书并进行讲解.若有不规范之处,教师引导其他学生进行规范.设计意图:学生已通过前两个问题对菱形的性质进行理解,所以对于本题的处理完全可以由学生独立完成,决问题的能力.训练学生独立解C四、回顾反思,提炼升华通过这节课的学习,你有哪些收获?有何感想?学会了哪些方法?先想一想, 大家.处理方式: 学生畅谈自己的收获!教师强调: 1.菱形的性质疋理:①菱形的四条边相等;②菱形的对角线互相垂直.2.菱形的一条对角线把菱形分成两个全等的等腰三角形, 菱形的两条对角线把菱形分成四个全等的直角三角形.因此,有关菱形的问题,往往可转化为等腰三角形或直角三角形的 问题来解决.设计意图:课堂小结有学生完成, 一是可以让学生通过小结对本课知识进行回顾, 二是可以提高学生总结、反思、提炼的好习惯.五、达标检测,反馈提高A 组 菱形ABCD 的周长为40cm ,对角线 AC 和BD相交于点 O , AC=10cm.(1) ______________ N BAC= _____ ,N B = . (2) 对角线BD=____________ .(3) 过点B 作BE 丄AD ,贝U BE= ____________ ,菱形ABCD 的面积为 _________________ .B 组 已知,如图,在菱形ABCD 中,F 为边BC 上的点,DF 与对角线 AC 交于点M ,过M 作ME 丄CD 于点E ,2 .若CE=I ,求BC 的长.处理方式:学生在5分钟内独立完成后,一生说出答 案,同位互换批改,不明白的问题利用1分钟时间交流、改正设计意图:当堂达标的题目不能太多、太难,只要能达至肪佥测本课知识的目的即可.B组题可以加强学习能力较强的学生的挑战性,以更好的体验成功的喜悦 六、布置作业,课堂延伸基础作业: 课本 P4 习题1.1 第1、2题.拓展作业: 已知地板砖上一菱形化纹周长为40cm ,两个相邻内角之比为 2: 1 ,求菱形的对角线长.再分享给活动内容:完成导学案中的达标检测题.(多媒体出示)板书设计:。
第一章特殊平行四边形1.1菱形的性质与判定第1课时菱形的性质教学目标1、会归纳菱形的特性并进行证明;2、能运用菱形的性质定理进行简单的计算与证明;3、在进行探索、猜想、证明过程中,进一步发展推理论证的能力,体会证明的必要性.重点:菱形的性质定理证明难点:菱形的性质定理证明、运用,生活数学与理论数学的相互转化. 知识链接:平行四边形的性质与判定一、课前预习:1.复习平行四边形的性质.边:角:对角线:对称性:2.菱形的定义是什么?___ ____菱形是不是中心对称图形? ,对称中心是___ __3.请动手制作一个菱形,折—折,观察并填空.菱形是不是轴对称图形? ,对称轴有几条?_______,分别是___ ____ 二、探索活动:探索活动(一):菱形是一种特殊的平行四边形,具有平行四边形的所有性质。
菱形特有的性质是(性质定理):菱形的四条边_______ ______;菱形的对角线____ _________。
探索活动(二):试证明上述定理已知:_____________________________________。
求证:(1)__________________________;(2)__________________________。
探索活动(三):备注(教师复备栏)已知菱形ABCD的两条对角线AC、BD相交于点O,图中存在特殊的三角形吗?如果菱形的两条对角线长分别为6和8,由此你能获得有关这个菱形的哪些结论?(可得到边长为;周长为面积为)你认为菱形的面积与菱形的两条对角线的长有关吗?如果有关,怎样根据菱形的对角线的计算它的面积?由此可得:菱形的面积__________________________________.由此得到菱形的两种面积计算方法:1. _____________________________________________2. _____________________________________________你会计算菱形的周长吗?三、例题精讲例1.课本3页例1例2.已知:在菱形ABCD中,对角线AC、BD相交于点O,E、F、G、H分别是菱形ABCD各边的中点,求证:OE=OF=OG=OH.四、课堂检测:1.已知四边形ABCD是菱形,O是两条对角线的交点,AC=8cm,DB=6cm,•菱形的边长是________cm.2.菱形ABCD的周长为40cm,两条对角线AC:BD=4:3,那么对角线AC=______cm,BD=______cm.3.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为4.已知菱形的面积为30平方厘米,如果一条对角线长为12厘米,则别一条对角线长为________厘米.5.菱形的两条对角线把菱形分成全等的直角三角形的个数是().(A)1个(B)2个(C)3个(D)4个备注(教师复备栏)备注(教师复备栏及学生笔记6.在菱形ABCD中,CE⊥AB,E为垂足,BC=2,BE=1,求菱形的周长和面积五、学习体会:六、课后作业。
1.1 菱形的性质与判定(第三课时)教案介绍本次教案是为2022—2023学年北师大版数学九年级上册编写的第三课时教案,主要内容涉及菱形的性质与判定。
通过本课时的学习,学生将能够掌握菱形的定义、性质以及判定方法,并且能够灵活运用这些知识解决相关问题。
教学目标1.了解菱形的定义和性质;2.掌握菱形与其内部角度的关系;3.学会使用菱形的判定方法,区分菱形和其他四边形。
教学内容1. 菱形的定义与性质a. 菱形的定义菱形是一种特殊的四边形,它的四条边相等且两两平行。
b. 菱形的性质•对角线互相垂直;•对角线互相平分;•菱形的每个角都是直角;•菱形有一个中心对称轴。
2. 菱形与其内部角度的关系a. 菱形的内角学生们将通过探究菱形的内角度的关系,进一步加深对菱形性质的理解。
b. 证明请学生自行推导菱形内角之和为360度的证明过程,并进行板书记录。
3. 菱形的判定方法学生们将学习如何判定一个四边形是否为菱形。
a. 基于边长的判定方法•若一个四边形的四条边相等,则该四边形是菱形。
b. 基于对角线的判定方法•若一个四边形的对角线互相垂直,且对角线互相平分,则该四边形是菱形。
4. 练习与讨论请学生们完成以下练习,并进行讨论:1.已知四边形ABCD,其中AB=BC=CD=DA,且∠BAD=120度,判断四边形ABCD是否为菱形。
2.已知四边形EFGH,其中EF=FG=GH=HE,且对角线EG与FH互相垂直,判断四边形EFGH是否为菱形。
总结与评价通过本课时的学习,学生们对菱形的定义、性质及判定方法有了更深入的理解。
通过练习与讨论,他们能够熟练运用这些知识解决实际问题。
教师可以对学生的答案进行评价,及时纠正学生的错误,并对学生的表现给予积极的肯定与鼓励。
拓展活动学生们可以在课后自行寻找更多的菱形例题,并尝试解决。
他们也可以在日常生活中观察并记录身边存在的菱形,并思考这些菱形的性质与判定方法。
参考资料•《北师大版数学九年级上册》•菱形的定义与性质知识点总结•菱形的判定方法知识点总结。
《菱形的性质与判定(三)》教学案
教学目标:
知识与能力:
能灵活运用菱形的性质定理及判定定理解决一些相关问题,并掌握菱形面积求法。
过程与方法:
经历菱形性质定理及判定定理的应用过程,体会数形结合、转化等思想方法。
情感态度价值观:
在学习过程中感受数学与生活的联系,增强学生的数学应用意识;在学习过程中通过小组合作交流,培养学生的合作交流能力与数学表达能力。
教学重点:熟练运用菱形的性质和判断定理
教学难点:运用综合法书写证明的过程
教学方法:讲练结合法
课时安排:1课时
教学过程:
一:知识回顾
师:同学们通过前两节课的学习我们已经知道了菱形的性质及判定,你能
完成下面几个题目吗?
1.如图1所示:在菱形ABCD中,AB=6
(1)其余三条边AD、DC、BC的长度分别是多少?
(2)对角线AC与BD有什么位置关系?
(3)若∠ADC=120°,求AC的长。
2. 如图2所示:在□ABCD中添加一个条件使其成为菱形:
添加方式1: .
添加方式2: . 二:知识应用
1.典型例题:
D C
图2
例3 如图3,四边形ABCD 是边长为13cm 的菱形,其中对角线BD 长为10cm.求:(1)对角线AC 的长度;
(2)菱形ABCD 的面积.
解:(1)∵四边形ABCD 是菱形, ∴AC ⊥BD,即∠AED=90°, DE=
1
2
BD ×10=5(cm ) ∴在Rt △ADE 中,由勾股定理可得:
12().AE cm === ∴AC=2AE=2×12=24(cm). (2)S 菱形ABCD = S △ABD + S △CBD =2×S △ABD =2×
1
2
×BD ×AE = BD ×AE=10×12=120(cm 2). 三:拓展提高
1.如图4,两张等宽的纸条交叉重叠在一起,重叠部分ABCD 是菱形吗?为什么?
四、随堂练习:p9 五、课堂小结
通过本节课的学习你有哪些收获,你还存在什么疑问?总结完成后请小组内进行交流。
六、布置作业
课本p9知识技能第3题,第4题 教学反思(手写)
图3
图4。