北京市丰台区2018-2019学年八年级上学期期末考试数学试题-c358a8ccff874accaf8ee21929665f53
- 格式:docx
- 大小:788.99 KB
- 文档页数:25
一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的. 1. 如果二次根式2x -有意义,那么x 的取值范围是A. 2x ≠B. 0x ≥C. 2x >D. 2x ≥ 2. 剪纸是中华传统文化中的一块瑰宝,下列剪纸图案中不是..轴对称图形的是3. 9的平方根是A .3B .±3C .3±D .81 4. 下列事件中,属于不确定事件的是 A .晴天的早晨,太阳从东方升起 B .一般情况下,水烧到50°C 沸腾C .用长度分别是2cm ,3cm ,6cm 的细木条首尾相连组成一个三角形D .科学实验中,前100次实验都失败,第101次实验会成功 5. 如果将分式2xx y+中的字母x 与y 的值分别扩大为原来的10倍,那么这个分式的值 A .不改变 B .扩大为原来的20倍 C .扩大为原来的10倍 D .缩小为原来的1106. 如果将一副三角板按如图方式叠放,那么∠1等于A .120°B .105°C .60°D .45°160°45°7. 计算32a b(-)的结果是 A. 332a b - B. 336a b - C. 338a b- D. 338a b8. 如图,在△ABC 中,∠ACB =90°, CD ⊥AB 于点D ,如果∠DCB =30°,CB =2,那么AB 的长为A. 23B. 25C. 3D. 4 9.下列计算正确的是 A.325+= B. 1233-= C.326⨯= D.842= 10. 如图,将ABC △放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么ABC △中BC 边上的高是 A.102B. 104C.105D. 5二、填空题(本题共18分,每小题3分) 11. 如果分式14x x --的值为0,那么x 的值是_________. 12. 计算:2(3)-=_________. 13. 在-1,0,2,π,13这五个数中任取一个数,取到无理数的可能性是_________. 14. 如图,ABC △中,90C ∠=,BD 平分ABC ∠交AC 于点D ,如果CD =6cm ,那么点D 到AB 的距离为_________cm. 15. 如图,△ABC 是边长为2的等边三角形,BD 是AC 边上的中线,延长BC 至点E ,使CE =CD ,联结DE ,则DE 的长是 .ABCD D CBAACBEABCD16. 下面是一个按某种规律排列的数表:第1行 1第2行232第3行567223第4行1011231314154……那么第5行中的第2个数是,第n(1n>,且n是整数)行的第2个数是 .(用含n的代数式表示)三、解答题(本题共20分,每题5分)17. 计算:381232-+-.18. 计算:2121.224a a aa a--+÷--19. 解方程:11322x x x-+=--.20. 已知:如图,点B ,E ,C ,F 在同一条直线上, AB ∥DE ,AB =DE ,BE=CF . 求证:AC =DF .四、解答题(本题共11分,第21题5分,第22题6分) 21. 已知30x y -=,求22(+)+2x yx y x xy y -+的值.22. 列方程解应用题:学校要建立两个计算机教室,为此要购买相同数量的A 型计算机和B 型计算机.已知一台A 型计算机的售价比一台B 型计算机的售价便宜400元,如果购买A 型计算机需要22.4万元,购买B 型计算机需要24万元.那么一台A 型计算机的售价和一台B 型计算机的售价分别是多少元?E A C DB F五、解答题(本题共21分,每小题7分)23. 已知:如图,△AOB 的顶点O 在直线l 上,且AO =AB .(1)画出△AOB 关于直线l 成轴对称的图形△COD ,且使点A 的对称点为点C ; (2)在(1)的条件下, AC 与BD 的位置关系是 ;(3)在(1)、(2)的条件下,联结AD ,如果∠ABD =2∠ADB ,求∠AOC 的度数.24. 我们知道,假分数可以化为整数与真分数的和的形式.例如:32=112+. 在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.例如:像11x x +-,22x x -,…这样的分式是假分式;像42x - ,221x x +,…这样的分式是真分式.类似的,假分式也可以化为整式与真分式的和的形式. 例如:112122111111x x x x x x x x +-==+=+-----(-)+;22442(2)4422222x x x )x x x x x x -++-+===++----(. (1)将分式12x x -+化为整式与真分式的和的形式; (2)如果分式2211x x --的值为整数,求x 的整数值.BAOl25. 请阅读下列材料:问题:如图1,△ABC中,∠ACB=90°,AC=BC,MN是过点A的直线,DB⊥MN于点D,联结CD.求证:BD+ AD =2CD.小明的思考过程如下:要证BD+ AD =2CD,需要将BD,AD转化到同一条直线上,可以在MN上截取AE=BD,并联结EC,可证△ACE和△BCD全等,得到CE=CD,且∠ACE=∠BCD,由此推出△CDE为等腰直角三角形,可知DE =2CD,于是结论得证.小聪的思考过程如下:要证BD+ AD =2CD,需要构造以CD为腰的等腰直角三角形,可以过点C作CE⊥CD交MN于点E,可证△ACE和△BCD全等,得到CE=CD,且AE=BD,由此推出△CDE为等腰直角三角形,可知DE =2CD,于是结论得证.请你参考小明或小聪的思考过程解决下面的问题:(1) 将图1中的直线MN绕点A旋转到图2和图3的两种位置时,其它条件不变,猜想BD,AD,CD之间的数量关系,并选择其中一个图形加以证明;(2) 在直线MN绕点A旋转的过程中,当∠BCD=30°,BD =2时,CD=__________.MDNBCA图2BCNMDA图3AC BNDM E图1丰台区2019-2019学年度第一学期期末练习初二数学评分标准及参考答案一、选择题(本题共30分,每小题3分)题号 1 2 3 4 5 6 7 8 9 10 答案DCBDABCDBA二、填空题(本题共18分,每小题3分)题号 11 12 1314 1516答案13256332()212n -+三、解答题(本题共20分,每小题5分) 17.解:原式=22323-+- …… 3分 =433-. …… 5分 18.解:原式=21(1)22(2)a a a a --÷-- …… 2分=212(2)2(1)a a a a --⨯-- ……3分=21a -. ……5分19.解:11322x x x -+=-- ……1分13(2)1x x +-=- ……2分1361x x +-=- ……3分24x =2x =. ……4分经检验,2x = 是原方程的增根,所以,原方程无解. ……5分 20.证明:∵AB ∥DE ,∴∠B =∠DEC . ……1分∵BE = CF ,∴BE +EC = CF +EC ,即BC = EF . ……2分在△ABC 和△DEF 中,,AB DE B DEC BC EF ===⎧⎪⎨⎪⎩∠∠ ……3分 ∴△ABC ≌△DEF (SAS ). ……4分 ∴AC = DF .(全等三角形对应边相等)…5分 四、解答题(本题共11分,第21题5分,第22题6分)21.解:原式=()()2x yx y x y -⋅++ ……1分=x yx y-+. ……2分 ∵30x y -=,∴=3x y . ……3分∴原式=33y yy y-+. ……4分=12. ……5分22.解:设一台A 型计算机的售价是x 元,则一台B 型计算机的售价是(x +400)元.根据题意列方程,得 ……1分224000240000400x x =+ ……3分 解这个方程,得5600x = ……4分经检验,5600x =是所列方程的解,并且符合实际问题的意义. ……5分当5600x =时,+4006000x =.答:一台A 型计算机的售价是5600元,一台B 型计算机的售价是6000元. ……6分五、解答题(本题共21分,每小题7分) 23.(1)如图1.……1分 (2)平行. ……2分 (3)解:如图2,由(1)可知,△AOB 与△COD 关于直线l 对称, ∴△AOB ≌△COD .……3分∴AO =CO ,AB = CD ,OB = OD ,∠ABO =∠CDO . 图1 图2 ∴∠OBD =∠ODB . ……4分∴∠ABO+∠OBD =∠CDO+∠ODB ,即∠ABD =∠CDB .∵∠ABD =2∠ADB ,∴∠CDB =2∠ADB .∴∠CDA =∠ADB .……5分由(2)可知,AC ∥BD ,∴∠CAD =∠ADB .∴∠CAD =∠CDA ,∴CA = CD .……6分 ∵AO = AB ,∴AO = OC = AC ,即△AOC 为等边三角形. ∴∠AOC = 60°. ……7分 24.解:(1)12x x -+()232x x +-=+ ……1分2232x x x +=+-+ ……2分312x+=-. ……3分(2)2211x x --22211x x -+=- ()()21111x x x +-+=-()1211x x =++-. ……5分 ∵分式的值为整数,且x 为整数, ∴11x -=±,∴x =2或0.……7分25.解:(1)如图2,BD -AD =2CD . ……1分ABCDOllO DCB A如图3,AD -BD =2CD . ……2分证明图2:( 法一)在直线MN 上截取AE =BD ,联结CE .设AC 与BD 相交于点F ,∵BD ⊥MN ,∴∠ADB =90°,∴∠CAE+∠AFD =90°.∵∠ACB =90°,∴∠1+∠BFC =90°. ∵∠AFD =∠BFC ,∴∠CAE =∠1.∵AC =BC ,∴△ACE ≌△BCD (SAS ). ……3分 ∴CE =CD ,∠ACE =∠BCD .∴∠ACE -∠ACD =∠BCD -∠ACD ,即∠2=∠ACB =90°.在Rt △CDE 中,∵222CD CE DE +=,∴222CD DE = ,即DE =2CD .……4分 ∵DE = AE -AD = BD -AD ,∴BD -AD =2CD . ……5分 ( 法二)过点C 作CE ⊥CD 交MN 于点E ,则∠2=90°. ∵∠ACB =90°,∴∠2+∠ACD =∠ACB+∠ACD , 即∠ACE =∠BCD .设AC 与BD 相交于点F ,∵DB ⊥MN ,∴∠ADB =90°. ∴∠CAE+∠AFD =90°,∠1+∠BFC =90°. ∵∠AFD =∠BFC ,∴∠CAE =∠1.∵AC =BC ,∴△ACE ≌△BCD (ASA ). ……3分 ∴CE =CD ,AE =BD .在Rt △CDE 中,∵222CD CE DE +=,∴222CD DE = ,即DE =2CD .……4分 ∵DE = AE -AD = BD -AD ,∴BD -AD =2CD . ……5分 证明图3:( 法一)在直线MN 上截取AE =BD ,联结CE . 设AD 与BC 相交于点F ,∵∠ACB =90°,∴∠2+∠AFC =90°. ∵BD ⊥MN ,∴∠ADB =90°,∠3+∠BFD =90°. ∵∠AFC =∠BFD ,∴∠2=∠3.∵AC =BC ,∴△ACE ≌△BCD (SAS ). ……3分 ∴CE =CD ,∠1=∠4.∴∠1+∠BCE =∠4+∠BCE ,即∠ECD =∠ACB =90°.在Rt △CDE 中,∵222CD CE DE +=,∴222CD DE = ,即DE =2CD .……4分F12图2A C BND ME FE M DNBC A 图221E BCN M DA 图3123F 4数学试卷∵DE = AD -AE = AD -BD ,∴AD -BD =2CD . ……5分 ( 法二)过点C 作CE ⊥CD 交MN 于点E ,则∠DCE =90°.∵∠ACB =90°,∴∠ACB -∠ECB = ∠DCE -∠ECB ,即∠1=∠4. 设AD 与BC 相交于点F ,∵DB ⊥MN ,∴∠ADB =90°. ∴∠2+∠AFC =90°,∠3+∠BFD =90°.∵∠AFC =∠BFD ,∴∠2=∠3.∵AC =BC ,∴△ACE ≌△BCD (ASA ).……3分 ∴CE =CD ,AE =BD .在Rt △CDE 中,∵222CD CE DE +=,∴222CD DE = ,即DE =2CD .……4分∵DE = AD -AE = AD -BD ,∴AD -BD =2CD .……5分 (2)31± .……7分 4F 321 图3A D M N C B E。
丰台区2018—2019学年第一学期期末练习初二数学评分标准及参考答案二、填空题(本题共16分,每小题2分) 9.12m -,答案不唯一 10. 5 11. ③①② 12. 30° 13.不合理,理由支持结论即可 14. 4,3 15. ①分式的基本性质;②等式的基本性质 16. (4或(4-三、解答题(本题共68分,第17-20题,第25题,每小题5分,第21- 24题,第26,27题,每小题6分,第28题7分)17. 解:原式=13232-+- ……3分=333-. ……5分18. 解:原式=n m m n m n m ---+2 ……1分 =n m mn m --+2……2分 =nm m n -- ……3分=1-. ……5分19. 解:()()111611=-+--+x x x x ……1分 ()()()11612-+=-+x x x ……2分 161222-=-++x x x ……3分2=x . ……4分 经检验2=x 是原方程的解,所以原方程的解是2=x . ……5分 20. 解:添加条件AO =BO (AD =BC 或 DO =CO ). ……1分证明:∵AD ∥BC ,∴∠A =∠B .在△AOD 和△BOC 中,∠A =∠B , AO =BO ,∠AOD =∠BOC . ……4分∴△AOD ≌△BOC (ASA ) . …5分21.解:原式=2222a b ab aa ab +-⋅- …2分=()22a b aa ab -⋅- ……3分 =2a b-. ……4分∴当a b -==2.……6分 22. 解:(1)正确补全图形; ……3分 (2)BE ,CE ,到线段两个端点距离相等的点在这条线段的垂直平分线上.……6分23.解:设小亮妈妈原来从香港到珠海大约需要x 小时. ……1分 根据题意,得4955220-=x x. …3分 解得 3=x . ……4分 经检验,3=x 是所列方程的解,并 符合实际问题的意义. ……5分 答:小亮妈妈原来从香港到珠海大约需要3小时. ……6分24. 证明:∵DE ⊥AB ,DF ⊥AC ,∴∠BED =∠CFD =90°. …2分 ∵D 是BC 中点,∴BD =CD . ……3分 在Rt △BDE 和Rt △CDF 中,BD =CD , DE =DF .∴Rt △BDE ≌Rt △CDF (HL ).……4分∴∠B =∠C . ……5分 ∴AB = AC . ……6分证法不唯一,其他证法请参照示例相应步骤给分.C BDE A25. 解:(1)正确画出图形; ……………………………………3分 (2)∵AB =2, BC =22, AC =10,∴AB 2+ BC 2 =AC 2.∴∠ABC =90°. ……………………………………4分∴22222121=⨯⨯=⋅=∆BC AB S ABC . ………5分 26. 解:(1)2; …………………………………………………………………………1分(2)存在,x =1或0;………………………………………………………………3分(3)可能是输入的x 为负数,导致开平方运算无法进行; ……………………4分 (4)答案不唯一,如x =3或9. …………………………………………………6分27. 解:(1)4,5 ;…………………………………………………………………………2分(2)32log 2; ………………………………………………………………………4分 (3)()log a MN . …………………………………………………………………5分 验证:如()3333log 3log 9123log 27log 39+=+===⨯. ………………6分28.(1)正确补全图形;………………………………………………………………………1分∠BFC =45°. ………………………………………………………………………2分(2)猜想:EF 2+ BF 2 =2AC 2. ……………………………………………………………3分证明:连接CE ,AF ,延长AC ,FE 交于点G , ∵点A 关于直线CD 的对称点为点E ,∴△ACF ≌△ECF .∴∠CAF =∠1,AC =EC ,AF =EF . ∵AC =BC ,∴BC =EC .∴∠1=∠2.∴∠CAF =∠2.∵∠ACB =90°, ∴∠AGB +∠2=90°.∴∠CAF +∠AGB =90°. ∴∠AFG =90°.∴在Rt △AFB 中, AB 2=BF 2+AF 2.∵在Rt △ABC 中, AB 2=AC 2+BC 2=2AC 2,∴BF 2+AF 2=2AC 2.∴BF 2+EF 2=2AC 2. ……………………7分 证法不唯一,其他证法请参照示例相应步骤给分.CABCBA D E F 21GEF D A BC。
2019-2020学年北京市丰台区八年级(上)期末数学试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.(3分)画△ABC的高BE,以下画图正确的是()A.B.C.D.2.(3分)下列各式中,最简二次根式是()A.B.C.D.3.(3分)若分式的值为0,则实数的值为()A.﹣2 B.﹣1 C.04.(3分)下列计算正确的是()A.a2•a3=a5B.(a3)2=a5C.(3a)2=6a2D.5.(3分)七巧板是一种传统智力游戏,是中国古代劳动人民的发明,用七块板可拼出许多有趣的图形.在下面这些用七巧板拼成的图形中,可以看作轴对称图形的(不考虑拼接线)有()A.5个B.4个C.3个D.2个6.(3分)在图所示的4×4的方格表中,记∠ABD=α,∠DEF=β,∠CGH=γ,则()A.β<α<γB.β<γ<αC.α<γ<βD.α<β<γ7.(3分)下列式子是因式分解的是()A.a(a﹣b﹣1)=a2+ab﹣aB.a2﹣a﹣3=a(a﹣1)﹣3C.﹣4a2+9b2=﹣(2a+3b)(2a﹣3b)D.2x+1=x(2+)8.(3分)如图,在3×3的正方形网格中有四个格点A,B,C,D,以其中一个点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点可能是()A.点A B.点B C.点C D.点D 9.(3分)某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x元,则下面所列方程中正确的是()A.=B.=+100C.=D.=﹣100 10.(3分)如图,已知正比例函数y1=ax与一次函数y2=x+b的图象交于点P.下面有四个结论:①a<0;②b<0;③当x>0时,y1>0;④当x<﹣2时,y1>y2.其中正确的是()A.①②B.②③C.①③D.①④二、填空题(本题共25分,第13题4分,其余每小题3分)11.(3分)图中x的值为.12.(3分)如图,在长方形ABCD中,AF⊥BD,垂足为E,AF交BC于点F,连接DF.图中有全等三角形对,有面积相等但不全等的三角形对.13.(3分)在你所学过的几何知识中,可以证明两个角相等的定理有.(写出三个定理即可)14.(3分)在平面直角坐标系xOy中,A(0,2),B(4,0),点P与A,B不重合.若以P,O,B三点为顶点的三角形与△ABO全等,则点P的坐标为.15.(3分)如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D,E,AD,CE交于点F.请你添加一个适当的条件,使△AEF≌△CEB.添加的条件是:.(写出一个即可)16.(3分)如图,点D是线段AB上一点,∠CAB=∠ADE=∠ABF=90°,AC=BD,AD=BF,AB=DE.若∠AEB=α,则∠CEF= .(用含α的式子表示)17.(3分)如图,在Rt△ABC中,∠B=90°.(1)作出∠BAC的平分线AM;(要求:尺规作图,保留作图痕迹,不写作法)(2)若∠BAC的平分线AM与BC交于点D,且BD=3,AC=10,则△DAC的面积为.18.(3分)小芸家与学校之间是一条笔直的公路,小芸从家步行前往学校的途中发现忘记带阅读分享要用的U盘,便停下给妈妈打电话,妈妈接到电话后,带上U盘马上赶往学校,同时小芸沿原路返回.两人相遇后,小芸立即赶往学校,妈妈沿原路返回家,并且小芸到达学校比妈妈到家多用了5分钟.若小芸步行的速度始终是每分钟100米,小芸和妈妈之间的距离y与小芸打完电话后步行的时间x之间的函数关系如图所示,则妈妈从家出发分钟后与小芸相遇,相遇后妈妈回家的平均速度是每分钟米,小芸家离学校的距离为米.三、解答题(本题共27分,第19、23题每小题6分,其余每小题6分)19.(6分)分解因式:(1)5a2+10ab;(2)mx 2﹣12mx+36m.20.(5分)老师所留的作业中有这样一个分式的计算题:+,甲、乙两位同学完成的过程分别如下:甲同学:+=+第一步=第二步乙同学:+=+第一步=2x﹣2+x+5 第=第三步二步=3x+3 第三步老师发现这两位同学的解答都有错误.请你从甲、乙两位同学中,选择一位同学的解答过程,帮助他分析错因,并加以改正.(1)我选择同学的解答过程进行分析.(填“甲”或“乙”)该同学的解答从第步开始出现错误,错误的原因是;(2)请重新写出完成此题的正确解答过程.+.21.(5分)如图,在△ABC中,点D 在AC边上,AE∥BC,连接ED并延长交BC于点F.若AD=CD,求证:ED=FD.22.(5分)解分式方程:+=.23.(6分)已知一次函数y=kx+b,当x=2时y的值为1,当x=﹣1时y的值为﹣5.(1)在所给坐标系中画出一次函数y=kx+b的图象;(2)求k,b的值;(3)将一次函数y=kx+b的图象向上平移4个单位长度,求所得到新的函数图象与x轴,y轴的交点坐标.四、解答题(本题共18分,第24题5分,第25题6分,第26题7分)24.(5分)阅读材料:课堂上,老师设计了一个活动:将一个4×4的正方形网格沿着网格线划分成两部分(分别用阴影和空白表示),使得这两部分图形是全等的,请同学们尝试给出划分的方法.约定:如果两位同学的划分结果经过旋转、翻折后能够重合,那么就认为他们的划分方法相同.小方、小易和小红分别对网格进行了划分,结果如图1、图2、图3所示.小方说:“我们三个人的划分方法都是正确的.但是将小红的整个图形(图3)逆时针旋转90°后得到的划分方法与我的划分方法(图1)是一样的,应该认为是同一种方法,而小易的划分方法与我的不同.”老师说:“小方说得对.”完成下列问题:(1)图4的划分方法是否正确?答:.(2)判断图5的划分方法与图2小易的划分方法是否相同,并说明你的理由;答:.(3)请你再想出一种与已有方法不同的划分方法,使之满足上述条件,并在图6中画出来.25.(6分)如图,在平面直角坐标系xOy中,直线l1:y=3x+1与y轴交于点A.直线l2:y=kx+b与直线y=﹣x平行,且与直线l1交于点B(1,m),与y轴交于点C.(1)求m的值,以及直线l2的表达式;(2)点P在直线l2:y=kx+b上,且PA=PC,求点P的坐标;(3)点D在直线l1上,且点D的横坐标为a.点E在直线l2上,且DE∥y轴.若DE=6,求a的值.26.(7分)在△ABC中,∠A=60°,BD,CE是△ABC的两条角平分线,且BD,CE交于点F.(1)如图1,用等式表示BE,BC,CD这三条线段之间的数量关系,并证明你的结论;小东通过观察、实验,提出猜想:BE+CD=BC.他发现先在BC上截取BM,使BM=BE,连接FM,再利用三角形全等的判定和性质证明CM=CD即可.①下面是小东证明该猜想的部分思路,请补充完整:ⅰ)在BC上截取BM,使BM=BE,连接FM,则可以证明△BEF与全等,判定它们全等的依据是;ⅱ)由∠A=60°,BD,CE是△ABC的两条角平分线,可以得出∠EFB= °;…②请直接利用ⅰ),ⅱ)已得到的结论,完成证明猜想BE+CD=BC的过程.(2)如图2,若∠ABC=40°,求证:BF=CA.【附加题】解答题(本题共12分,每小题0分)27.基础代谢是维持机体生命活动最基本的能量消耗.在身高、年龄、性别相同的前提下(不考虑其他因素的影响),可以利用某基础代谢估算公式,根据体重x(单位:kg)计算得到人体每日所需基础代谢的能量消耗y(单位:Kcal),且y是x 的函数.已知六名身高约为170cm的15岁男同学的体重,以及计算得到的他们每日所需基础代谢的能量消耗,如下表所示:学生编号 A B C D E F体重x(kg)54 56 60 63 67 701596 1631 1701 1753.5 1823.5 1876 每日所需基础代谢的能量消耗y(Kcal)请根据上表中的数据回答下列问题:(1)随着体重的增加,人体每日所需基础代谢的能量消耗;(填“增大”、“减小”或“不变”)(2)若一个身高约为170cm的15岁男同学,通过计算得到他每日所需基础代谢的能量消耗为1792Kcal,则估计他的体重最接近于;A.59kgB.62kgC.65kg D.68kg(3)当54≤x≤70时,下列四个y与x的函数中,符合表中数据的函数是.A.y=x2B.y=﹣10.5x+1071 C.y=10x+1101 D.y=17.5x+651.28.我们把正n边形(n≥3)的各边三等分,分别以居中的那条线段为一边向外作正n边形,并去掉居中的那条线段,得到一个新的图形叫做正n边形的“扩展图形”,并将它的边数记为a n.如图1,将正三角形进行上述操作后得到其“扩展图形”,且a3=12.图3、图4分别是正五边形、正六边形的“扩展图形”.(1)如图2,在5×5的正方形网格中用较粗的虚线画有一个正方形,请在图2中用实线画出此正方形的“扩展图形”;(2)已知a3=12,a4=20,a5=30,则图4中a6= ,根据以上规律,正n边形的“扩展图形”中a n= ;(用含n的式子表示)(3)已知=﹣,=﹣,=﹣,…,且+++…+=,则n= .【附加题】解答题(本题8分)29.在平面直角坐标系xOy中,直线l1:y=x+b与x轴交于点A,与y轴交于点B,且点C的坐标为(4,﹣4).(1)点A的坐标为,点B的坐标为;(用含b的式子表示)(2)当b=4时,如图所示.连接AC,BC,判断△ABC的形状,并证明你的结论;(3)过点C作平行于y轴的直线l2,点P在直线l2上.当﹣5<b<4时,在直线l1平移的过程中,若存在点P使得△ABP 是以AB为直角边的等腰直角三角形,请直接写出所有满足条件的点P的纵坐标.2019-2020学年北京市丰台区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.(3分)画△ABC的高BE,以下画图正确的是()A.B.C.D.【分析】画ABC的高BE,即过B点作AC所在直线的垂线段,垂足为E.【解答】解:画△ABC的高BE,即过点B作对边AC所在直线的垂线段BE,故选:D.【点评】本题主要考查作图﹣基本作图,掌握三角形的高是指从三角形的一个顶点向对边所在直线作垂线,连接顶点与垂足之间的线段是解题的关键.2.(3分)下列各式中,最简二次根式是()A.B.C.D.【分析】结合最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.求解即可.【解答】解:A、=,故不是最简二次根式,本选项错误;B、=3,故不是最简二次根式,本选项错误;C、是最简二次根式,本选项正确;D、=|x|,故不是最简二次根式,本选项错误.故选:C.【点评】本题考查了最简二次根式,解答本题的关键在于熟练掌握最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.3.(3分)若分式的值为0,则实数的值为()A.﹣2 B.﹣1 C.0【分析】分式值为零的条件是分子等于零且分母不等于零.【解答】解:分式的值为0,∴x+2=0且x﹣1≠0,解得:x=﹣2.故选:A.【点评】本题主要考查的是分式值为零的条件,熟练掌握分式值为零的条件是解题的关键.4.(3分)下列计算正确的是()A.a2•a3=a5B.(a3)2=a5C.(3a)2=6a2D.【分析】根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;同底数幂的除法法则:底数不变,指数相减;幂的乘方法则:底数不变,指数相乘;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘分别进行计算即可.【解答】解:A、a2•a3=a5,故原题计算正确;B、(a3)2=a6,故原题计算错误;C、(3a)2=9a2,故原题计算错误;D、a2÷a8=故原题计算错误;故选:A.【点评】此题主要考查了同底数幂的乘除法和幂的乘方、积的乘方,关键是熟练掌握各计算法则.5.(3分)七巧板是一种传统智力游戏,是中国古代劳动人民的发明,用七块板可拼出许多有趣的图形.在下面这些用七巧板拼成的图形中,可以看作轴对称图形的(不考虑拼接线)有()A.5个B.4个C.3个D.2个【分析】根据轴对称图形的概念对各图形分析判断即可得解.【解答】解:第一个图形不是轴对称图形,第二个图形是轴对称图形,第三个图形是轴对称图形,第四个图形不是轴对称图形,第五个图形是轴对称图形,第六个图形是轴对称图形,综上所述,是轴对称图形的有4个.故选:B.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,本题要注意不考虑拼接线.6.(3分)在图所示的4×4的方格表中,记∠ABD=α,∠DEF=β,∠CGH=γ,则()A.β<α<γB.β<γ<αC.α<γ<βD.α<β<γ【分析】根据题意和图得出:∠DGC=∠DCG=45°,∠HGF=∠GHF ∠=45°,再根据∠DGC+∠HGF+γ=180°,从而得出γ=90°,然后结合图观察出α>90°,β<90°,最后比较大小即可.【解答】解:由题意知:∠DGC=∠DCG=45°,同理∠HGF=∠GHF∠=45°,又∵∠DGC+∠HGF+γ=180°,∴γ=90°,由图可知α>90°,β<90°,∴β<γ<α,故选:B.【点评】本题考查了角的大小比较,解题的关键是求出γ角的度数,然后再比较大小就容易了.7.(3分)下列式子是因式分解的是()A.a(a﹣b﹣1)=a2+ab﹣aB.a2﹣a﹣3=a(a﹣1)﹣3C.﹣4a2+9b2=﹣(2a+3b)(2a﹣3b)D.2x+1=x(2+)【分析】根据因式分解的定义:就是把整式变形成整式的积的形式,即可作出判断.【解答】解:A、a(a﹣b﹣1)=a2+ab﹣a是整式的乘法,故不是分解因式,故本选项错误;B、a2﹣a﹣3=a(a﹣1)﹣3结果不是积的形式,不是因式分解,故选项错误;C、﹣4a2+9b2=﹣(2a+3b)(2a﹣3b)是整式积的形式,故是分解因式,故本选项正确;D、2x+1=x(2+),右边不是整式,故本选项错误;故选:C.【点评】本题考查的是因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.8.(3分)如图,在3×3的正方形网格中有四个格点A,B,C,D,以其中一个点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点可能是()A.点A B.点B C.点C D.点D【解答】解:如图所示:原点可能是D点.故选:D.9.(3分)某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x元,则下面所列方程中正确的是()A.=B.=+100C.=D.=﹣100 【解答】解:设学校购买文学类图书平均每本书的价格是x元,可得:,故选:B.10.(3分)如图,已知正比例函数y1=ax与一次函数y2=x+b的图象交于点P.下面有四个结论:①a<0;②b<0;③当x>0时,y1>0;④当x<﹣2时,y1>y2.其中正确的是()A.①②B.②③C.①③D.①④【解答】解:因为正比例函数y1=ax经过二、四象限,所以a<0,①正确;一次函数y2=x+b经过一、二、三象限,所以b>0,②错误;由图象可得:当x>0时,y1<0,③错误;当x<﹣2时,y1>y2,④正确;故选:D.二、填空题(本题共25分,第13题4分,其余每小题3分)11.(3分)图中x的值为130 .【分析】根据多边形内角和公式可得方程2x+(x﹣20)+90+80=540°,解方程即可求解.【解答】解:依题意有2x+(x﹣20)+90+80=540°,解得x=130.故答案为:130.【点评】考查了多边形内角与外角,关键是熟练掌握多边形内角和定理:(n﹣2)•180 (n≥3)且n为整数).12.(3分)如图,在长方形ABCD中,AF⊥BD,垂足为E,AF交BC于点F,连接DF.图中有全等三角形 1 对,有面积相等但不全等的三角形 4 对.【分析】根据长方形的对边相等,每一个角都是直角可得AB=CD,AD=BC,∠BAD=∠C=90°,然后利用“边角边”证明Rt△ABD 和Rt△CDB全等;根据等底等高的三角形面积相等解答.【解答】解:有,Rt△ABD≌Rt△CDB,理由:在长方形ABCD中,AB=CD,AD=BC,∠BAD=∠C=90°,在Rt△ABD和Rt△CDB中,,∴Rt△ABD≌Rt△CDB(SAS);有,△BFD与△BFA,△ABD与△AFD,△ABE与△DFE,△AFD与△BCD面积相等,但不全等.故答案为:1;4.【点评】本题考查了全等三角形的判定,长方形的性质,以及等底等高的三角形的面积相等.13.(3分)在你所学过的几何知识中,可以证明两个角相等的定理有对顶角相等,同角或等角的余角相等,两直线平行,同位角相等.(写出三个定理即可)【分析】判断角相等的定理有许多,如:全等三角形的对应角相等;两直线平行,同位角相等;同圆或等圆中,相等的弧所对的圆周角相等;在同一个三角形中,等边对等角;等等.【解答】解:判断角相等的定理有:对顶角相等,同角或等角的余角相等,两直线平行,同位角相等.故答案为:对顶角相等,同角或等角的余角相等,两直线平行,同位角相等【点评】本题考查了学生对所学命题与定理的掌握程度.关键是熟练掌握所学定理,多加积累.14.(3分)在平面直角坐标系xOy中,A(0,2),B(4,0),点P与A,B不重合.若以P,O,B三点为顶点的三角形与△ABO全等,则点P的坐标为(0,﹣2)或(4,﹣2)或(4,2).【分析】画出图形,利用图象即可解决问题.【解答】解:如图,以P,O,B三点为顶点的三角形与△ABO全等,则P(0,﹣2)或(4,﹣2)或(4,2);【点评】本题考查全等三角形的判定和性质、坐标与图形性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.15.(3分)如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D,E,AD,CE交于点F.请你添加一个适当的条件,使△AEF≌△CEB.添加的条件是:AF=CB或EF=EB或AE=CE..(写出一个即可)【分析】根据垂直关系,可以判断△AEF与△CEB有两对对应角相等,就只需要找它们的一对对应边相等就可以了.【解答】解:∵AD⊥BC,CE⊥AB,垂足分别为D、E,∴∠BEC=∠AEC=90°,在Rt△AEF中,∠EAF=90°﹣∠AFE,又∵∠EAF=∠BAD,∴∠BAD=90°﹣∠AFE,在Rt△AEF和Rt△CDF中,∠CFD=∠AFE,∴∠EAF=∠DCF,∴∠EAF=90°﹣∠CFD=∠BCE,所以根据AAS添加AFF=CB或EF=EB;根据ASA添加AE=CE.可证△AEF≌△CEB.故填空答案:AF=CB或EF=EB或AE=CE.【点评】题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.(3分)如图,点D是线段AB上一点,∠CAB=∠ADE=∠ABF=90°,16.AC=BD,AD=BF,AB=DE.若∠AEB=α,则∠CEF= 90°﹣α.(用含α的式子表示)【分析】连接BC、AF,则易证△EDB≌△BAC,则△BEC和△AEF 都是等腰直角三角形,则∠AEF=∠CEB=45°,即可证得:∠AEC=∠BEF;根据∠AEF=∠CEB=45°,再依据∠CEF=∠AEF﹣∠AEC=∠AEF﹣(∠AEB﹣∠BEC)即可求解.【解答】解:连接BC、AF.∵ED⊥AB,AC⊥AB,∴∠EDB=∠BAC=90°.又∵BD=AC,ED=AB,△EDB≌△BAC,∴EB=BC,∠BED=∠CBA.在Rt△EDB中,∵∠EDB=90°,∴∠BED+∠EBD=90°.∴∠CBA+∠EBD=90°.即∠EBC=90°.∴△BEC是等腰直角三角形.∴∠BEC=45°.同理可证:△AEF是等腰直角三角形.∴∠AEF=45°.∴∠AEF=∠BEC.∴∠AEF﹣∠CEF=∠BEC﹣∠CEF.即∠AEC=∠BEF,∵∠AEB=α,∴∠CEF的度数为90°﹣α.故答案为:90°﹣α【点评】本题考查了三角形全等的判定,正确证明△BEC和△AEF 都是等腰直角三角形是关键.17.(3分)如图,在Rt△ABC中,∠B=90°.(1)作出∠BAC的平分线AM;(要求:尺规作图,保留作图痕迹,不写作法)(2)若∠BAC的平分线AM与BC交于点D,且BD=3,AC=10,则△DAC的面积为15 .【解答】解:(1)∠BAC的平分线AM如图所示;(2)作DF⊥AC于F.∵DA平分∠BAC,DB⊥BA,DF⊥AC,∴DB=DF=3,∴S△DAC=•AC•DF=×10×3=15,故答案为15.18.(3分)小芸家与学校之间是一条笔直的公路,小芸从家步行前往学校的途中发现忘记带阅读分享要用的U盘,便停下给妈妈打电话,妈妈接到电话后,带上U盘马上赶往学校,同时小芸沿原路返回.两人相遇后,小芸立即赶往学校,妈妈沿原路返回家,并且小芸到达学校比妈妈到家多用了5分钟.若小芸步行的速度始终是每分钟100米,小芸和妈妈之间的距离y与小芸打完电话后步行的时间x之间的函数关系如图所示,则妈妈从家出发8 分钟后与小芸相遇,相遇后妈妈回家的平均速度是每分钟60 米,小芸家离学校的距离为2100 米.【解答】解:当x=8时,y=0,故妈妈从家出发8分钟后与小芸相遇,当x=0时,y=1400,∴相遇后18﹣8=10分钟小芸和妈妈的距离为1600米,1600÷(18﹣8)﹣100=60(米/分),∴相遇后妈妈回家的平均速度是每分钟60米;1600+(23﹣18)×100=2100(米),∴小芸家离学校的距离为2100米.故答案为:8;60;2100.三、解答题(本题共27分,第19、23题每小题6分,其余每小题6分)19.(6分)分解因式:(1)5a2+10ab;(2)mx2﹣12mx+36m.【解答】解:(1)原式=5a(a+2b)(2)原式=m(x2﹣12x+36)=m(x﹣6)220.(5分)老师所留的作业中有这样一个分式的计算题:+,甲、乙两位同学完成的过程分别如下:甲同学:+=+第一步=第二步=第三步乙同学:+=+第一步=2x﹣2+x+5 第二步=3x+3 第三步老师发现这两位同学的解答都有错误.请你从甲、乙两位同学中,选择一位同学的解答过程,帮助他分析错因,并加以改正.(1)我选择甲同学的解答过程进行分析.(填“甲”或“乙”)该同学的解答从第一步开始出现错误,错误的原因是在通分时,两个分式没有按分式的基本性质运算;(2)请重新写出完成此题的正确解答过程.+.【解答】解:(1)我选择甲同学的解答过程进行分析.该同学的解答从第一步开始出现错误,错误的原因是在通分时,两个分式没有按分式的基本性质运算;(2)+=+==.故答案为:甲,一,在通分时,两个分式没有按分式的基本性质运算.21.(5分)如图,在△ABC中,点D在AC边上,AE∥BC,连接ED并延长交BC于点F.若AD=CD,求证:ED=FD.【解答】解:∵AE∥BC,∴∠EAC=∠DCF;∵∠ADE和∠CDF是对顶角,∴∠ADE=∠CDF;∵,∴△AED≌△CFD,∴ED=FD.22.(5分)解分式方程:+=.【解答】解:去分母得:5(x﹣3)+2=x+3∴5x﹣15+2=x+3∴x=4经检验:x=4是原分式方程的解23.(6分)已知一次函数y=kx+b,当x=2时y的值为1,当x=﹣1时y的值为﹣5.(1)在所给坐标系中画出一次函数y=kx+b的图象;(2)求k,b的值;(3)将一次函数y=kx+b的图象向上平移4个单位长度,求所得到新的函数图象与x轴,y轴的交点坐标.【解答】解:(1)函数图象如图所示,(2)将当x=2,y=1;x=﹣1,y=﹣5分别代入一次函数解析式得:,解得.(3)由(2)可得,一次函数的关系式为y=2x﹣3.一次函数y=2x﹣3的图象向上平移4个单位长度,可得y=2x+1,令y=0,则x=﹣;令x=0,则y=1,∴与x轴,y轴的交点坐标分别为(﹣,0)和(0,1).四、解答题(本题共18分,第24题5分,第25题6分,第26题7分)24.(5分)阅读材料:课堂上,老师设计了一个活动:将一个4×4的正方形网格沿着网格线划分成两部分(分别用阴影和空白表示),使得这两部分图形是全等的,请同学们尝试给出划分的方法.约定:如果两位同学的划分结果经过旋转、翻折后能够重合,那么就认为他们的划分方法相同.小方、小易和小红分别对网格进行了划分,结果如图1、图2、图3所示.小方说:“我们三个人的划分方法都是正确的.但是将小红的整个图形(图3)逆时针旋转90°后得到的划分方法与我的划分方法(图1)是一样的,应该认为是同一种方法,而小易的划分方法与我的不同.”老师说:“小方说得对.”完成下列问题:(1)图4的划分方法是否正确?答:不正确.(2)判断图5的划分方法与图2小易的划分方法是否相同,并说明你的理由;答:相同.(3)请你再想出一种与已有方法不同的划分方法,使之满足上述条件,并在图6中画出来.【解答】解:(1)图4中,阴影部分与空白部分面积不相同,∴阴影部分与空白部分面积不全等,∴图4的划分方法不正确,故答案为:不正确;(2)图5的划分方法与图2小易的划分方法相同,理由:图5经过旋转、翻折后能够与图2重合.故答案为:相同;(3)如图6所示:25.(6分)如图,在平面直角坐标系xOy中,直线l1:y=3x+1与y轴交于点A.直线l2:y=kx+b与直线y=﹣x平行,且与直线l1交于点B(1,m),与y轴交于点C.(1)求m的值,以及直线l2的表达式;(2)点P在直线l2:y=kx+b上,且PA=PC,求点P的坐标;(3)点D在直线l1上,且点D的横坐标为a.点E在直线l2上,且DE∥y轴.若DE=6,求a的值.【解答】解:(1)把B(1,m)代入y=3x+1中,得到m=3+1=4,∴B(1,4),∵y=kx+b与直线y=﹣x平行,∴k=﹣1,把B(1,4),代入直线y=﹣x+b中,得到4=﹣1+b,b=5,∴直线l2的解析式为y=﹣x+5,m=4;(2)∵C(0,5),A(0,1),PA=PC,∴点P的纵坐标为3,∴3=﹣x+5,x=2,∴P(2,3).(3)由题意D(a,3a+1),E(a,﹣a+5),∵DE=6,∴|3a+1﹣(﹣a+5)|=6,解得a=或﹣.26.(7分)在△ABC中,∠A=60°,BD,CE是△ABC的两条角平分线,且BD,CE交于点F.(1)如图1,用等式表示BE,BC,CD这三条线段之间的数量关系,并证明你的结论;小东通过观察、实验,提出猜想:BE+CD=BC.他发现先在BC上截取BM,使BM=BE,连接FM,再利用三角形全等的判定和性质证明CM=CD即可.①下面是小东证明该猜想的部分思路,请补充完整:ⅰ)在BC上截取BM,使BM=BE,连接FM,则可以证明△BEF与△BMF 全等,判定它们全等的依据是SAS ;ⅱ)由∠A=60°,BD,CE是△ABC的两条角平分线,可以得出∠EFB= 60 °;…②请直接利用ⅰ),ⅱ)已得到的结论,完成证明猜想BE+CD=BC的过程.(2)如图2,若∠ABC=40°,求证:BF=CA.【解答】解:(1)BC=CD+BE①如图1,在BC上取一点M,使BM=BE,∵BD,CE是△ABC的两条角平分线,∴∠FBC=∠ABC,∠BCF=∠ACB,在△ABC中,∠A+∠ABC+∠ACB=180°,∵∠A=60°,∴∠ABC+∠ACB=180°﹣∠A=120°,∴∠BFC=180°﹣(∠CBF+∠BCF)=180°﹣(∠ABC+∠ACB)=120°,∴∠BFE=60°;故答案为:△BMF,SAS,60;②由①知,∠BFE=60°,∴∠CFD=∠BFE=60°∵BD是∠ABC的平分线,∴∠EBF=∠MBF,在△BEF和△BMF中,,∴△BEF≌△BMF(SAS),∴∠BFE=∠BFM=60°,∴∠CFM=∠BFC﹣∠BFM=60°,∴∠CFM=∠CFD=60°,∵CE是∠ACB的平分线,∴∠FCM=∠FCD,在△FCM和△FCD中,∴△FCM≌△FCD(ASA),∴CM=CD,∴BC=CM+BM=CD+BE;(2)如图2,在△ABC中,∠A=60°,∠ABC=40°,∴∠ACB=80°,∵BD,CE是△ABC的两条角平分线,∴∠ABD=∠CBD=∠ABC=20°,∠BCE=∠ACE=∠ACB=40°,∴∠AEC=∠ABC+∠BCE=80°,∠ABC=∠BCE,∴BE=CE,在△ABC的边AB左侧作∠ABG=20°,交CE的延长线于G,∴∠FBG=∠ABD+∠ABG=40°=∠ACE.∵∠AEC=80°,∴∠BEG=80°,∴∠G=180°﹣∠ABG﹣∠BEG=80°=∠BEG=∠AEC,∴BG=BE,∴BG=CE,在△BGF和△CEA中,,∴△BGF≌△CEA,∴BF=AC.【附加题】解答题(本题共12分,每小题0分)27.基础代谢是维持机体生命活动最基本的能量消耗.在身高、年龄、性别相同的前提下(不考虑其他因素的影响),可以利用某基础代谢估算公式,根据体重x(单位:kg)计算得到人体每日所需基础代谢的能量消耗y(单位:Kcal),且y是x 的函数.已知六名身高约为170cm的15岁男同学的体重,以及计算得到的他们每日所需基础代谢的能量消耗,如下表所示:学生编号 A B C D E F体重x(kg)54 56 60 63 67 701596 1631 1701 1753.5 1823.5 1876 每日所需基础代谢的能量消耗y(Kcal)请根据上表中的数据回答下列问题:(1)随着体重的增加,人体每日所需基础代谢的能量消耗增大;(填“增大”、“减小”或“不变”)(2)若一个身高约为170cm的15岁男同学,通过计算得到他每日所需基础代谢的能量消耗为1792Kcal,则估计他的体重最接近于 C ;A.59kgB.62kgC.65kg D.68kg(3)当54≤x≤70时,下列四个y与x的函数中,符合表中数据的函数是 D .A.y=x2B.y=﹣10.5x+1071 C.y=10x+1101 D.y=17.5x+651.【解答】解:(1)由表格中的数据知,随着体重的增加,人体每日所需基础代谢的能量消耗增大.故答案是:增大;(2)∵1753.5<1792<1823.5∴63<x<67.观察选项,只有选项C符合题意.故选:C;(3)当x=56时,A.y=x2=562=3136>1631,故错误;B.y=﹣10.5x+1071=﹣10.5×56+1071=483<1631,故错误;C.y=10x+1101=10×56+1101=1661>1631,故正确D.y=17.5x+651=17.5×56+651=1631,故正确.故选:D.28.我们把正n边形(n≥3)的各边三等分,分别以居中的那条线段为一边向外作正n边形,并去掉居中的那条线段,得到一个新的图形叫做正n边形的“扩展图形”,并将它的边数记为a n.如图1,将正三角形进行上述操作后得到其“扩展图形”,且a3=12.图3、图4分别是正五边形、正六边形的“扩展图形”.(1)如图2,在5×5的正方形网格中用较粗的虚线画有一个正方形,请在图2中用实线画出此正方形的“扩展图形”;(2)已知a3=12,a4=20,a5=30,则图4中a6= 42 ,根据以上规律,正n边形的“扩展图形”中a n= n(n+1);(用含n 的式子表示)(3)已知=﹣,=﹣,=﹣,…,且+++…+=,则n= 99 .【解答】解:(1)如图所示:。
八年级(上)期末数学试卷一、选择题(共12题,每小题3分,共36分)1.每年的12月2日为我国的交通安全日,下列交通图标是轴对称图形的共有()A.4个B.3个C.2个D.1个2.计算:2x2•5x3的结果为()A.7x6B.10x6C.7x6D.10x53.等腰三角形的顶角是80°,它的底角是()A.80° B.50° C.100°D.40°4.以下列各组线段为边,能组成三角形的是()A.3cm,4cm,7cm B.3cm,4cm,5cm C.5cm,8cm,2cm D.4cm,1cm,6cm 5.已知a+b=3,a﹣b=2,则代数式(a2﹣b2)的值为()A.12 B.﹣12 C.10 D.66.下面是李明同学在一次测验中的计算摘录,其中正确的是()A.b3•b3=2b3B.6a3b÷(﹣2a2b)=﹣3aC.(a3)3=a6D.(﹣a)3÷(﹣a)=﹣a27.在分式中,若将x、y都扩大为原来的2倍,则所得分式的值()A.不变 B.是原来的2倍 C.是原来的4倍 D.无法确定8.如果多项式(x+a)与(x+5)的乘积中不含x的一次项,则a的值为()A.0 B.5 C.﹣5 D.19.已知一个多边形的每一个外角都等于36°,下列说法错误的是()A.这个多边形是十边形B.这个多边形的内角和是1800°C.这个多边形的每个内角都是144°D.这个多边形的外角和是360°10.已知等腰三角形的两边长分别为4和8,则它的周长等于()A.16 B.16或20 C.20 D.20或2211.已知:如图所示,BC=ED,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A.∠A与∠D互为余角B.∠A=∠2C.△ABC≌△CED D.AB=CD12.如图,在Rt△ABC中,∠ACB=90°,AB=2BC,在直线BC或AC上取一点P,使得△PAB为等腰三角形,则符合条件的点P共有()A.4个B.5个C.6个D.7个二、填空题(本大题共6小题,每小题3分,共18分)13.使分式有意义的x的取值范围是.14.如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是.15.随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7(毫米2),这个数用科学记数法表示为.16.三角形周长是奇数,其中两边的长是2和5,则第三边长是.17.如图:点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=22,则△PMN的周长为.18.观察下列图形:n为正整数,第n个图形共有星星个.三、解答题(本大题共8小题,满分66分)19.(1)计算:(﹣1)2015+(π﹣4)0+3﹣2(2)因式分解:3a2﹣12.20.解方程: =.21.如图:画出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1各点的坐标.22.先化简(1﹣)÷,然后从﹣1,0,1这三个数中选取一个合适的数作为x的值代入求值.23.如图,点B、E、F、C在同一条直线上,且AB=DE,BE=CF.(1)请你添加一个条件,使△ABF≌△DEC,你添加的条件是.(2)添加条件后,请证明△ABF≌△DEC.24.如图,在△ABC中,AB=AE,点E在AC的垂直平分线上.(1)如果∠BAE=40°,那么∠B= °,∠C= °;(2)已知△ABC的周长为20cm,AC=7cm,请你求出△ABE的周长.25.如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;说明:(1)CF=EB.(2)AB=AF+2EB.26.列方程解应用题某商店用2000元购进一批小学生书包,出售后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了2元,结果购买第二批书包用了6600元.(1)请求出第一批每只书包的进价;(2)该商店第一批和第二批分别购进了多少只书包;(3)若商店销售这两批书包时,每个售价都是30元,全部售出后,商店共盈利多少元?八年级(上)期末数学试卷参考答案与试题解析一、选择题(共12题,每小题3分,共36分)1.每年的12月2日为我国的交通安全日,下列交通图标是轴对称图形的共有()A.4个B.3个C.2个D.1个【考点】轴对称图形.【分析】直接利用轴对称图形的定义分别分析得出答案.【解答】解:如图所示:第①、④个图形是轴对称图形,故选:C.【点评】此题主要考查了轴对称图形,正确把握轴对称图形的定义是解题关键.2.计算:2x2•5x3的结果为()A.7x6B.10x6C.7x6D.10x5【考点】单项式乘单项式.【分析】直接利用单项式乘以单项式运算法则求出答案.【解答】解:2x2•5x3=10x5.故选:D.【点评】此题主要考查了单项式乘以单项式,正确掌握运算法则是解题关键.3.等腰三角形的顶角是80°,它的底角是()A.80° B.50° C.100°D.40°【考点】等腰三角形的性质.【分析】根据等腰三角形的性质,等腰三角形的两个底角相等及三角形的内角和定理,即可求出它的底角的度数.【解答】解:(180°﹣80°)÷2,=100°÷2,=50°;故选B.【点评】本题考查的知识点有:三角的内角和定理、等腰三角形的意义和性质等.4.以下列各组线段为边,能组成三角形的是()A.3cm,4cm,7cm B.3cm,4cm,5cm C.5cm,8cm,2cm D.4cm,1cm,6cm【考点】三角形三边关系.【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:A、3+4=7,不能组成三角形;B、3+4>5,能够组成三角形;C、2+5=7<8,不能组成三角形;D、1+4=5<6,不能组成三角形.故选B.【点评】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.5.已知a+b=3,a﹣b=2,则代数式(a2﹣b2)的值为()A.12 B.﹣12 C.10 D.6【考点】平方差公式.【分析】原式利用平方差公式化简,将已知等式代入计算即可求出值.【解答】解:∵a+b=3,a﹣b=2,∴原式=(a+b)(a﹣b)=6.故选:D.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.6.下面是李明同学在一次测验中的计算摘录,其中正确的是()A.b3•b3=2b3B.6a3b÷(﹣2a2b)=﹣3aC.(a3)3=a6D.(﹣a)3÷(﹣a)=﹣a2【考点】整式的混合运算.【专题】计算题;整式.【分析】原式各项计算得到结果,即可作出判断.【解答】解:A、原式=b6,错误;B、原式=﹣3a,正确;C、原式=a9,错误;D、原式=(﹣a)2=a2,错误,故选B【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.7.在分式中,若将x、y都扩大为原来的2倍,则所得分式的值()A.不变 B.是原来的2倍 C.是原来的4倍 D.无法确定【考点】分式的基本性质.【分析】根据分式的分子分母同时乘以或除以同一个不为零的整式,结果不变,可得答案.【解答】解:分式中,若将x、y都扩大为原来的2倍,则所得分式的值不变.故选:A.【点评】本题考查了分式的基本性质,分式的分子分母同时乘以或除以同一个不为零的整式,结果不变.8.如果多项式(x+a)与(x+5)的乘积中不含x的一次项,则a的值为()A.0 B.5 C.﹣5 D.1【考点】多项式乘多项式.【分析】把多项式的乘积展开,找到所有x项的所有系数,令其和为0,可求出a的值.【解答】解:(x+a)(x+5)=x2+(5+a)x+5a,∵结果不含x的一次项,∴5+a=0,∴a=﹣5.故选C.【点评】本题考查了多项式乘多项式,解答本题的关键在于将多项式的乘积展开,找到所有x项的所有系数并令其和为0.9.已知一个多边形的每一个外角都等于36°,下列说法错误的是()A.这个多边形是十边形B.这个多边形的内角和是1800°C.这个多边形的每个内角都是144°D.这个多边形的外角和是360°【考点】多边形内角与外角.【分析】用360°除以每一个外角的度数求出边数,再根据多边形的内角与相邻的外角互为补角和多边形的内角和公式与外角和定理对各选项分析判断即可得解.【解答】解:多边形的边数为:360°÷36°=10,所以,多边形的内角和为:(10﹣2)•180°=1440°,每一个内角为:180°﹣36°=144°,多边形的外角和为:360°,所以,说法错误的是B选项.故选B.【点评】本题考查了多边形内角与外角,主要利用了多边形的内角和公式与外角和定理,根据外角和求出边数是解题的关键.10.已知等腰三角形的两边长分别为4和8,则它的周长等于()A.16 B.16或20 C.20 D.20或22【考点】等腰三角形的性质;三角形三边关系.【分析】根据等腰三角形的性质,本题要分情况讨论.当腰长为4cm或是腰长为8cm两种情况.【解答】解:等腰三角形的两边长分别为4cm和8cm,当腰长是4cm时,则三角形的三边是4cm,4cm,8cm,4cm+4cm=8cm不满足三角形的三边关系;当腰长是8cm时,三角形的三边是8cm,8cm,4cm,三角形的周长是20cm.故选:C.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,进行分类讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.11.已知:如图所示,BC=ED,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A.∠A与∠D互为余角B.∠A=∠2C.△ABC≌△CED D.AB=CD【考点】全等三角形的判定与性质.【分析】利用同角的余角相等求出∠A=∠2,再利用“角角边”证明△ABC和△CDE全等,根据全等三角形对应边相等,对应角相等,即可解答.【解答】解:∵∠B=∠E=90°,∴∠A+∠1=90°,∠D+∠2=90°,∵AC⊥CD,∴∠1+∠2=90°,∴∠A=∠2,故B正确;∴∠A+∠D=90°,故A正确;在△ABC和△CED中,,∴△ABC≌△CED(AAS),故C正确;∴AB=CE,故D错误.故选:D【点评】本题考查了全等三角形的判定与性质,等角的余角相等的性质,熟练掌握三角形全等的判定方法并确定出全等的条件∠A=∠2是解题的关键.12.如图,在Rt △ABC 中,∠ACB=90°,AB=2BC ,在直线BC 或AC 上取一点P ,使得△PAB 为等腰三角形,则符合条件的点P 共有( )A .4个B .5个C .6个D .7个【考点】等腰三角形的判定.【分析】根据等腰三角形的判定,“在同一三角形中,有两条边相等的三角形是等腰三角形(简称:在同一三角形中,等边对等角)”分三种情况解答即可.【解答】解:如图,①AB 的垂直平分线交AC 一点P 1(PA=PB ),交直线BC 于点P 2;②以A 为圆心,AB 为半径画圆,交AC 有二点P 3,P 4,交BC 有一点P 2,(此时AB=AP );③以B为圆心,BA为半径画圆,交BC有二点P5,P2,交AC有一点P6(此时BP=BA).2+(3﹣1)+(3﹣1)=6,∴符合条件的点有六个.故选C.【点评】本题考查了等腰三角形的判定;构造等腰三角形时本着截取相同的线段就能作出等腰三角形来,思考要全面,做到不重不漏.二、填空题(本大题共6小题,每小题3分,共18分)13.使分式有意义的x的取值范围是x≠3 .【考点】分式有意义的条件.【分析】根据分式有意义,分母不为零列式进行计算即可得解.【解答】解:分式有意义,则x﹣3≠0,解得x≠3.故答案为:x≠3.【点评】本题考查的知识点为:分式有意义,分母不为0.14.如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是利用三角形的稳定性.【考点】三角形的稳定性.【分析】三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.【解答】解:这样做的道理是利用三角形的稳定性.【点评】本题考查三角形稳定性的实际应用,三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.15.随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7(毫米2),这个数用科学记数法表示为7×10﹣7.【考点】科学记数法—表示较小的数.【专题】常规题型.【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.本题0.000 000 7<1时,n为负数.【解答】解:0.000 000 7=7×10﹣7.故答案为:7×10﹣7.【点评】本题考查了用科学记数法表示一个较小的数,为a×10n的形式,注:n为负整数.16.三角形周长是奇数,其中两边的长是2和5,则第三边长是4或6 .【考点】三角形三边关系.【分析】已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边长的范围;又知道周长为奇数,就可以知道第三边的长度,从而得出答案.【解答】解:设第三边的长为x,根据三角形的三边关系,得5﹣2<x<5+2,即3<x<7.又∵周长是奇数,∴周长只能为:3+2+5<a<7+2+5,∴10<a<14,∴a=11,13.∴第三边长为:4或6.故答案为:4或6.【点评】此题主要考查了三角形三边关系,此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可17.如图:点P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的对称点P 1,P 2,连接P 1P 2交OA 于M ,交OB 于N ,P 1P 2=22,则△PMN 的周长为 22 .【考点】轴对称的性质.【分析】根据轴对称的性质可得出PM=P 1M 、PN=P 2N ,再利用三角形的周长公式结合线段P 1P 2的长度即可得出结论.【解答】解:∵点P 1、P 2分别为P 点关于OA 、OB 的对称点,∴PM=P 1M ,PN=P 2N ,∴C △PMN =PM+MN+PN=P 1M+MN+P 2N=P 1P 2=22.故答案为:22.【点评】本题考查了轴对称的性质,根据轴对称的性质找出C △PMN =P 1P 2是解题的关键.18.观察下列图形:n为正整数,第n个图形共有星星3n+1 个.【考点】规律型:图形的变化类.【分析】首先根据图形中星星的个数得出数字变化规律,得出数字个数变化进而求出即可.【解答】解:∵第一个图形有3+1=4个星星,第二个图形有2×3+1=7个星星,第三个图形有3×3+1=10个星星,第四个图形有3×4+1=13个星星,∴第n个图形的星星的个数是:3n+1.故答案为:3n+1.【点评】此题主要考查了图形的变化类,利用图形中数字变化规律得出数的变与不变是解题关键.三、解答题(本大题共8小题,满分66分)19.(1)计算:(﹣1)2015+(π﹣4)0+3﹣2(2)因式分解:3a2﹣12.【考点】提公因式法与公式法的综合运用;零指数幂;负整数指数幂.【分析】(1)(﹣1)2015=﹣1,(π﹣4)0=1,3﹣2==,代入计算;(2)先提公因式3,再利用平方差公式进行计算.【解答】解:(1)计算:(﹣1)2015+(π﹣4)0+3﹣2,=﹣1+1+,=;(2)3a2﹣12=3(a+2)(a﹣2).【点评】本题考查了整数指数幂的计算和因式分解,比较简单,熟练掌握以下几个知识点是关键:①﹣1的偶数次幂是正数1,﹣1的奇数次幂是﹣1;②a0=1(a≠0);③负整数指数幂:a﹣p==(a≠0,p为正整数);④平方差公式:a2﹣b2=(a+b)(a﹣b).20.解方程: =.【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x﹣2=x+3,解得:x=5,经检验x=5是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程时注意要检验.21.如图:画出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1各点的坐标.【考点】作图-轴对称变换.【分析】利用关于y轴对称点的性质进而得出各点坐标,进而画出图形即可.【解答】解:如图所示:△A1B1C1各点的坐标分别为:A1(3,2),B1(4,﹣3),C1(1,﹣1).【点评】此题主要考查了轴对称变换,得出对应点位置是解题关键.22.先化简(1﹣)÷,然后从﹣1,0,1这三个数中选取一个合适的数作为x的值代入求值.【考点】分式的化简求值.【分析】首先对括号内内的式子通分相减,把除法转化为乘法,计算乘法即可化简,然后根据分式有意义的条件确定x的值,然后代入求值即可.【解答】解:原式=•=.若分式有意义,则x只能取0.则当x=0时,原式=﹣.【点评】本题考查了分式的化简求值,正确对分式的分子和分母正确进行分解因式是关键.23.如图,点B、E、F、C在同一条直线上,且AB=DE,BE=CF.(1)请你添加一个条件,使△ABF≌△DEC,你添加的条件是∠B=∠DEC,或AF=DC .(2)添加条件后,请证明△ABF≌△DEC.【考点】全等三角形的判定.【分析】判定两个三角形全等的一般方法有:ASA、SSS、SAS、AAS、HL,所以可添加条件为∠B=∠DEC,或AF=DC【解答】解:(1)添加的条件是∠B=∠DEC,或AF=DC;故答案为:∠B=∠DEC,或AF=DC.(2)∵BE=CF,∴BE+EF=CF+EF,即BF=EC.∵在△ABF和△DEC中,,∴△ABF≌△DEC(SAS)【点评】本题考查三角形全等的性质和判定方法,判定两个三角形全等的一般方法有:ASA、SSS、SAS、AAS、HL(在直角三角形中).判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.24.如图,在△ABC中,AB=AE,点E在AC的垂直平分线上.(1)如果∠BAE=40°,那么∠B= 70 °,∠C= 35 °;(2)已知△ABC的周长为20cm,AC=7cm,请你求出△ABE的周长.【考点】线段垂直平分线的性质.【分析】(1)根据等边对等角可得∠B=∠AEB,再利用三角形内角和定理可得∠B=∠AEB==70°,根据线段垂直平分线的性质可得AE=EC,再利用三角形外角的性质可得∠C的度数.(2)根据题意可得AB+BC=13cm,利用等量代换可得AE+BE=BC,进而可得△ABE的周长.【解答】解:(1)∵AB=AE,∴∠B=∠AEB,∵∠BAE=40°,∴∠B=∠AEB==70°,∵点E在AC的垂直平分线上,∴AE=EC,∴∠C=∠EAC,∴∠C=70°×=35°,故答案为:70;35.(2)∵△ABC的周长为20cm,AC=7cm,∴AB+BC=20﹣7=13(cm),∵AE=EC,∴AE+BE=BC,∴△ABE的周长为:AB+BE+AE=AB+BC=13cm.【点评】此题主要考查了线段垂直平分线的性质,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.25.如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;说明:(1)CF=EB.(2)AB=AF+2EB.【考点】角平分线的性质;全等三角形的判定与性质.【专题】证明题.【分析】(1)根据角平分线的性质“角的平分线上的点到角的两边的距离相等”,可得点D到AB 的距离=点D到AC的距离即CD=DE.再根据Rt△CDF≌Rt△EDB,得CF=EB;(2)利用角平分线性质证明∴△ADC≌△ADE,AC=AE,再将线段AB进行转化.【解答】证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC,在Rt△CDF和Rt△EDB中,,∴Rt△CDF≌Rt△EDB(HL).∴CF=EB;(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴CD=DE.在△ADC与△ADE中,,∴△ADC≌△ADE(HL),∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.【点评】本题主要考查平分线的性质,由已知能够注意到点D到AB的距离=点D到AC的距离,即CD=DE,是解答本题的关键.26.列方程解应用题某商店用2000元购进一批小学生书包,出售后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了2元,结果购买第二批书包用了6600元.(1)请求出第一批每只书包的进价;(2)该商店第一批和第二批分别购进了多少只书包;(3)若商店销售这两批书包时,每个售价都是30元,全部售出后,商店共盈利多少元?【考点】分式方程的应用.【分析】(1)设第一批书包的单价为x元,然后可得到第二批书包的单价,最后依据第二所购书包的数量是第一批购进数量的3倍列方程求解即可;(2)依据书包的数量=总价÷单价求解即可;(3)先求得全部卖出后的总售价,然后用总售价﹣总进价可求得获得的利润.【解答】解:(1)设第一批书包的单价为x元.根据题意得:,解得:x=20.经检验:x=20是分式方程的解.答:第一批每只书包的进价是20元.(2)第一批进货的数量=2000÷20=100个;第二批的进货的数量=3×100=300个.(3)30×(100+300)﹣2000﹣6600=3400元.【点评】本题主要考查的是分式方程的应用,根据第二所购书包的数量是第一批购进数量的3倍列出关于x的方程是解题的关键.。
丰台区2018-2019学年度第一学期期末练习初 二 数 学一、选择题(本题共16分,每小题2分)下列各题均有四个选项,其中符合题意的选项只有一个... 1.实数9的平方根是 A .3B .3±C .3±D .812.运用图腾解释神话、民俗民风等是人类历史上最早的一种文化现象. 下列图腾中, 不是..轴对称图形的是A B C D3.计算32b a ⎛⎫- ⎪⎝⎭的结果是 A .332b a-B .336b a-C .338b a-D .338b a4.下列计算正确..的是 A .()222-=-B .()()3232-⨯-=-⨯-C .523=+D .236=÷5.下列说法错误..的是 A .任意抛掷一个啤酒瓶盖,落地后印有商标一面向上的可能性大小是21B .一个转盘被分成8块全等的扇形区域,其中2块是红色,6块是蓝色. 用力转动转盘,当转盘停止后,指针对准红色区域的可能性大小是41 C .一个不透明的盒子中装有2个白球,3个红球,这些球除颜色外都相同. 从这个盒子中随意摸出一个球,摸到白球的可能性大小是52 D .100件同种产品中,有3件次品. 质检员从中随机取出一件进行检测,他取出次品的可能性大小是1003 6.下列以a ,b ,c 为边的三角形,不.是.直角三角形的是 A .1=a ,1=b ,2=c B .1=a ,3=b ,2=cC .3=a ,4=b ,5=cD .2=a ,2=b ,3=c7.某校开设了文艺、体育、科技和学术四类社团,要求每位学生从中任选一类社团参加.现统计出八年级(1)班40如果从该班随机选出一名学生,那么该生是体育类社团成员的可能性大小是A .51B .52 C .41 D .203 8.如图,△ABC 中,点D 在AB 边上,∠CAD 组条件中的线段的长度已知): ①AD ,DB ;②AC ,DB ;③CD ,CB 能使△ABC 唯一确定的条件的序号为 A .①② B .①③C .②③D .①②③二、填空题(本题共16分,每小题2分)9.写出一个..含有字母m ,且2≠m 的分式,这个分式可以是 . 10.已知b a <<7,且a ,b 为两个连续的整数,则=+b a .11.在数学课上,同学们经历了摸球的实例分析和计算过程后,对求简单随机事件发生的可能性大小的计算方法和步骤进行了归纳. 请你将下列求简单随机事件发生的可能性大小的计算方法和步骤的正确顺序写出来 .(填写序号即可) ①确定所有可能发生的结果个数n 和其中出现所求事件的结果个数m ②计算所求事件发生的可能性大小,即P (所求事件)nm=③列出所有可能发生的结果,并判断每个结果发生的可能性都相等12.如图1,三角形纸片ABC ,AB = AC ,将其折叠,如图2,使点A 与点B 重合,折痕为DCED ,点E ,D 分别在AB ,AC 上,如果∠A = 40°,那么∠DBC 的度数为 .图2 13.随着北京申办冬奥会的成功,愈来愈多的同学开始关注我国的冰雪体育项目. 小健从新闻中了解到:在2018年平昌冬奥会的短道速滑男子500米决赛中,中国选手武大靖以39秒584的成绩打破世界纪录,收获中国男子短道速滑队在冬奥会上的首枚金牌. 同年11月12日,武大靖又以39秒505的成绩再破世界纪录. 于是小健对同学们说:“2022年北京冬奥会上武大靖再获金牌的可能性大小是100%.”你认为小健的说法 (填“合理”或“不合理”),理由是 .14.如图,△ABC 中,∠C = 90°,AD 平分∠CAB 交BC 于点D ,DE ⊥AB 于点E ,如果AC = 6 cm ,BC = 8 cm , 那么EB 的长为 cm ,DE 的长为 cm.15.小强在做分式运算与解分式方程的题目时经常出现错误,于是他在整理错题时,将这部分内容进行了梳理,如图所示:请你帮小强在图中的括号里补写出“通分”和“去分母”的依据.16.在△ABC 中,如果AB = 5cm ,AC = 4cm ,BC 边上的高线AD = 3cm ,那么BC 的长为cm. 三、解答题(本题共68分,第17-20题,第25题,每小题5分,第21-24题,第26,27题,每小题6分,第28题7分)17.计算:318123-+-.18.计算:2m n mm n n m++--.A BCDE EAC D19.解方程:216111x x x +-=--.20.如图,AB ,CD 交于点O ,AD ∥BC . 请你添加一个条件 ,使得△AOD ≌△BOC ,并加以证明.21.已知2=-b a ,求代数式a ba b a b a -÷⎪⎪⎭⎫ ⎝⎛-+222的值.22.下面是小东设计的“作△ABC 中BC 边上的高线”的尺规作图过程.已知:△ABC .求作:△ABC 中BC 边上的高线AD . 作法:如图,①以点B 为圆心, BA 的长为半径作弧,以点C 为圆心, CA 的长为半径作弧,两弧在BC 下方交于点E ; ②连接AE 交BC 于点D .所以线段AD 是△ABC 中BC 边上的高线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明.证明:∵ = BA , = CA ,∴点B ,C 分别在线段AE 的垂直平分线上( )(填推理的依据). ∴BC 垂直平分线段AE .∴线段AD 是△ABC 中BC 边上的高线.23.列方程解应用题:2018年10月24日港珠澳大桥正式开通,它是中国建设史上里程最长、投资最多、施工难度最大的跨海桥梁项目,体现了我国逢山开路、遇水架桥的奋斗精神,体现了我国综合国力、自主创新能力,体现了我国勇创世界一流的民族志气. 港珠澳大桥全长55公里,跨越伶仃洋,东接香港特别行政区,西接广东省珠海市和澳门特别行政区,首次实现了珠海、澳门与香港的跨海陆路连接,极大地缩短了三地间的距离. 通车前,小亮妈妈驾车从香港到珠海的陆路车程大约220公里,如果行驶的平均速度不变,港珠澳大桥通车后,小亮妈妈驾车从香港到珠海所用的行驶时间比原来缩短了2小时15分钟,求小亮妈妈原来驾车从香港到珠海需要多长时间.ACO DB ABCD C B AEF24.如图,△ABC 中,D 是BC 边的中点,DE ⊥AB 于点E ,DF ⊥AC 于点F ,且DE = DF .求证:AB = AC .25.如图,正方形网格中的每个小正方形边长都是1,每个小正方形的顶点叫做格点. (1)以格点为顶点画△ABC ,使AB =2,BC =22,AC =10(画一个..即可); (2)求△ABC 的面积.27.在学习平方根的过程中,同学们总结出:在N a x =中,已知底数a 和指数x ,求幂N的运算是乘方运算;已知幂N 和指数x ,求底数a 的运算是开方运算. 小茗提出一个问题:“如果已知底数a 和幂N ,求指数x 是否也对应着一种运算呢?”老师首先肯定了小茗善于思考,继而告诉大家这是同学们进入高中将继续学习的对数,感兴趣的同学可以课下自主探究.小茗课后借助网络查到了对数的定义:小茗根据对数的定义,尝试进行了下列探究: (1)∵221=, ∴12log 2=;∵422=, ∴24log 2=; ∵823=, ∴38log 2=; ∵1624=, ∴=16log 2 ; 计算: =32log 2 ;(2)计算后小茗观察(1)中各个对数的真数和对数的值,发现一些对数之间有关系,例如:=+8log 4log 22 ;(用对数表示结果)(3)于是他猜想:=+N M a a log log (0>a 且1≠a ,0>M ,0>N ). 请你将小茗的探究过程补充完整,并再举一个例子验证(3)中他的猜想.28.如图,Rt △ABC 中,∠ACB = 90°,AC = BC ,点D 为AB 边上的一个动点(不与点A ,B 及AB 中点重合),连接CD ,点A 关于直线CD 的对称点为点E ,直线BE ,CD 交于点F .(1)如图1,当∠ACD = 15°时,根据题意将图形补充完整,并直接写出∠BFC 的度数; (2)如图2,当45°<∠ACD <90°时,用等式表示线段AC ,EF ,BF 之间的数量关系,并加以证明.D A B C D A BC图1 图2丰台区2018—2019学年第一学期期末练习初二数学评分标准及参考答案二、填空题(本题共16分,每小题2分) 9.12m -,答案不唯一10. 5 11.③①② 12.30° 13.不合理,理由支持结论即可 14.4,3 15.①分式的基本性质;②等式的基本性质16.(4+或(4三、解答题(本题共68分,第17-20题,第25题,每小题5分,第21-24题,第26,27题,每小题6分,第28题7分)17.解:原式=13232-+-……3分=333-.……5分18.解:原式=n m m n m n m ---+2……1分 =nm m n m --+2……2分=n m m n --……3分 =1-.……5分 19.解:()()111611=-+--+x x x x ……1分 ()()()11612-+=-+x x x ……2分161222-=-++x x x ……3分2=x .……4分经检验2=x 是原方程的解, 所以原方程的解是2=x .……5分 20.解:添加条件AO =BO (AD =BC 或 DO =CO ).……1分证明:∵AD ∥BC ,∴∠A =∠B .在△AOD 和△BOC 中,∠A =∠B , AO =BO ,∠AOD =∠BOC .……4分∴△AOD ≌△BOC (ASA ) . …5分21.解:原式=2222a b ab aa a b+-⋅-…2分=()22a b aa ab -⋅-……3分 =2a b -.……4分∴当a b -=2.……6分22.解:(1)正确补全图形;……3分 (2)BE ,CE ,到线段两个端点距离相等的点在这条线段的垂直平分线上.……6分23.解:设小亮妈妈原来从香港到珠海大约需要x 小时.……1分 根据题意,得4955220-=x x. …3分 解得3=x .……4分经检验,3=x 是所列方程的解,并 符合实际问题的意义.……5分 答:小亮妈妈原来从香港到珠海大约需要3小时.……6分24.证明:∵DE ⊥AB ,DF ⊥AC ,∴∠BED =∠CFD =90°.…2分 ∵D 是BC 中点, ∴BD =CD .……3分在Rt △BDE 和Rt △CDF 中,BD =CD , DE =DF .∴Rt △BDE ≌Rt △CDF (HL ).……4分∴∠B =∠C .……5分 ∴AB =AC .……6分证法不唯一,其他证法请参照示例相应步骤给分.C BDE A初二数学初二数学 第18页(共8页)25.解:(1)正确画出图形;(2)∵AB =2,BC =22,AC ∴AB 2+BC 2=AC 2.∴∠ABC =90°.……………………………………4分∴2121⨯=⋅=∆BC AB S ABC 26.解:(1)2;(2)存在,x =1或0;(3)可能是输入的x (4)答案不唯一,如x =3或9.27.解:(1)4,5;(2)32log 2;(3)()log a MN .验证:如33log 3log 91+=28.(1)正确补全图形;∠BFC =45°.(2)猜想:EF 2+ BF 2=2AC 2.证明:连接CE ,AF ,延长AC ∵点A 关于直线CD ∴△ACF ≌△ECF .∴∠CAF =∠1,AC =EC ,AF =EF . ∵AC =BC ,∴BC =EC . ∴∠1=∠2.∴∠CAF =∠2.∵∠ACB =90°, ∴∠AGB +∠2=90°.∴∠CAF +∠AGB =90°. ∴∠AFG =90°.∴在Rt △AFB 中,AB 2=BF 2+AF 2. ∵在Rt △ABC 中,AB 2=AC 2+BC 2=2AC 2, ∴BF 2+AF 2=2AC 2.∴BF 2+EF 2=2AC 2.……………………7分证法不唯一,其他证法请参照示例相应步骤给分.。
绝密★启用前京改版八年级2018--2019学年度第一学期期末考试数学试卷望你做题时,不要慌张,要平心静气,把字写得工整些,让自己和老师都看得舒服些,祝你成功!一、单选题(计30分)1.(本题3分)在下列四个交通标志图中,是轴对称图形的是A .B .C .D .2.(本题3分)小名把分式x yxy-中的x 、y 的值都扩大2倍,却搞不清分式的值有什么变化,请帮他选出正确的答案( )A . 不变B . 扩大2倍C . 扩大4倍D . 缩小一半3.(本题3分)不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( ) A . 摸出的是3个白球 B . 摸出的是3个黑球C . 摸出的是2个白球、1个黑球D . 摸出的是2个黑球、1个白球4.(本题3分)已知在Rt △ABC 中,∠C =90°,a +b =14,c =10,则△ABC 的面积为( )A . 48B . 24C . 96D . 205.(本题3分)在一次课外社会实践中,王强想知道学校旗杆的高,他发现旗杆上的绳子垂到地面上还多1m ,当他把绳子的下端拉开5m 后,发现下端刚好接触地面,则旗杆的高为 ( )A . 13 mB . 12 mC . 4 mD . 10 m6.(本题3分)如图所示,在Rt ABC ∆中, E 为斜边AB 的中点, ED AB ⊥,且:1:7CAD BAD ∠∠=,则BAC ∠= ( )A . 70B . 45C . 60D . 487.(本题3 )A .B .C .D . 8.(本题3分)如图,在Rt △ABC 中,AB =9,BC =6,∠B =90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为( )A .B .C . 4D . 59.(本题3分)如图,在Rt △ABC 中,∠ACB=60°,DE 是斜边AC 的中垂线,分别交AB 、AC 于D 、E 两点.若BD=2,则AC 的长是( )A .4B .4C .8D .810.(本题3分)如图,在锐角中,,,的平分线交于点,、分别是和上的动点,则的最小值是( )A .B .C .D .二、填空题(计32分)11.(本题4________. 12.(本题4分)12.(本题4分)若直角三角形两直角边的比是3:4,斜边长是20cm ,则直角三角形的面积是_________. 13.(本题4分)已知,则代数式的值为 .14.(本题4分)如图,在中,,,是的角平分线,则__________.15.(本题4分)一条线段的垂直平分线必定经过这条线段的__________点,一条线段只有__________条垂直平分线.16.(本题4分)如图,∠ACB=90°,AC=BC ,BE ⊥CE ,AD ⊥CE 于D 点,AD=2.5cm,DE=1.7cm ,则BE 的长为_________.17.(本题4分)|x |<π,则整数x 为_____________.18.(本题4分)一个圆形转盘被平均分成红、黄、蓝3个扇形区域,转动指针,停止后指针指向红色区域的概率是 三、解答题(计58分)35a -⎛⎫20.(本题8分)求x 的值:(x ﹣1)2﹣25=021.(本题8分)解分式方程:45251=+-++xx x .22.(本题8分)已知△ABC 中∠BAC=150°,AB 、AC 的垂直平分线分别交BC 于E 、F .求∠EAF 的度数.23.(本题8分) 已知2x -y 的平方根为±3,-4是3x +y 的平方根,求x -y 的平方根.24.(本题9分)已知:如图,∠B=∠D ,∠1=∠2,AB=AD .求证:AC=AE .25.(本题9分)一道古算题:有执长竿入城门者,横执之多六尺,竖执之多三尺,有老父至,教他斜竿对两角,不多不少刚抵足,借问竿长多少数?大意如下:某人拿着长竹竿进城门,横着拿竿多六尺,竖着拿竿多三尺,有一个经验丰富的老者,教他斜着拿竹竿进城门,竹竿刚好就是城门斜对角线的长度,正好可以进城,问竹竿长多少尺?(城门为矩形)参考答案1.C【解析】根据轴对称图形的概念可知选项A不是轴对称图形;选项B,不是轴对称图形;选项C 是轴对称图形;选项D不是轴对称图形.故选C.2.D【解析】因为222?2x yx y-=()24x yxy-=12×x yxy-,所以原分式的值缩小一半,故选D.3.A【解析】由题意可知,不透明的袋子中总共有2个白球,从袋子中一次摸出3个球都是白球是不可能事件,故选B.4.B【解析】【分析】由于在Rt△ABC中,∠C=90°,根据勾股定理可得:,由于c=10,所以,再根据a+b=14,可得,即,进而可得:,根据直角三角形面积公式可得,即.【详解】因为在Rt△ABC中,∠C=90°,根据勾股定理可得:,因为c=10,所以,又因为a+b=14,所以,即,所以:,即,根据直角三角形面积公式可得,即.故选B.【点睛】本题主要考查勾股定理和完全平方公式,解决本题的关键是要熟练掌握勾股定理和完全平方公式.5.B【解析】【分析】根据题意设旗杆的高AB为xm,则绳子AC的长为(x+1)m,再利用勾股定理即可求得AB 的长,即旗杆的高.【详解】如图:设旗杆的高AB为xm,则绳子AC的长为(x+1)m.BC=5m,在Rt△ABC中,AB2+BC2=AC2,∴x2+52=(x+1)2,解得x=12,∴旗杆的高12m.故选B【点睛】此题考查了学生利用勾股定理解决实际问题的能力.熟练运用勾股定理是解题关键.6.D【解析】根据线段的垂直平分线,可知∠B=∠BAD,然后根据直角三角形的两锐角互余,可得∠BAC+∠B=90°,设∠CAD=x,则∠BAD=7x,则x+7x+7x=90°,解得x=6°,因此可知∠BAC=∠CDA+∠BAD=6°+42°=48°.故选:D.点睛:此题主要考查了线段垂直平分线的性质,利用线段垂直平分线的性质和直角三角形的性质求角的关系,根据比例关系设出未知数,然后根据角的关系列方程求解是解题关键. 7.B类二次根式的则能合并,不是同类二次根式的则不能合并.详解:===D. =故选B.点睛:本题考查了同类二次根式的定义,化成最简二次根式后,如果被开方数相同,那么这两个二次根式叫做同类二次根式.8.C【解析】试题分析:设BN=x,由折叠的性质可得DN=AN=9-x,∵D是BC的中点,∴BD=3,在Rt△BDN中,x2+32=(9-x)2,解得x=4.故线段BN的长为4.故选C.考点:翻折变换(折叠问题).9.B【解析】试题分析:求出∠ACB,根据线段垂直平分线求出AD=CD,求出∠ACD、∠DCB,求出CD、AD、AB,由勾股定理求出BC,再求出AC即可.解:如图,∵在Rt△ABC中,∠ACB=60°,∴∠A=30°.∵DE垂直平分斜边AC,∴AD=CD,∴∠A=∠ACD=30°,∴∠DCB=60°﹣30°=30°,∵BD=2,∴CD=AD=4,∴AB=2+4=6,在△BCD中,由勾股定理得:CB=2,在△ABC中,由勾股定理得:AC==4,故选:B.点评:本题考查了线段垂直平分线,含30度角的直角三角形,等腰三角形的性质,三角形的内角和定理等知识点的应用,主要考查学生运用这些定理进行推理的能力,题目综合性比较强,难度适中.10.D【解析】试题分析:如图,在AC上截取AE=AN,连接BE.根据题意可以得出△AME≌△AMN,则ME=MN.∴BM+MN=BM+ME≥BE.要使BM+MN有最小值,当BE是点B到直线AC的距离时,BE⊥AC,又AB=4,∠BAC=45°,此时,△ABE为等腰直角三角形,∴BE=4,即BE取最小值为4,∴BM+MN的最小值是4.点睛:本题主要考查的就是直角三角形的勾股定理和饮马问题,在解决饮马问题的时候,我们一般将一个定点做关于动点所在直线的对称点,然后根据两点之间线段最短进行计算.本题中有两个动点,首先将一个动点看做是定点,然后根据三角形的三边关系得出直线外一点到直线的最短距离为垂线段的长度,然后根据勾股定理求出最小值.111(212+==. 12.962cm【解析】试题分析:根据勾股定理可得:直角三角形的三边长之比为3:4:5,则直角三角形的两条直角边长为12cm 和16cm ,则面积=12×16÷2=96.考点:勾股定理13.4【解析】试题分析:已知等式左边通分并利用同分母分式的减法法则计算,得出关系式,所求式子变形后代入计算即可求出值.解:解法一: ∵﹣=﹣=3,即x ﹣y=﹣3xy ,则原式===4.解法二:将原式的分子和分母同时除以xy ,===4故答案为:4.14.95°【解析】∵是角分线,,∴.又∵是的外角,∴.15.中;一.【解析】试题分析:根据线段垂直平分线的定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线)垂直平分线,简称“中垂线”解答.解:一条线段的垂直平分线必定经过这条线段的中点,一条线段只有一条垂直平分线.故答案为:中;一.考点:线段垂直平分线的性质.16.0.8cm【解析】因为∠ACB=90°, BE⊥CE,AD⊥CE,所以∠ACD+∠ECB=90°,∠ACD+∠DAC=90°, 所以∠ECB=∠DAC,又因为∠BEC=∠ADC=90°, AC=BC,可判定△ADC≌△CEB,所以CE=DA,BE=DC,所以BE=CD=CE-DE=AD-DE=2.5-1.7=0.8,故答案为:0.8.17.0,±1,±2,±3【解析】因为|x|<π,而3<π,所以整数x满足|x|≤3,所以x为:0,±1,±2,±3.故答案为:0,±1,±2,±3.18.1 3 .【解析】试题分析:首先确定红色区域在整个转盘中占的比例,根据这个比例即可求出指针指向红色区域的概率.试题解析:由于一个圆平均分成3个相等的扇形,而转动的转盘又是自由停止的,所以指针指向每个扇形的可能性相等,即有3种等可能的结果,在这3种等可能结果中,指针指向写有红色的扇形有1种可能结果,所以指针指到红色的概率是13.考点:几何概率.19.112【解析】试题分析:先通分,变除法为乘法后,化简求值.试题解析:原式=()()()()2253222a a a a a ⎡⎤+---÷⎢⎥--⎢⎥⎣⎦=()232•229a a a a ---- =()()()32•2233a a a a a ---+- =()123a + 当a=3时,原式=()1123312=+ 20.x=6或 x=﹣4【解析】【分析】移项后,利用平方根的定义进行求解即可得.【详解】(x ﹣1)2﹣25=0,(x ﹣1)2=25,x-1=±5,所以x=6或 x=﹣4.【点睛】本题考查了利用平方根的定义解方程,熟知平方根的定义是解题的关键.21.解:方程两边同乘(5)x +,得 20421+=-+x x . -----------------2分解得 7-=x . -------------------------4分检验:7-=x 时50x +≠,7-=x 是原分式方程的解.【解析】略22.120°【解析】试题分析:根据中垂线的性质得出∠B=∠EAB ,∠C=∠FAC ,根据∠BAC=150°得出∠EAB+∠FAC=30°,从而得出∠EAF 的度数.试题解析:由垂直平分线得:BE=AE ,AF=CF ∴∠B=∠EAB ,∠C=∠FAC ∵∠BAC=150°∴∠B+∠C=30°∴∠EAB+∠FAC=30°∴∠EAF=120°考点:三角形内角和定理、中垂线的性质23.±2【解析】试题分析:首先根据平方根的性质列出关于x和y的二元一次方程组,从而求出x和y的值,然后得出答案.试题解析:由题意得:2x-y=9 3x+y=16∴29316x yx yì-=ïí+=ïî解得:51xyì=ïí=ïî∴x-y=4 ∴x-y平方根为±2.考点:平方根的性质24.用ASA证明△ADE≌△ABC即可.【解析】【分析】根据已知条件得到∠EAD=∠BAC,根据全等三角形的判定定理证得△ADE≌△ABC(ASA),根据全等三角形的性质即可得到结论.【详解】∵∠1=∠2,∴∠1+∠CAD=∠2+∠CAD,∴∠DAE=∠BAC,在△ABC和△ADE中,∴△ABC≌△ADE(AAS),∴AC=AE.【点睛】考查等式的性质,全等三角形的判定与性质,掌握全等三角形的判定方法是解题关键. 25.竹竿的长为15尺【解析】分析:设竹竿的长为x尺,由题意可知城门的宽为(x﹣6)尺,长为(x﹣3)尺,斜对角线为x尺,然后根据勾股定理列方程求解.详解:设竹竿的长为x尺,由题意可知城门的宽为(x﹣6)尺,长为(x﹣3)尺,斜对角线为x尺,则有(x﹣6)2+(x﹣3)2=x2,整理得:x2﹣18x+45=0,解得:x1=15,x2=3(不合题意,舍去),答:竹竿的长为15尺.点睛:本题考查了勾股定理得实际应用,解答本题的关键是根据实际情况构造出直角三角形,根据勾股定理列出方程.。
2019八上几何综合题2019昌平八上27. 在△ABC 中,AB =AC ,∠BAC =90°. 过点A 作直线AP ,点C 关于直线AP 的对称点为点D ,连接BD ,CD ,直线BD 交直线AP 于点E . (1)依题意补全图27-1;(2)在图27-1中,若∠P AC =30°,求∠ABD 的度数;(3)若直线AP 旋转到如图27-2所示的位置,请用等式表示线段EB ,ED ,BC 之间的27. 解:(1)补全图形如下图:(2)连接AD .由轴对称的性质可得:∠PAD =∠PAC =30°,AD =AC . ……2分 ∵AB =AC ,∴AD =AB . ………………………3分 ∵∠BAC =90°,∴∠BAD =150°.∴∠ABE =15°. ……………………………4分 (3)补全图形,连接CE ,AD .由轴对称的性质可得:CE =DE ,AD =AC ,∠ACE =∠ADE . ……………5分ABCPED图27-1 ……………1分ABCPED∵AB =AC , ∴AD =AB . ∴∠ADB =∠ABD . ∴∠ACE =∠ABD . ∵∠ABD +∠ABE =180°, ∴∠ACE +∠ABE =180°. 在四边形ABEC 中,∵∠BAC +∠ABE +∠BEC +∠ACE =360°, 又∵∠BAC =90°,∴∠BEC=90°. ……………………………………………………………6分 ∴BE 2+CE 2=BC 2. ∴EB 2+ED 2=BC 2. …………………………………………………………7分2019朝阳八上27.已知C 是线段AB 垂直平分线m 上一动点,连接AC ,以AC 为边作等边三角形ACD ,点D 在直线AB 的上方,连接DB 与直线m 交于点E ,连接BC ,AE . (1)如图1,点C 在线段AB 上.①根据题意补全图1; ②求证:∠EAC =∠EDC ;(2)如图2,点C 在直线AB 的上方, 0°<∠CAB <30°,用等式表示线段BE ,CE ,DE 之间的数量关系,并证明.27.解:(1)①补全图形如图所示.DPA BCE图1图2②证明:∵直线m是AB的垂直平分线,∴EA=EB,CA=CB.∴∠EAC=∠B.∵△ACD是等边三角形,∴CA=CD.∴CD=CB.∴∠EDC=∠B.∴∠EAC=∠EDC.(2)BE=CE+DE.证明:如图,在EB上截取EF,使EF=CE,连接CF.∵直线m是AB的垂直平分线,∴EA=EB,CA=CB.∴∠EAB=∠EBA,∠CAB=∠CBA.∴∠EAC=∠EBC.∵△ACD是等边三角形,∴CA=CD,∠ACD=60°.∴CD=CB.∴∠EDC=∠EBC.∴∠EDC=∠EAC.∵∠1=∠2,∴∠DEA=∠ACD=60°.∴∠AEB=120°.∵EA=EB,m⊥AB,∴∠AEC=∠BEC=60°.∴△CEF是等边三角形.∴∠CEF=∠CFE=60°.∴△CDF≌△CBE.∴DF=BE.∴BE=CE+DE.2019大兴八上28. 已知:如图, 过等腰直角三角形AB C的直角顶点A作直线AP,点B关于直线AP的对称点为E,连接BE,C E,其中CE交直线AP于点F.(1)依题意补全图形;(2)若∠PAB=16°,求∠ACF的度数;(3)如图,若45°<∠PAB<90°,用等式表示线段AB,FE,FC之间的数量关系,并证明.28.(1)补全图形,如图所示.………………………………1分(2)解:连接AE,∵点E与点B关于直线AP对称,∴对称轴AP是EB的垂直平分线.∴AE=AB,∠EAP=∠BAP=16°…………………………………2分∵等腰直角三角形AB C,∴AB=AC,∠BAC=90°∴AE=AC.∴∠AEC=∠ACF. …………………………………………………3分∴2∠ACF+32°+90°=180°.∴∠ACF=29°……………………………………………………4分(3)AB,FE,FC满足的数量关系:FE2+FC2=2AB2…………………5分证明:连接AE,BF,设BF交AC于点G,∵点E与点B关于直线AP对称,∴对称轴AP是EB的垂直平分线.∴AE=AB,FE=FB.∵AF=AF,∴△AEF≌△ABF∴∠FEA=∠FBA.∵AB=AC,∴AE=AC.∴∠ACE=∠AEC.∴∠ACE=∠ABF. …………………………………………6分又∵∠CGF=∠AGB,∴∠CFB=∠BAC=90°. ………………………………………7分∴FB2+FC2=BC2.∵BC2=2AB2,∴FE2+FC2=2AB2 ………………………………………………8分2019东城八上27.(本小题6分)QPF EDCBA(1)老师在课上给出了这样一道题目:如图(1),等边△ABC 边长为2,过AB 边上一点P 作PE ⊥AC 于E ,Q 为BC 延长线上一点,且AP=CQ ,连接PQ 交AC 于D ,求DE 的长.小明同学经过认真思考后认为,可以通过过点P 作平行线构造等边三角形的方法来解决这个问题.请根据小明同学的思路直接写出DE 的长. (2)【类比探究】老师引导同学继续研究:1.等边△ABC 边长为2,当P 为BA 的延长线上一点时,作PE ⊥CA 的延长线于点E ,Q 为边BC 上一点,且AP=CQ ,连接PQ 交AC 于D .请你在图(2)中补全图形并求DE 的长.2. 已知等边△ABC ,当P 为AB 的延长线上一点时,作PE ⊥射线AC 于点E , Q 为(○1BC 边上;○2BC 的延长线上;○3CB 的延长线上)一点,且AP =CQ ,连接PQ 交直线AC 于点D ,能使得DE 的长度保持不变.(将答案的编号填在横线上)图(1) 图(2) (备用图)27. 解:(1)DE=1. ………………………1分(2) 1. 正确补全图形. ……………2分 过点P 作PF ∥BC 交CA 的延长线与点F . ∴ ∠PF A =∠C .∵ △ABC 是等边三角形, ∴ 可证 △APF 为等边三角形. ∴ AP =PF .C B A C B A又∵ PE ⊥CA 的延长线于点E , ∴ AE =FE =12AF . ……………3分 ∵ AP=CQ , ∴ PF =QC .∵ ∠FDP =∠CDQ ,∴ △FDP ≌△CDQ .∴ FD =CD =12CF . ……………4分 ∵ DE =DF -EF =1111222CF AF AC -==. ……………5分2. ○2. ……………6分2019东城八上28. (本小题6分)在平面直角坐标系xOy 中,△ABO 为等边三角形,O 为坐标原点,点A 关于y 轴的对称点为D ,连接AD ,BD ,OD ,其中AD ,BD 分别交y 轴于点E ,P . (1)如图1,若点B 在x 轴的负半轴上时,直接写出BDO ∠的度数;(2)如图2,将△ABO 绕点O 旋转,且点A 始终在第二象限,此时AO 与y 轴正半轴夹角为α,60︒<α<90︒,依题意补全图形,并求出BDO ∠的度数;(用含α的式子表示)(3)在第(2)问的条件下,用等式表示线段BP ,PE ,PO 之间的数量关系.(直接写出结果)图1 图228. 解:(1)120°; ……………1分 (2)正确画出图形. ……………2分 ∵ ,60AOE DOE AOB α∠=∠=∠=︒,∴ 3602603002BOD αα∠=︒--︒=︒-. …………3分 ∵ BO =BD , ∴ ∠OBD =∠ODB . ∴ 180602BODBDO α︒-∠∠==-︒. ……………4分(3)2PE BP PO =+. ……………6分 说明:本试卷中的试题都只给出了一种解法,对于其他解法请参照评分标准相应给分.2019房山八上30. 如图9,BN 是等腰ABC Rt ∆的外角CBM ∠内部的一条射线,090=∠ABC ,CB AB =,点C 关于BN 的对称点为D ,连接AD ,BD ,CD ,其中CD ,AD 分别交射线BN 于点E ,P . (1)依题意补全图形;(2)若CBN α∠=,求BDA ∠的大小(用含α的式子表示); (3)用等式表示线段PB ,PA 与PE 之间的数量关系,并证明.30、解:(1) ---------------------------2分FPDEBAO(2)∵∠ABC=90°∴∠MBC=∠ABC=90°∵点C 关于BN 的对称点为D∴BC =BD ,∠CBN=∠DBN=α ---------------------------3分 ∵AB =BC∴AB =BD ---------------------------4分 ∴∠BAD=∠ADB=()α29018021-︒-︒=45°-α ---------------------------5分 (3) 猜想:()PE PB PA +=2 ---------------------------4分 证明:过点B 作BQ ⊥BE 交AD 于Q ---------------------------6分 ∵∠BPA=∠DBN+∠ADB ,∠ADB=45°-α,∠DBN=α ∴∠BPA=∠DPE=45°∵点C 关于BN 的对称点为D ∴BE ⊥CD∴PD =2PE ,PQ =2PB , ---------------------------7分 ∵BQ ⊥BE ,∠BPA=45° ∴∠BPA=∠BQP=45° ∴∠AQB=∠DPB=135° 又∵AB =BD ,∠BAD=∠ADB ∴△AQB ≌△BPD (AAS ) ∴AQ =PD ∵PA =AQ +PQ∴()PE PB PA +=2 ---------------------------8分2019怀柔八上27.如图1,在△ABC 中,AB =AC , D 为直线BC 上一动点(不与B ,C 重合),在AD 的右侧作△ADE ,使得AE =AD ,∠DAE =∠BAC ,连接CE . (1)当D 在线段BC 上时,求证:△BAD ≌△CAE ; (2)当点D 运动到何处时,AC ⊥DE ,并说明理由;(3)当CE ∥AB 时,若△ABD 中最小角为20°,直接写出∠ADB 的度数.27.解:(1)∵∠DAE =∠BAC , ∴∠BAD =∠CAE . ∵AB=AC ,AD=AE ,∴△BAD ≌△CAE (SAS ).……………………………………………………2分 (2)当D 运动到BC 中点时,AC ⊥DE . …………………………………………3分∵D 是BC 中点,AB=AC ,∴∠1=∠2. ∵△BAD ≌△CAE ,∴∠1=∠3.∴∠2=∠3. ∵AD=AE ,∴AC ⊥DE .B EDCBA 图1ABC备用图∴当D 运动到BC 中点时,AC ⊥DE .……………………………5分 (3)∠ADB =20°或40°或100° .…………………………7分 28.解:(1)如图:…………………………………………………1分 (2)在△ACE 和△BCD 中,∴△ACE ≌△BCD (SAS ). ∴∠1=∠2.∵∠AEC =∠BEF , ∴∠BFE =∠ACE .∵∠ACE =90°,∴∠AFB=90°.∴AF ⊥BD .………………………………………3分 (3)数量关系是:CQ =CF .………………………………………4分过C 作CG ⊥CF 交AF 于G . ∴∠GCF =90°.∵∠ACB =90°,∴∠3=∠4. ∵∠1=∠2,AC=BC , ∴△ACG ≌△BCF (ASA ).∴CG =CF .∴△CGF 是等腰直角三角形. ∴∠CFG =45°.∴∠CFD =45°.∵点C 与 Q 关于BD 对称,∴CF =FQ . ∠CFD =∠QFD =45°.∴△CFQ 是等腰直角三角形. ∴CQ =CF .………………………………………………………7分2019门头沟八上28.已知:△ABC 是等边三角形,D 是直线BC 上一动点,连接AD ,在线段AD 的右侧作射线DP 且使∠ADP =30°,作点A 关于射线DP 的对称点E ,连接DE 、CE . (1)当点D 在线段BC 上运动时,① 依题意将图1补全;② 请用等式表示线段AB 、CE 、CD 之间的数量关系,并证明;(2)当点D 在直线BC 上运动时,请直接写出AB 、CE 、CD 之间的数量关系,不需证明.21FEBD4321GFEBD∴ △ADE 是等边三角形.…………………………………………………………………3分∴ AD =AE ,∠DAE =∠ADE =60°. 又∵△ABC 是等边三角形, ∴ AB =AC=BC ,∠BAC =60°.∴ ∠BAC -∠DAC =∠DAE -∠DAC , 即:∠BAD =∠CAE . 在△BAD 和△CAE 中AB AC BAD CAE AD AE =⎧⎪=⎨⎪=⎩∠∠ ∴△BAD≌△CAE …………………………………………………………………………4分∴ BD =CE∴ AB =BC =BD+CD= CE+CD .(2)AB = CE+CD ,AB = CE -CD ,AB = CD -CE .…………………………………………………7分说明:若考生的解法与给出的解法不同,正确者可参照评分参考相应给分.2019密云八上27. 已知:在△ABC 中,∠ABC =45°,CD AB ⊥于点D ,点E 为CD 上一点,且DE=AD ,连接BE 并延长交AC 于点F ,连接DF . (1)求证:BE=AC(2)用等式表示线段FB 、FD 、FC 之间的数量关系,并加以证明.27 . (1) ∵ ∴∵∴ ∴ …………………………1分∴∴ …………………………3分 (2) …………………………4分证明:∵ ∴ ∴ ∴ F EDCBABD CD =BDE CDA BD CD BDC ADC DE AD ∆∆=⎧⎪∠=∠⎨⎪=⎩在和中BDE CDA ∆≅∆BE AC =2FB FD FC =+°90CD AB BDC ADC ⊥∠=∠=°45ABC BDC ∠=∆是等腰直角三角形°DH DF BF H HDF=BDC=90HDF-HDE=BDC-HDE BDH=CDF⊥∠∠∠∠∠∠∠∠作交于FEDC B A∵, ∴∴∴ ∴ ∴∵∴ ………………………………7分2019平谷八上26.阅读下面材料:学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,小聪继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.小聪将命题用符号语言表示为:在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E . 小聪想:要想解决问题,应该对∠B 进行分类研究. ∠B 可分为“直角、钝角、锐角”三种情况进行探究. (1)当∠B 是直角时,如图1,在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E =90°,则Rt △ABC ≌Rt △DEF (依据:________)(2)当∠B 是锐角时,如图2,BC =EF ,∠B =∠E<90°,在射线EM 上有点D ,使DF =AC ,画出符合条件的点D ,则△ABC 和△DEF 的关系是________;A .全等B .不全等C .不一定全等(3)第三种情况:当∠B 是钝角时,如图3,在△ABC 和△DEF 中,AC =DF ,BC =EF ,BDE CDA ∆≅∆ABEDCF ∠=∠BDH CDF ABE DCF BD DCBDH CDF ∆∆∠=∠⎧⎪=⎨⎪∠=∠⎩在和中BDH CDF ∆≅∆,DH DF BH FC ==HDF ∆是等腰直角三角形HF =图1图2FB FH BH FB FC=+=+∠B =∠E >90°,求证:△ABC ≌△DEF .26.解:(1)△ABC ≌△DEF (依据:HL )…………………………………………1分…………………………………………………3分(2)选择C ……………………………………………………4分 (3)证明:如图,过点C 作CG ⊥AB 交AB 的延长线于点G , 过点F 作DH ⊥DE 交DE 的延长线于点H , ∵∠CBA =∠FED ,∴180°﹣∠CBA =180°﹣∠FED ,即∠CBG =∠FEH , ……………………………………………………………… 5分 在△CBG 和△FEH 中,90CBG FEHG H BC EF ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩, ∴△CBG ≌△FEH (AAS ), ∴CG =FH ,在Rt △ACG 和Rt △DFH 中,AC DFCG FH =⎧⎨=⎩,Rt △ACG ≌Rt △DFH (HL ),∴∠A =∠D , ………………………………………………………………………6分在△ABC 和△DEF 中,CBA FE A D A D C DF ∠=∠⎧⎪⎨⎪=∠∠⎩=,∴△ABC ≌△DEF (AAS ).…………………………………………………………7分图32019石景山八上28.ABC △是等边三角形,2AC =,点C 关于AB 对称的点为C ',点P 是直线C B '上 的一个动点,连接AP ,作60APD ∠=°交射线..BC 于点D . (1)若点P 在线段C B '上(不与点C ',点B 重合).①如图1,若点P 是线段C B '的中点,则AP 的长为 ; ②如图2,点P 是线段C B '上任意一点,求证:PD PA =; (2)若点P 在线段C B '的延长线上. ①依题意补全图3;②直接写出线段BD ,AB ,BP 之间的数量关系为: .28.(1. ………………………… 2分 ②证法一:作60BPE ∠=°交AB 于点E ,如图1.…… 3分 ∵ABC △是等边三角形,∴60ABC ∠=°(等边三角形的三个角都是60°). ∵点C '与点C 关于AB 对称, ∴60C BA CBA BPE '∠=∠=∠°=, ∴460∠=°.∴PBE △ ∴PB PE =(等边三角形的三边都相等), 5120PBD ∠=∠°=.∵1260∠+∠=°,3260∠+∠=°,∴13∠=∠(等量减等量,差相等). ………………………… 4分 在PBD △和PEA △中,13,,5,PB PE PBD ∠=∠=∠=∠⎧⎪⎨⎪⎩∴PBD △≌PEA △(ASA ).∴PD PA =( 全等三角形的对应边相等). ……………………… 5分 证法二:延长AB 到点E ,使BE BD =,连接PE ,如图2. ……………… 3分 ∵ABC △是等边三角形(已知),∴60ABC ∠=°(等边三角形的三个角都是60°). ∵点C '与点C 关于AB 对称(已知), ∴60C BA CBA '∠=∠=°. ∴1120PBD ∠=∠°=. 在PBE △和PBD △中,,1,,PB PB PBD BE BD =∠=∠=⎧⎪⎨⎪⎩∴PBE △≌PBD △(SAS ).∴PE PD =(全等三角形的对应边相等), ……………………… 4分 3E ∠=∠(全等三角形的对应角相等). ∵60APF FBD ∠=∠=°, AFP BFD ∠=∠(对顶角相等), ∴23∠=∠(三角形内角和定理). ∴2E ∠=∠(等量代换). ∴PE PA =(等角对等边). 又∵PE PD =(已证),∴PD PA =(等量代换). ……………………… 5分 证法三:延长CB 到点E ,使BE BA =, 连接PE ,如图3.可证PEB △≌PAB △(SAS ). 再证PED △是等腰三角形. 证法四:连接C A ',在C A '上截取C E C P ''=, 连接PE ,如图4. 可证PBD △≌AEP △(ASA ).证法五:过点P 作PM CB ⊥交CB 的延长线于点M ,PN AB ⊥于点N ,如图5. 可证PMD △≌PNA △(AAS ).(2)①补全图形,如图6所示;……… 6分②BD AB BP =+. ……… 7分2019通州八上28. 在等边ABC ∆中,(1)如图1,P ,Q 是BC 边上两点,AP=AQ ,20BAP ∠=︒,求AQB ∠的度数; (2)点,P Q 是BC 边上的两个动点(不与,B C 重合),点P 在点Q 的左侧,且AP AQ =,点Q 关于直线AC 的对称点为M ,连接,.AM PM ①依题意将图2补全; ②求证:.PA PM = 图1 图228. (1)解:∵ △ABC 为等边三角形∴∠B =60°∴∠APC =∠BAP +∠B=80° ∵AP=AQ∴∠AQB=∠APC =80°……………………………..(2分)(2)① 补全图形如图所示. …………………………………..(4分)②证法不唯一CB CB 图4 图5B证明:过点A作AH⊥BC于点H,如图.由△ABC为等边三角形,AP=AQ,可得∠PAB=∠QAC. …………………………………..(5分)∵点Q,M关于直线AC对称,∴∠QAC=∠MAC,AQ=AM∴∠PAB=∠MAC,AQ=AM∴∠PAM=∠BAC=60°…………………………………..(6分)∴△APM为等边三角形∴PA=PM. …………………………………..(7分)2019西城八上26.在△ABC中,AB=AC,在△ABC的外部作等边三角形△ACD,E为AC的中点,连接DE 并延长交BC于点F,连接BD.(1)如图1,若∠BAC=100°,求∠BDF的度数;(2)如图2,∠ACB的平分线交AB于点M,交EF于点N,连接BN.①补全图2;②若BN=DN,求证:MB=MN.图1 图2(1)解:在等边三角形△ACD中,∠CAD =∠ADC =60°,AD=AC.∵E为AC的中点,∴∠ADE=12∠ADC=30°.···················································································2分BDACEF BDACEFMB∵AB=AC,∴AD=AB.∵∠BAD=∠BAC+∠CAD=160°.∴∠ADB=∠ABD=10°.∴∠BDF=∠ADF -∠ADB=20°.·····································································4分(2)①补全图形;②证明:连接AN.∵CM平分∠ACB,∴设∠ACM=∠BCM=α.∵AB=AC,∴∠ABC=∠ACB=2α.在等边三角形△ACD中,∵E为AC的中点,∴DN⊥AC.∴NA=NC.∴∠NAC=∠NCA=α.∴∠DAN=60°+ α.在△ABN和△ADN中,∵,,, AB AD BN DN AN AN=⎧⎪=⎨⎪=⎩∴△ABN≌△ADN.∴∠ABN=∠ADN=30°,∠BAN=∠DAN=60°+ α.∴∠BAC=60°+ 2α.在△ABC中,∠BAC+∠ACB +∠ABC=180°,∴60°+ 2α+ 2α+2α=180°.∴α=20°.NBD ACEFM∴∠NBC=∠ABC-∠ABN= 10°.∴∠MNB=∠NBC+ ∠NCB=30°.∴∠MNB=∠MBN.∴MB=MN. ···················································································································8分2019延庆八上27.如图,∠MON =45°,点A 是OM 上一点,点B ,C 是ON 上两点,且AB =AC ,作出点B 关于OM 对称的点D ,连接AD ,CD . (1)按要求补全图形; (2)判断∠DAC = °;(3)判断AD 与DC 的数量关系 ,并证明.27.解:(1)如图 ………… ……2分(2)∠DAC =90° ………… ……3分 (3)AD DC 2=………… ……4分证明:∵点B 与点D 关于AO 对称 ∵BD 被AO 垂直平分 ∵AD =AB 又∵AB =AC∵AD =AC ………… … 5分∵∵ABC =∵ACB =∵O +∵OAB ∵∵BAC =OAB ∠-︒290∵∵DAC =90° ………… … 6分 ∴△ADC 是等腰直角三角形 ∴AD DC 2= …………………7分2019延庆八上28.如图,在△ABC 中,∠ABC =15°,AB =2,BC =2,以AB 为直角边向外作等腰直角△BAD ,且∠BAD=90°;以BC 为斜边向外作等腰直角△BEC ,连接DE . (1)按要求补全图形; (2)求DE 长;(3)直接写出△ABC 的面积.28.解:(1)如图所示………… ……2分(2) 连接DC解:∵△ABD 是等腰直角三角形, AB =2,∠BAD =90°.∴ AB =AD =2 ,∠ABD =45°. 由勾股定理得DB =2.EDCBAFEDCBA∴ ∠DBC =∠ABC +∠ABD =60°. ∵BC =2. ∴ BC =BD .∴△BCD 是等边三角形. ∴BD =CD =2.∴D 点在线段BC 的垂直平分线上. 又∵△BEC 是等腰直角三角形. ∴BE =CE ,∠CEB =45°∴E 点在线段BC 的垂直平分线上. ∴DE 垂直平分BC . ∴BF =21BC =1, ∠BFE =90° ∵∠FBE =∠BEF =45° ∴BF =EF =1Rt △BFD 中,BF =1,BD =2由勾股定理得DF =3∴ DE =DF +EF =13+ ………… ……6分(3)213-………… ……7分2019燕山八上27.已知BC =5,AB =1,AB ⊥BC ,射线CM ⊥BC ,动点P 在线段BC 上(不与点B ,C 重合),过点P 作DP ⊥AP 交射线CM 于点D ,连接AD .(1) 如图1,若BP =4,判断△ADP 的形状,并加以证明.(2) 如图2,若BP =1,作点C 关于直线DP 的对称点C ′,连接AC ′. ① 依题意补全图2;AB CDM P图2图1PMDCBA②请直接写出线段AC′的长度.27.(1) △ADP是等腰直角三角形.………………………………1分证明:∵BC=5,BP=4,∴PC=1,∵AB=1,∴PC=AB.………………………………2分∵AB⊥BC,CM⊥BC,DP⊥AP,∴∠B=∠C=90°,∠APB+∠DPC=90°,∠PDC+∠DPC=90°,∴∠APB=∠PDC,………………………………3分在△ABP和△PCD中,B CAPB PDC AB PC∠=∠⎧⎪∠=∠⎨⎪=⎩,,,∴△ABP≌△PCD,………………………………4分∴AP=PD,∵∠APD=90°,∴△ADP………………………………5分(2) ①依题意补全图2;………………………………6分②AC.………………………………7分2019顺义八上30.数学课上,老师给出了如下问题:已知:如图1,在Rt△ABC中,∠C=90°,AC=BC,延长CB到点D,∠DBE=45°,点F 是边BC上一点,连结AF,作FE⊥AF,交BE于点E.(1)求证:∠CAF=∠DFE;(2)求证:AF=EF.经过独立思考后,老师让同学们小组交流.小辉同学说出了对于第二问的想法:“我想通过构造含有边AF 和EF 的全等三角形,因此我过点E 作EG ⊥CD 于G (如图2所示),如果能证明Rt △ACF 和Rt △FGE 全等,问题就解决了.但是这两个三角形证不出来相等的边,好像这样做辅助线行不通.”小亮同学说:“既然这样做辅助线证不出来,再考虑有没有其他添加辅助线的方法.”请你顺着小亮同学的思路在图3中继续尝试,并完成(1)、(2)问的证明. 30.证明:(1)∵∠C=90°,∵ ∠CAF + ∠1 = 90︒ . ....................... 1 分 ∵FE ∵AF ,∵ ∠DFE + ∠1 = 90︒ . ....................... 2 分 ∵ ∠CAF = ∠DFE . .......................... 3 分(2)在 A C 上截取 A G=BF ,连结 F G ,如图 4. ............................................ 4 分∵AC= BC ,∵ AC - AG = BC -BF . 即 CG= CF .∵∵C=90°,∵ ∠CGF = ∠CFG = 45︒ . ∵ ∠AGF = 180︒ - ∠CGF = 135︒ . ∵∵DBE=45°,∵ ∠FBE = 180︒ - ∠DBE = 135︒ .∵ ∠AGF = ∠FBE . ................................................................................. 5 分 由: ∠CAF = ∠DFE . ∵A G F ∵∵FB E (A. ................................................................................................................ 6 分∵AF=EF . ...................................................................................................7 分G 图3图2图1ACB DEF ACB DEF F EDB CA2019丰台八上28.如图,Rt△ABC中,∠ACB = 90°,AC = BC,点D为AB边上的一个动点(不与点A,B及AB中点重合),连接CD,点A关于直线CD的对称点为点E,直线BE,CD交于点F.(1)如图1,当∠ACD = 15°时,根据题意将图形补充完整,并直接写出∠BFC的度数;(2)如图2,当45°<∠ACD<90°时,用等式表示线段AC,EF,BF之间的数量关系,并加以证明.图1 图2ACDA BC。
北京市丰台区2019届数学八上期末检测试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题1.下列各分式中,最简分式是( )A.23x x x- B.2222x y x y xy ++ C.22y x x y-+D.222()x y x y -+ 2.正常情况下,一个成年人的一根头发大约是0.0000012千克,用科学记数法表示应该是( ) A .1.2×10﹣5 B .1.2×10﹣6 C .0.12×10﹣5 D .0.12×10﹣6 3.下列多项式能用完全平方公式分解因式的是( ).A .a 2-ab +b 2B .x 2+4x – 4C .x 2-4x +4D .x 2-4x +24.使分式32xx +有意义的x 的取值范围为( ) A .x≠﹣2 B .x≠2C .x≠0D .x≠±2 5.若m 为大于0的整数,则(m +1)2-(m -1)2一定是( )A .5的倍数B .4的倍数C .6的倍数D .16的倍数6.下列因式分解,其中正确的是( ) A .()22693x x x --=- B .()222x a x a -=-C .()22626x x x x -=-D .()()23221x x x x -+=--7.如图,在直角坐标系中,点A 的坐标为(3,-2),直线MN ∥x 轴且交y 轴于点C(0,1),则点A 关于直线MN 的对称点的坐标为( )A .(-2,3)B .(-3,-2)C .(3,4)D .(3,2)8.如图,过边长为1的等边△ABC 的边AB 上一点P ,作PE ⊥AC 于E ,Q 为BC 延长线上一点,当PA =CQ 时,连PQ 交AC 边于D ,则DE 的长为( )A .13B .12C .23D .不能确定9.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为( )A .B .C .D .10.如图,已知AC ⊥BD ,垂足为O ,AO = CO ,AB = CD ,则可得到△AOB ≌△COD ,理由是( )A.HLB.SASC.ASAD.SSS11.如图,中,,,平分,于,则下列结论:①平分,②,③平分,④,其中正确的有( )A.1个B.2个C.3个D.4个12.如图,在ABC ∆中,90BAC ∠=︒,2ABC C ∠=∠,BE 平分ABC ∠交于点E ,AD BE ⊥于点D ,下列结论:①AC BE AE -=;②DAE C ∠=∠;③4BC AD =;④点E 在线段BC 的垂直平分线上,其中正确的个数有( )A .4个B .3个C .2个D .1个 13.若从n 边形的一个顶点出发,最多可以作3条对角线,则该n 边形的内角和是( ) A.540︒ B.720︒ C.900︒ D.1080︒ 14.等腰三角形的周长为9cm ,其中一边长为2cm ,则该等腰三角形的底边长为( ) A .2cmB .3.5cmC .5cmD .7cm15.有五条线段,长度分别是2,4,6,8,10,从中任取三条能构成三角形的概率是( )A.15B.310C.12D.35二、填空题16.计算:2111x x x -=++__. 17.现有若干张边长为a 的正方形A 型纸片,边长为b 的正方形B 型纸片,长宽为a 、b 的长方形C 型纸片,小明同学选取了2张A 型纸片,3张B 型纸片,7张C 型纸片拼成了一个长方形,则此长方形的周长为______.(用a 、b 代数式表示)18.已知A(0,0),B(2,0),C(3,3),如果在平面直角坐标系中存在一点D ,使得△ABD 与△ABC 全等,那么点D 的坐标为______.19.如图,平面内五点A B C D E 、、、、连接成“五角星型”,那么A B C D E ∠+∠+∠+∠+∠=_______.20.如图,在等腰△ABC 中,AB=BC ,∠B=120°,线段AB 的垂直平分线分别交AB 、AC 于点D 、E ,若AC=12,则DE=___________.三、解答题 21.计算(1)2(2)ab b -⋅ (2)201901(1)(3.14)2x --+-+22.计算:(1)2)0-|-3|+(-2)2; (2)(x+2)2 -(x+1)(x-1).23.(1)操作发现:如图①,点D 是等边△ABC 的边AB 上一动点(点D 与点B 不重合),连接CD ,以CD 为边在CD 上方作等边△CDE ,连接AE ,则AE 与BD 有怎样的数量关系?说明理由.(2)类比猜想:如图②,若点D 是等边△ABC 的边BA 延长线上一动点,连接CD ,以CD 为边在CD 上方作等边△CDE ,连接AE ,请直接写出AE 与BD 满足的数量关系,不必说明理由;(3)深入探究:如图③,点D 是等边△ABC 的边AB 上一动点(点D 与点B 不重合),连接CD ,以CD 为边分别在CD 上方、下方作等边△CDE 和等边△CDF ,连接AE ,BF 则AE ,BF 与AB 有怎样的数量关系?说明理由.24.如图,AB CD =,DE AC ⊥,BF AC ⊥,点 E ,F 是垂足,AE CF =,求证:(1)ABF CDE V V ≌; (2)AB CD P . 25.问题情景:如图1,中,有一块直角三角板放置在上(点在内),使三角板的两条直角边、恰好分别经过点和点.试问与是否存在某种确定的数量关系?(1)特殊研究:若,则度, 度,度;(2)类比探索:请探究与的关系.(3)类比延伸:如图2,改变直角三角包的位置;使点在外,三角板的两条直角边、仍然分别经过点和点,(2)中的结论是否仍然成立?若不成立请直接写出你的结论.【参考答案】一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 答案 B B C A B D C B D ACABAB二、填空题16.1x - 17..18.(3,-3),(-1,3) 或(-1,-3) 19.180 20.2 三、解答题21.(1)32ab - ;(2)1222.(1)2 (2)45x +23.(1)AE =BD ;(2)AE =BD ;(3)AE+BF =AB . 【解析】 【分析】(1)根据等边三角形的三条边、三个内角都相等的性质,利用全等三角形的判定定理SAS 可以证得△BCD ≌△ACE;然后由全等三角形的对应边相等知AE=BD (2)通过证明△BCD ≌△ACE,即可证明AE=BD;(3)1.AF+BF=AB;利用全等三角形△BCD ≌△ACE(SAS)的对应边BD =AE;同理△BCF ≌△DCA (SAS),则BF =AD,所以AE+BF =AB 【详解】解:(1)AE =BD ,理由如下: ∵△ABC 和△DCE 都是等边三角形, ∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°, ∴∠ACB ﹣∠ACD =∠DCE ﹣∠ACD , 即∠BCD =∠ACE , 在△BCD 和△ACE 中, AC BC BCD ACE CD CE =⎧⎪=⎨⎪=⎩∠∠ , ∴△BCD ≌△ACE (SAS ), ∴AE =BD ; (2)AE =BD .理由如下:∵△ABC 和△DCE 都是等边三角形, ∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°, ∴∠ACB+∠ACD =∠DCE+∠ACD , 即∠BCD =∠ACE , 在△BCD 和△ACE 中, AC BC BCD ACE CD CE =⎧⎪=⎨⎪=⎩∠∠, ∴△BCD ≌△ACE (SAS ), ∴AE =BD ; (3)AE+BF =AB .证明如下:由(1)知,△BCD ≌△ACE (SAS ),∴BD =AE ,同理可证,△BCF ≌△DCA (SAS ), ∴BF =AD ,∴AB =AD+BD =AE+BF . 【点睛】此题考查全等三角形的判定与性质和等边三角形的性质,解题关键在于利用全等三角形的性质进行求证 24.见解析 【解析】 【分析】(1) 根据已知条件知△ABF 和△CDE 都是直角三角形,所以根据直角三角形全等的判定定理HL 可以证得它们全等.(2) 欲证明AB ∥CD ,只需证得∠C=∠A ,所以通过Rt △ABF ≌Rt △CDE (HL )证得∠C=∠A 即可. 【详解】(1) ∵DE ⊥AC ,BF ⊥AC ,AE=CF ,∴∠DEC=∠BFA=90∘,AE+EF=CF+EF ,即AF=CE. ∴在Rt △ABF 和Rt △CDE 中,AF=CE ,AB=CD , ∴Rt △ABF ≌Rt △CDE(HL). (2)Rt ABF Rt CDE V Q V ≌∴ ∠A=∠C ∴AB ∥CD【点睛】本题考查全等三角形,熟练掌握全等三角形的性质及判定是解题关键.25.(1)140,90,50;(2)结论:∠ABP+∠ACP =90°﹣∠A ,理由详见解析;(3)不成立,存在结论:∠ACP ﹣∠ABP =90°﹣∠A .。
丰台区2018—2019学年度第一学期八年级期末数学试卷 2019年1月一、选择题(本题共16分,每小题2分) 1.实数9的平方根是( ) A .3 B .3± C .3± D .812.运用图腾解释神话、民俗民风等是人类历史上最早的一种文化现象. 下列图腾中,不是..轴对称图形的是( )3.计算32b a ⎛⎫- ⎪⎝⎭的结果是( )A .332b a-B .336b a-C .338b a-D .338b a4.下列计算正确..的是( ) A .()222-=- B .()()3232-⨯-=-⨯- C .523=+D .236=÷5.下列说法错误..的是( ) A .任意抛掷一个啤酒瓶盖,落地后印有商标一面向上的可能性大小是21B .一个转盘被分成8块全等的扇形区域,其中2块是红色,6块是蓝色. 用力转动转盘,当转盘停止后,指针对准红色区域的可能性大小是41C .一个不透明的盒子中装有2个白球,3个红球,这些球除颜色外都相同. 从这个盒子中随意摸出一个球,摸到白球的可能性大小是52D .100件同种产品中,有3件次品. 质检员从中随机取出一件进行检测,他取出次品的可能性大小是10036.下列以a ,b ,c 为边的三角形,不是..直角三角形的是( ) A .1=a ,1=b ,2=c B .1=a ,3=b ,2=c C .3=a ,4=b ,5=c D .2=a ,2=b ,3=c7.某校开设了文艺、体育、科技和学术四类社团,要求每位学生从中任选一类社团参加.现统计出八年级(1)班40的可能性大小是( )A .51B .52 C .41 D .2038.如图,△ABC 中,点D 在AB 边上,∠CAD =30°,∠CDB =50°. 给出下列三组条件(每组条件中的线段的长度已知):①AD ,DB ;②AC ,DB ;③CD ,CB 能使△ABC 唯一确定的条件的序号为( )D CBAA .①②B .①③C .②③D .①②③二、填空题(本题共16分,每小题2分)9.写出一个..含有字母m ,且2≠m 的分式,这个分式可以是 . 10.已知b a <<7,且a ,b 为两个连续的整数,则=+b a .11.在数学课上,同学们经历了摸球的实例分析和计算过程后,对求简单随机事件发生的可能性大小的计算方法和步骤进行了归纳. 请你将下列求简单随机事件发生的可能性大小的计算方法和步骤的正确顺序写出来 .(填写序号即可)①确定所有可能发生的结果个数n 和其中出现所求事件的结果个数m②计算所求事件发生的可能性大小,即P(所求事件)nm=③列出所有可能发生的结果,并判断每个结果发生的可能性都相等12.如图1,三角形纸片ABC ,AB = AC ,将其折叠,如图2,使点A 与点B 重合,折痕为ED ,点E ,D 分别在AB ,AC 上,如果∠A = 40°,那么∠DBC 的度数为 .13.随着北京申办冬奥会的成功,愈来愈多的同学开始关注我国的冰雪体育项目. 小健从新闻中了解到:在2018年平昌冬奥会的短道速滑男子500米决赛中,中国选手武大靖以39秒584的成绩打破世界纪录,收获中国男子短道速滑队在冬奥会上的首枚金牌. 同年11月12日,武大靖又以39秒505的成绩再破世界纪录. 于是小健对同学们说:“2022年北京冬奥会上武大靖再获金牌的可能性大小是100%.”你认为小健的说法 (填“合理”或“不合理”),理由是 . 14.如图,△ABC 中,∠C = 90°,AD 平分∠CAB 交BC 于点D ,DE ⊥AB 于点E ,如果AC = 6 cm ,BC = 8 cm , 那么EB 的长为 cm ,DE 的长为 cm.ABCDE15.小强在做分式运算与解分式方程的题目时经常出现错误,于是他在整理错题时,将这部分内容进行了梳理,如图所示:请你帮小强在图中的括号里补写出“通分”和“去分母”的依据 .16.在△ABC 中,如果AB = 5cm ,AC = 4cm ,BC 边上的高线AD = 3cm ,那么BC 的长为 cm.三、解答题(本题共68分,第17-20题,第25题,每小题5分,第21-24题,第26,27题,每小题6分,第28题7分) 17.计算:318123-+-. 18.计算:2m n mm n n m++--.19.解方程:216111x x x +-=--.20.如图,AB ,CD 交于点O ,AD ∥BC . 请你添加一个条件 ,使得△AOD ≌△BOC ,并加以证明.ACODB21.已知2=-b a ,求代数式a ba b a b a -÷⎪⎪⎭⎫ ⎝⎛-+222的值.22.下面是小东设计的“作△ABC 中BC 边上的高线”的尺规作图过程.已知:△ABC .求作:△ABC 中BC 边上的高线AD . 作法:如图,①以点B 为圆心, BA 的长为半径作弧,以点C 为圆心, CA 的长为半径作弧,两弧在BC 下方交于点E ;②连接AE 交BC 于点D .所以线段AD 是△ABC 中BC 边上的高线.根据小东设计的尺规作图过程, (1)使用直尺和圆规,补全图形;(保留作图痕迹)AB C(2)完成下面的证明.证明:∵ = BA , = CA ,∴点B ,C 分别在线段AE 的垂直平分线上( )(填推理的依据). ∴BC 垂直平分线段AE .∴线段AD 是△ABC 中BC 边上的高线.23.列方程解应用题:2018年10月24日港珠澳大桥正式开通,它是中国建设史上里程最长、投资最多、施工难度最大的跨海桥梁项目,体现了我国逢山开路、遇水架桥的奋斗精神,体现了我国综合国力、自主创新能力,体现了我国勇创世界一流的民族志气. 港珠澳大桥全长55公里,跨越伶仃洋,东接香港特别行政区,西接广东省珠海市和澳门特别行政区,首次实现了珠海、澳门与香港的跨海陆路连接,极大地缩短了三地间的距离. 通车前,小亮妈妈驾车从香港到珠海的陆路车程大约220公里,如果行驶的平均速度不变,港珠澳大桥通车后,小亮妈妈驾车从香港到珠海所用的行驶时间比原来缩短了2小时15分钟,求小亮妈妈原来驾车从香港到珠海需要多长时间.24.如图,△ABC 中,D 是BC 边的中点,DE ⊥AB 于点E ,DF ⊥AC 于点F ,且DE = DF .求证:AB = AC .DCBAE F25.如图,正方形网格中的每个小正方形边长都是1,每个小正方形的顶点叫做格点. (1)以格点为顶点画△ABC ,使AB =2,BC =22,AC =10(画一个..即可); (2)求△ABC 的面积.26.如图是一个无理数筛选器的工作流程图. (1)当x 为16时,y 值为 ;(2)是否存在输入有意义的x 值后,却始终输不出y 值?如果存在,写出所有满足要求的x 值;如果不存在,请说明理由;(3)如果输入x 值后,筛选器的屏幕显示“该操作无法运行”,请你分析输入的x 值可能是什么情况; (4)当输出的y 值是3时,判断输入的x 值是否唯一,如果不唯一,请写出其中的两个.27.在学习平方根的过程中,同学们总结出:在N a x =中,已知底数a 和指数x ,求幂N 的运算是乘方运算;已知幂N 和指数x ,求底数a 的运算是开方运算. 小茗提出一个问题:“如果已知底数a 和幂N ,求指数x 是否也对应着一种运算呢?”老师首先肯定了小茗善于思考,继而告诉大家这是同学们进入高中将继续学习的对数,感兴趣的同学可以课下自主探究. 小茗课后借助网络查到了对数的定义:小茗根据对数的定义,尝试进行了下列探究: (1)∵221=, ∴12log 2=;∵422=, ∴24log 2=; ∵823=, ∴38log 2=;∵1624=, ∴=16log 2 ; 计算: =32log 2 ;(2)计算后小茗观察(1)中各个对数的真数和对数的值,发现一些对数之间有关系,例如:=+8log 4log 22 ;(用对数表示结果)(3)于是他猜想:=+N M a a log log (0>a 且1≠a ,0>M ,0>N ). 请你将小茗的探究过程补充完整,并再举一个例子验证(3)中他的猜想.28.如图,Rt △ABC 中,∠ACB = 90°,AC = BC ,点D 为AB 边上的一个动点(不与点A ,B 及AB 中点重合),连接CD ,点A 关于直线CD 的对称点为点E ,直线BE ,CD 交于点F . (1)如图1,当∠ACD = 15°时,根据题意将图形补充完整,并直接写出∠BFC 的度数;(2)如图2,当45°<∠ACD <90°时,用等式表示线段AC ,EF ,BF 之间的数量关系,并加以证明.丰台区2018—2019学年第一学期期末练习初二数学评分标准及参考答案9.12m -,答案不唯一 10. 5 11. ③①② 12. 30° 13.不合理,理由支持结论即可 14. 4,3 15. ①分式的基本性质;②等式的基本性质 16. (4+或(4三、解答题(本题共68分,第17-20题,第25题,每小题5分,第21- 24题,第26,27题,每小题6分,第28题7分) 17. 解:原式=13232-+- ……3分 =333-. ……5分18. 解:原式=n m mn m n m ---+2 ……1分 =n m mn m --+2 ……2分=nm mn -- ……3分=1-. ……5分 19. 解:()()111611=-+--+x x x x ……1分 ()()()11612-+=-+x x x ……2分161222-=-++x x x ……3分 2=x . ……4分经检验2=x 是原方程的解,所以原方程的解是2=x . ……5分20. 解:添加条件AO =BO (AD =BC 或DO =CO ). ……1分证明:∵AD ∥BC ,∴∠A =∠B .在△AOD 和△BOC 中,∠A =∠B , AO =BO ,∠AOD =∠BOC . ……4分∴△AOD ≌△BOC (ASA ) . …5分21.解:原式=2222a b ab aa ab +-⋅- …2分=()22a b aa ab -⋅- ……3分 =2a b-. ……4分∴当a b -=2.……6分22. 解:(1)正确补全图形; ……3分(2)BE ,CE ,到线段两个端点距离相等的点在这条线段的垂直平分线上.……6分C BD EA23.解:设小亮妈妈原来从香港到珠海大约需要x 小时. ……1分根据题意,得4955220-=x x. …3分 解得 3=x . ……4分 经检验,3=x 是所列方程的解,并符合实际问题的意义. ……5分 答:小亮妈妈原来从香港到珠海大约需要3小时. ……6分24. 证明:∵DE ⊥AB ,DF ⊥AC ,∴∠BED =∠CFD =90°. …2分 ∵D 是BC 中点,∴BD =CD . ……3分 在Rt △BDE 和Rt △CDF 中,BD =CD , DE =DF .∴Rt △BDE ≌Rt △CDF (HL ).……4分∴∠B =∠C . ……5分 ∴AB = AC . ……6分证法不唯一,其他证法请参照示例相应步骤给分.25. 解:(1)正确画出图形; ……………………………………3分 (2)∵AB =2, BC =22, AC =10,∴AB 2+ BC 2 =AC 2.∴∠ABC =90°. ……………………………………4分∴22222121=⨯⨯=⋅=∆BC AB S ABC . ………5分26. 解:(1)2; …………………………………………………………………………1分(2)存在,x =1或0;………………………………………………………………3分 (3)可能是输入的x 为负数,导致开平方运算无法进行; ……………………4分 (4)答案不唯一,如x =3或9. …………………………………………………6分27. 解:(1)4,5 ;…………………………………………………………………………2分(2)32log 2; ………………………………………………………………………4分(3)()log a MN . …………………………………………………………………5分 验证:如()3333log 3log 9123log 27log 39+=+===⨯. ………………6分28.(1)正确补全图形;………………………………………………………………………1分∠BFC =45°. ………………………………………………………………………2分 (2)猜想:EF 2+ BF 2 =2AC 2. ……………………………………………………………3分证明:连接CE ,AF ,延长AC ,FE 交于点G , ∵点A 关于直线CD 的对称点为点E ,∴△ACF ≌△ECF .∴∠CAF =∠1,AC =EC ,AF =EF . ∵AC =BC ,∴BC =EC . ∴∠1=∠2.∴∠CAF =∠2.∵∠ACB =90°,∴∠AGB +∠2=90°.∴∠CAF +∠AGB =90°. ∴∠AFG =90°.∴在Rt △AFB 中, AB 2=BF 2+AF 2. ∵在Rt △ABC 中, AB 2=AC 2+BC 2=2AC 2,∴BF 2+AF 2=2AC 2.∴BF 2+EF 2=2AC 2. ……………………7分证法不唯一,其他证法请参照示例相应步骤给分.CABC B AD EF 21G E F D A B C。
……装……________姓名:___……装……绝密★启用前 北京市丰台区2018-2019学年八年级上学期期末考试数学试题 试卷副标题 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I 卷(选择题) 请点击修改第I 卷的文字说明 一、单选题 1.实数9的平方根是( ) A .3 B .±3 C .D .81 2.运用图腾解释神话、民俗民风等是人类历史上最早的一种文化现象. 下列图腾中,不是轴对称图形的是( ) A . B . C . D . 3.计算3-2b a ⎛⎫ ⎪⎝⎭的结果是( ) A .-332b a B .-336b a C .-338b a D .338b a 4.下列计算正确的是( ) A =-2 B C =D =5.下列说法错误..的是( ) A .任意抛掷一个啤酒瓶盖,落地后印有商标一面向上的可能性大小是1外…………○…………○…………要※※在※※装※※订※※线※※内…………○…………○…………B .一个转盘被分成8块全等的扇形区域,其中2块是红色,6块是蓝色. 用力转动转盘,当转盘停止后,指针对准红色区域的可能性大小是14 C .一个不透明的盒子中装有2个白球,3个红球,这些球除颜色外都相同. 从这个盒子中随意摸出一个球,摸到白球的可能性大小是25 D .100件同种产品中,有3件次品. 质检员从中随机取出一件进行检测,他取出次品的可能性大小是3100 6.下列以a ,b ,c 为边的三角形,不是..直角三角形的是( ) A .1a =,1b =,c =B .1a =,b =2c =C .3a =,4b =,5c =D .2a =,2b =,3c =7.某校开设了文艺、体育、科技和学术四类社团,要求每位学生从中任选一类社团参加.现统计出八年级(1)班40名学生参加社团的情况,如下图:如果从该班随机选出一名学生,那么该生是体育类社团成员的可能性大小是( )A .15B .25 C .14 D .3208.如图,ABC 中,点D 在AB 边上,CAD 30∠=︒,CDB 50∠=︒.给出下列三组条件(每组条件中的线段的长度已知):①AD ,DB ;②AC ,DB ;③CD ,CB ;能使ABC 唯一确定的条件的序号为( )A .①②B .①③C .②③D .①②③第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题○…………装…………○………姓名:___________班级:_______○…………装…………○………9.写出一个..含有字母m ,且2m ≠的分式,这个分式可以是___________. 10.已知a b <<,且a ,b 为两个连续的整数,则a b +=___________. 11.在数学课上,同学们经历了摸球的实例分析和计算过程后,对求简单随机事件发生的可能性大小的计算方法和步骤进行了归纳. 请你将下列求简单随机事件发生的可能性大小的计算方法和步骤的正确顺序写出来___________.(填写序号即可) ①确定所有可能发生的结果个数n 和其中出现所求事件的结果个数m ②计算所求事件发生的可能性大小,即P (所求事件)m n = ③列出所有可能发生的结果,并判断每个结果发生的可能性都相等 12.如图1,三角形纸片ABC ,AB AC =,将其折叠,如图2,使点A 与点B 重合,折痕为ED ,点E ,D 分别在AB ,AC 上,如果40A ∠=︒,那么DBC ∠的度数为________ 13.随着北京申办冬奥会的成功,愈来愈多的同学开始关注我国的冰雪体育项目. 小健从新闻中了解到:在2018年平昌冬奥会的短道速滑男子500米决赛中,中国选手武大靖以39秒584的成绩打破世界纪录,收获中国男子短道速滑队在冬奥会上的首枚金牌. 同年11月12日,武大靖又以39秒505的成绩再破世界纪录. 于是小健对同学们说:“2022年北京冬奥会上武大靖再获金牌的可能性大小是100%.”你认为小健的说法_________(填“合理”或“不合理”),理由是__________________________. 14.如图,ABC △中,90C ∠=︒,AD 平分CAB ∠交BC 于点D ,DE AB ⊥于点E ,如果6?AC cm =,8?BC cm =,那么EB 的长为________cm ,DE 的长为_______cm .………○…………○…………线…………※※请※※不※※………○…………○…………线…………15.小强在做分式运算与解分式方程的题目时经常出现错误,于是他在整理错题时,将这部分内容进行了梳理,如图所示:请你帮小强在图中的括号里补写出“通分”和“去分母”的依据.16.在ABC△中,如果5AB cm=,4AC cm=,BC边上的高线3AD cm=,那么BC的长为______________cm.三、解答题171.18.计算:2m n mm n n m++--.19.解方程:216111xx x+-=--20.如图,AB,CD交于点O,AD BC∥. 请你添加一个条件,使得AOD BOC△≌△,并加以证明.21.已知a b-=22()2a b a bba a+--÷的值.22.下面是小东设计的“作ABC△中BC边上的高线”的尺规作图过程.已知:ABC△.求作:ABC△中BC边上的高线AD.作法:如图,…………外……………………○………………内……………………○…… ①以点B 为圆心, BA 的长为半径作弧,以点C 为圆心,CA 的长为半径作弧,两弧在BC 下方交于点E ; ②连接AE 交BC 于点D . 所以线段AD 是ABC △中BC 边上的高线.根据小东设计的尺规作图过程, (1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明. 证明:∵ BA =, CA =, ∴点B ,C 分别在线段AE 的垂直平分线上( )(填推理的依据). ∴BC 垂直平分线段AE . ∴线段AD 是ABC △中BC 边上的高线. 23.列方程解应用题: 2018年10月24日港珠澳大桥正式开通,它是中国建设史上里程最长、投资最多、施工难度最大的跨海桥梁项目,体现了我国逢山开路、遇水架桥的奋斗精神,体现了我国综合国力、自主创新能力,体现了我国勇创世界一流的民族志气. 港珠澳大桥全长55公里,跨越伶仃洋,东接香港特别行政区,西接广东省珠海市和澳门特别行政区,首次实现了珠海、澳门与香港的跨海陆路连接,极大地缩短了三地间的距离. 通车前,小亮妈妈驾车从香港到珠海的陆路车程大约220公里,如果行驶的平均速度不变,港珠澳大桥通车后,小亮妈妈驾车从香港到珠海所用的行驶时间比原来缩短了2小时15分钟,求小亮妈妈原来驾车从香港到珠海需要多长时间. 24.如图,ABC △中,D 是BC 边的中点,DE AB ⊥于点E ,DF AC ⊥于点F ,………外…………○…………………○…………线…………○…※※请※※不答※※题※※ ………内…………○…………………○…………线…………○…求证:AB AC =. 25.如图,正方形网格中的每个小正方形边长都是1,每个小正方形的顶点叫做格点.(1)以格点为顶点画ABC △,使AB =BC =AC =..即可);(2)求ABC △的面积.26.如图,是一个无理数筛选器的工作流程图.(1)当x 为16时,y 值为_____;(2)是否存在输入有意义的x 值后,却始终输不出y 值?如果存在,写出所有满足要求的x 值;如果不存在,请说明理由;(3)如果输入x 值后,筛选器的屏幕显示“该操作无法运行”,请你分析输入的x 值可能是什么情况;(4)当输出的y 判断输入的x 值是否唯一,如果不唯一,请写出其中的两个.27.在学习平方根的过程中,同学们总结出:在x a N =中,已知底数a 和指数x ,求幂N 的运算是乘方运算;已知幂N 和指数x ,求底数a 的运算是开方运算. 小茗提出○…………外…………线……○…………内…………线……一个问题:“如果已知底数a 和幂N ,求指数x 是否也对应着一种运算呢?”老师首先肯定了小茗善于思考,继而告诉大家这是同学们进入高中将继续学习的对数,感兴趣的同学可以课下自主探究. 小茗课后借助网络查到了对数的定义:小茗根据对数的定义,尝试进行了下列探究: (1)∵122=, ∴2log 21=; ∵224=, ∴2log 42=; ∵328=, ∴2log 83=; ∵4216=, ∴2log 16= ; 计算: 2log 32= ; (2)计算后小茗观察(1)中各个对数的真数和对数的值,发现一些对数之间有关系,例如:22log 4log 8+= ;(用对数表示结果) (3)于是他猜想:log log a a M N += (0a >且1a ≠,0M >,0N >). 请你将小茗的探究过程补充完整,并再举一个例子验证(3)中他的猜想. 28.如图,Rt ABC 中,90ACB ∠=︒,AC BC =,点D 为AB 边上的一个动点(不与点A ,B 及AB 中点重合),连接CD ,点A 关于直线CD 的对称点为点E ,直线BE ,CD 交于点F . (1)如图1,当15ACD ∠=︒时,根据题意将图形补充完整,并直接写出BFC ∠的度数; (2)如图2,当4590ACD ︒<∠<︒时,用等式表示线段AC ,EF ,BF 之间的数量关系,并加以证明.参考答案1.B【解析】根据平方根的定义即可求解.解:2(3)9,±=∴实数9的平方根是±3. 故选B.2.C【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】A 、是轴对称图形,故本选项不符合题意;B 、是轴对称图形,故本选项不符合题意;C 、不是轴对称图形,故本选项符合题意;D 、是轴对称图形,故本选项不符合题意.故选C .【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.C【解析】【分析】原式分子分母分别立方,计算即可得到结果.【详解】原式=()333382b b aa -=-. 故选C .【点睛】本题考查了分式的乘方,熟练掌握运算法则是解答本题的关键.4.D【解析】【分析】根据二次根式的加、减、乘、除的法则计算即可,逐一验证即可.【详解】A. 2=,故原选项错误;B. =C. ≠,故原选项错误;D. =.故选D.【点睛】本题考查了二次根式的混合运算,掌握运算法则是解题的关键.5.A【解析】【分析】根据多次重复试验中事件发生的频率估计事件发生的概率即可.【详解】A.啤酒盖的正反两面不均匀,任意抛掷一个啤酒瓶盖,落地后印有商标一面向上的可能性大小不是12,故本选项错误;B.一个转盘被分成8块全等的扇形区域,其中2块是红色,6块是蓝色.用力转动转盘,当转盘停止后,指针对准红色区域的可能性大小是14,故本选项正确;C.一个不透明的盒子中装有2个白球,3个红球,这些球除颜色外都相同.从这个盒子中随意摸出一个球,摸到白球的可能性大小是25,故本选项正确;D.100件同种产品中,有3件次品.质检员从中随机取出一件进行检测,他取出次品的可能性大小是3100,故本选项正确;故选A.【点睛】此题考查了概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.6.D【解析】【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形.【详解】A、12+12=2=)2,符合勾股定理的逆定理,是直角三角形,故此选项错误;B、12+2=4=22,符合勾股定理的逆定理,是直角三角形,故此选项错误;C、32+42=25=52,符合勾股定理的逆定理,是直角三角形,故此选项错误;D、22+22=8≠32,不符合勾股定理的逆定理,不是直角三角形,故此选项正确;故选D.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.7.B【解析】【分析】根据条形统计图可得,选体育的学生总人数的比值,从而可以解答本题.【详解】由条形统计图可得,选体育的学生的可能性是:162=8+16+10+65,故选B.【点睛】本题考查可能性大小,解题的关键是明确题意,找出所求问题需要的条件.8.A【解析】【分析】三角形唯一确定需要的条件:①三边;②两个内角和一边;③两边及两边的夹角,据此即可得答案.【详解】∵∠CAD=30°,∠CDB=50°,∴∠ACD=20°,∵AD已知,∴△ACD唯一确定,∴AC唯一确定,∵AD、BD唯一确定,∴AB唯一确定,∴△ABC唯一确定,故①能唯一确定△ABC.∵AC已知,∠CAD=30,∠ACD=20°,∴△ACD唯一确定,∴AD唯一确定,∵BD已知,∴AB唯一确定,∴△ABC唯一确定,故②能唯一确定△ABC.∵CD、CB已知不能唯一确定△ABC.故③不符合题意,∴①②唯一确定△ABC.故选A.【点睛】本题考查能三角形唯一确定需要的条件,①三边;②两个内角和一边;③两边及两边的夹角;熟练掌握相关知识是解题关键.9.12m,答案不唯一【解析】【分析】根据分式的定义写出一个符合条件的分式即可,答案不唯一.【详解】一个分式含有字母m,且m≠2的分式,则这个分式可以是12m-,答案不唯一.【点睛】本题考查了分式成立的条件,掌握分式的定义是解题的关键.10.5【解析】【分析】a,b的值,进而可得出结论.【详解】∵4<7<9,∴2<3.∵a、b为两个连续整数,∴a=2,b=3,∴a+b=2+3=5.故答案为:5.【点睛】本题考查的是估算无理数的大小,先根据题意求出a,b的值是解答此题的关键.11.③①②【解析】【分析】根据求简单随机事件发生的可能性大小的计算方法和步骤求解即可.【详解】求简单随机事件发生的可能性大小的计算方法和步骤是:③列出所有可能发生的结果,并判断每个结果发生的可能性都相等;①确定所有可能发生的结果个数n和其中出现所求事件的结果个数m;②计算所求事件发生的可能性大小,即P(所求事件)mn =;故答案为:③①②.【点睛】本题主要考查了可能性的大小,利用实验的方法进行概率估算,要知道当实验次数非常大时,实验频率可作为事件发生的概率的估计值,即大量实验频率稳定于理论概率.12.30【解析】【分析】求出∠ABC的度数,证明∠DBA=∠A=40°,即可解决问题.【详解】如图2,∵AB=AC,∠A=40°,∴∠ABC=∠C=180402︒-︒=70°;由题意得:DA=DB,∴∠DBA=∠A=40°,∴∠DBC=70°-40°=30°.故答案为:30°【点睛】该题主要考查了翻折变换的性质及其应用问题;灵活运用等腰三角形的性质、三角形的内角和定理等几何知识点是解题的关键.13.不合理理由支持结论即可【解析】【分析】必然事件发生的概率为1,即P(必然事件)=1;不可能事件发生的概率为0,即P(不可能事件)=0;如果A为不确定事件(随机事件),那么0<P(A)<1,据此可得结论.【详解】因为2022年北京冬奥会上武大靖再获金牌的可能性大小不一定是100%,所以小健的说法不合理,理由:2022年北京冬奥会上武大靖再获金牌属于随机事件,故答案为:不合理,2022年北京冬奥会上武大靖再获金牌属于随机事件.【点睛】本题主要考查了可能性的大小,事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.14.43【解析】【分析】依据△ACD≌△AED(AAS),即可得到AC=AE=6cm,CD=ED,再根据勾股定理可得AB 的长,进而得出EB的长;设DE=CD=x,则BD=8-x,依据勾股定理可得,Rt△BDE中,DE2 +BE2=BD2,解方程即可得到DE的长.【详解】∵AD平分∠CAB,∴∠CAD=∠EAD,又∵∠C=90°,DE⊥AB,∴∠C=∠AED=90°,又∵AD=AD,∴△ACD≌△AED(AAS),∴AC=AE=6cm,CD=ED,∵Rt△ABC中,(cm),∴BE=AB-AE=10-6=4(cm),设DE=CD=x,则BD=8-x,∵Rt△BDE中,DE2+BE2=BD2,∴x2+42=(8-x)2,解得x=3,∴DE=3cm,故答案为:4,3.【点睛】本题主要考查了角平分线的定义以及勾股定理的运用,利用直角三角形勾股定理列方程求解是解决问题的关键.15.①分式的基本性质;②等式的基本性质【解析】【分析】分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.等式两边乘同一个数或除以一个不为零的数,结果仍得等式.【详解】异分母分式通过通分,可以转化为同分母分式,依据为:分式的基本性质;分式方程通过去分母,可以转化为整式方程,依据为:等式的基本性质.故答案为:①分式的基本性质;②等式的基本性质.【点睛】本题主要考查了通分以及去分母,掌握分式的基本性质以及等式的基本性质是解决问题的关键.16.(4+或(4-【解析】【分析】分点D落在BC上和BC延长线上两种情况,利用勾股定理分别求得BD和CD的长,从而得出答案.【详解】(1)如图1,当点D落在BC上时,∵AB=5,AD=3,AC=4,∴,,则(2)如图2,当点D落在BC延长线上时,∵AB=5,AD=3,AC=4,∴,,则;综上,BC的长的为()或()cm.【点睛】本题主要考查勾股定理,解题的关键是掌握勾股定理及分类讨论思想的运用.17.3【解析】【分析】根据二次根式的混合运算法则计算即可.【详解】=+=.1213【点睛】本题考查的是二次根式的混合运算,掌握二次根式的性质,立方根的概念,绝对值的性质是解题的关键.18.-1【解析】【分析】根据同分母的分式加法法则进行计算即可.【详解】原式221m n m m n m n m m n m n m n m n++--=-===-----. 【点睛】本题考查了分式的加减运算,掌握运算法则是解题的关键.19.2x =【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】方程两边同乘以(x +1)(x -1)得:()()()()11611x x x x ++-=+-222161x x x ++-=-24x =2x =.经检验,2x =是原方程的解.∴2x =是原方程的解.【点睛】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.添加条件AO BO =(AD BC =或DO CO =),理由见解析【解析】【分析】根据全等三角形的判定方法即可判断.【详解】添加条件AO BO =(AD BC =或DO CO =).证明:∵AD BC ,∴A B ∠=∠.在AOD ∆和BOC ∆中,,,.A B AO BO AOD BOC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()AOD BOC ASA ∆≅∆.添加OD=OC 或AD=BC 同法可证.故答案为OA=OB 或OD=OC 或AD=BC .【点睛】本题考查全等三角形的判定和性质,平行线的性质等知识,解题的关键是灵活运用所学知识解决问题.21【解析】【分析】根据分式的混合运算法则把原式化简,代入计算即可.【详解】 原式2222a b ab a a a b +-=⋅- ()222a b a a b a a b --=⋅=-.∴当a b -=时,原式=【点睛】本题考查的是分式的化简求值,掌握分式的混合运算法则是解题的关键.22.(1)见解析;(2)见解析【解析】【分析】(1)利用几何语言画出对应的几何图形;(2)通过作图得到AM=AN ,MP=NP ,则根据线段垂直平分线的性质定理的逆定理可判断AP 是线段MN 的垂直平分线,从而得到AD ⊥BC .【详解】(1)正确补全图形:(2)证明:∵AM=AN,MP=NP,∴AP是线段MN的垂直平分线(到一条线段两个端点距离相等的点在这条线段的垂直平分线上)∴AD⊥BC于D,即线段AD为△ABC的边BC上的高.故答案为AN,NP,到一条线段两个端点距离相等的点在这条线段的垂直平分线上.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.23.小亮妈妈原来从香港到珠海大约需要3小时【解析】【分析】设小亮妈妈原来驾车从香港到珠海需要x小时,则现在驾车从香港到珠海需要(x-94)小时,根据速度=路程÷时间结合速度不变,即可得出关于x的分式方程,解之经检验即可得出结论.【详解】设小亮妈妈原来从香港到珠海大约需要x小时,则现在驾车从香港到珠海需要(x-94)小时.根据题意,得2205594x x=-解得3x=.经检验,3x=是所列方程的解,并符合实际问题的意义.答:小亮妈妈原来从香港到珠海大约需要3小时.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.24.详见解析【解析】【分析】由D 是BC 边的中点可知BD=CD ,根据DE=DF 可由HL 证明Rt △BDE ≌Rt △CDF ,即可证明∠B=∠C ,进而可得AB=AC.【详解】∵DE AB ⊥,DF AC ⊥,∴BED CFD 90∠∠==.∵D 是BC 中点,∴BD CD =在Rt ΔBDE 和Rt ΔCDF 中,,.BD CD DE DF =⎧⎨=⎩ ∴()Rt ΔBDE Rt ΔCDF HL ≅.∴B C ∠∠=.∴AB AC =.【点睛】此题考查学生利用两角相等来判定等腰三角形及全等三角形的判定与性质,证明此题的关键是用(HL )证明△EBD ≌△FCD ,从而得出∠EBD=∠FCD ,即可证明△ABC 是等腰三角形. 25.2【解析】【分析】(1)依据,进行作图;(2)依据割补法,即可得到△ABC 的面积.【详解】(1)正确画出图形:(2)∵AB =BC =AC =∴222AB BC AC +=.∴90ABC ∠=.∴11222ABC S AB BC ∆=⋅==. 【点睛】 本题主要考查了基本作图以及三角形的面积,利用割补法或利用三角形面积计算公式即可求得三角形面积.26.(1);(2)存在,当x=0,1时,始终输不出y 值;(3)x <0;(4)x 的值不唯一.x=3或x=9.【解析】【分析】(1)根据运算规则即可求解;(2)根据0的算术平方根是0,即可判断;(3)根据二次根式有意义的条件,被开方数是非负数即可求解;(4)根据运算法则,进行逆运算即可求得无数个满足条件的数.【详解】(1)当x=16=2,则;(2)当x=0,1时,始终输不出y 值.因为0,1的算术平方根是0,1,一定是有理数;(3)当x <0时,导致开平方运算无法进行;(4)x 的值不唯一.x=3或x=9.【点睛】本题考查了二次根式有意义的条件,正确理解给出的运算方法是关键.27.(1)4,5;(2)2log 32(3)log ()a MN .【解析】【分析】根据阅读材料中的方法将各式计算,找出关系即可.【详解】(1)2log 16=42log 24=,522log 32log 25==;(2) 22log 4log 8+=2352222log 2log 2235log 2log 32+=+===;(3)log a M+log a N=log a (MN ),log 39+log 327=log 3243.【点睛】此题考查了实数的运算,弄清题中的新定义是解本题的关键.28.(1)45BFC ∠=(2)2222EF BF AC +=【解析】【分析】(1)作AH ⊥CD 延长于H ,延长AH 到E ,使AH=HE ,连接BE 并延长BE ,交CD 延长线于F ,可证明CF 是AE 的中垂线,即可得点E 是点A 关于直线CD 的对称点,根据中垂线的性质及等腰三角形的性质即可求出∠BFC 的度数;(2)由点A 关于直线CD 的对称点为点E 可得ΔACF ΔECF ≅,即可证明CAF 1∠∠=,AC EC =,AF EF =,根据等腰三角形的性质可得12∠∠=,进而可得CAF 2∠∠=,由ACB 90∠=通过等量代换可知AFG 90∠=,在Rt ΔAFB 和Rt △ABC 中,利用勾股定理即可证明结论.【详解】(1)如图:过点A 作AH ⊥CD 延长于H ,延长AH 到E ,使AH=HE ,连接BE 并延长BE ,交CD 延长线于F ,连接CE ,∵AH=EH ,CH ⊥AE ,∴CF 是AE 的中垂线,∴点E 是点A 关于直线CD 的对称点,∴图形即为所求.∵CF 是AE 的中垂线,∴AC=CE ,∵∠ACD=15°,∴∠ACE=30°,∠FCE=15°,∵∠ACB=90°,∴∠ECB=60°,∵AC=BC ,∴CE=BC ,∴∠CEB=60°,∴∠BFC=∠CEB-∠FCE=60°-15°=45°.(2)猜想:222EF BF 2AC +=.证明:连接CE ,AF ,延长AC ,FE 交于点G ,∵点A 关于直线CD 的对称点为点E ,∴ΔACF ΔECF ≅.∴CAF 1∠∠=,AC EC =,AF EF =.∵AC BC =,∴BC EC =.∴12∠∠=.∴CAF 2∠∠=.∵ACB 90∠=,∴AGB 290∠∠+=.∴CAF AGB 90∠∠+=.∴AFG 90∠=.在Rt ΔAFB 中,222AB BF AF =+.∵在Rt ΔABC 中,2222AB AC BC 2AC =+=,∴222BF AF 2AC +=.∴222BF EF 2AC +=.【点睛】本题考查对称的性质、线段垂直平分线的性质及等腰三角形的判定与性质,对称轴垂直平分对称点的连线,线段垂直平分线上的点到线段两边的距离相等,熟练掌握相关知识是解题关键.。