三能级系统和四能级系统
- 格式:ppt
- 大小:339.00 KB
- 文档页数:3
光学经典理论激光光学的几个重要原理激光是光学研究十分重要的一个方向,今天为大家整理了一些关于激光光学的几个重要原理,相信很多的朋友们应该会喜欢,可以收藏一下。
激光的产生说到激光的产生就要先从原子结构说起。
卢瑟福通过α粒子散射实验得出了原子的行星模型,依照公认的电动力学法则,绕核运动的电子将连续发光,并因能量损耗终将崩溃落人核内,这与观察到的分立光谱线并不一致。
女人上了年纪,改如何保养?广告为了解决这一矛盾,1913年,玻尔提出了两点假没:第一点假设认为,电子只能在某些确定的轨道上运动,这就是所谓的“定态”,电子只要停留在这些态中的任何一个,它就不会发光;第二点假设认为只有当电子从一个较高能量的定态跃迁到一较低能量的定态时,辐射才从原子中放出,放出的辐射能量等于两定态能量的差值,通过一个类似的逆过程,原子能够吸收一个辐射量子,使得一个电子跃迁到较高能量的定态。
玻尔原子理论解决了原子的稳定性问题,以及光谱规律与原子结构的本质联系问题展开剩余97%原子发光的机理原子从某一能级吸收或释放能量,变成另一能级,称之为原子跃迁。
爱因斯坦发现,若只有自发辐射和吸收跃迁,黑体和辐射场之间不可能达到热平衡,要达到热平衡,还必须存在受激辐射。
自发辐射与受激辐射当外来光子的频率满足hv=E2-E1时,使原子中处于高能级的电子在外来光子的激发下向低能级跃迁而发光。
受激辐射光子与入射光子属于同一光子态(或光波模式),具有相同的频率、相位、波矢、偏振。
——自发辐射系数——受激辐射系数受激吸收——受激吸收系数受激辐射与受激吸收的矛盾受激辐射使光子数增多,受激吸收使光子数减少。
受激辐射与自发辐射的矛盾要克服上述矛盾就需要粒子数反转。
受激辐射占优势,光通过工作物质后得到加强,获得光放大。
激光的产生条件:1、增益介质:激光的产生必须选择合适的工作物质,可以是气体、液体、固体。
在这种介质中可以实现粒子数反转,以制造获得激光的必要条件。
华科考研激光原理2002--2014真题2014年一.解释题1.描述自然加宽和多普勒加宽的成因,说明他们属于什么加宽类型。
(15)2.描述一般稳定腔和对称共焦腔的等价性。
(15)3.增益饱和在连续激光器稳定输出中起什么作用? 谱线加宽是怎样影响增益饱和特性的?(15)4.说明三能级系统和四能级系统的本质区别,哪个系统更容易形成粒子数反转,为什么?(15)二.解答题1. 一个折射率为η,厚度为d 的介质放在空气中,界面是曲率半径为R 的凹面镜和平面镜。
(1)求光线从空气入射到凹面镜并被凹面镜反射的光线变换矩阵。
(2)求光线从凹面镜进入介质经平面镜反射再从凹面镜射出介质的光线变换矩阵。
(3)求光线从凹面镜进入介质再从平面镜折射出介质的光线变换矩阵。
(25)2. 圆形镜共焦腔的腔长L=1m ,(1)求纵模间隔q υ∆,横模间隔m υ∆,n υ∆. (2)若在增益阈值之上的增益线宽为60Mhz ,问腔内是否可能存在两个以上的纵模震荡,为什么?(25)3. 虚共焦型非稳腔的腔长L=0.25m ,由凹面镜M1和凸面镜M2组成,M2的曲率半径和直径为m R 12-=,cm a 322=,若M2的尺寸不变,要求从M2单端输出,则M1的尺寸为多少;腔的往返放大率为多少。
(20)4. 某连续行波激光放大器,工作物质属于均匀加宽型,长度是L ,中心频率的小信号增益为m G ,初始光强为0I 中心频率饱和光强为s I ,腔内损耗系数为i α (m i G <<α),试证明有:(20)sL L m I I I I I L G 00ln -+= (提示:I dz dI G i =-α, s m I I G +=1G 构造微分方程) 2013年一、简答:1.说出激光器的两种泵浦方式,并分别举个例子。
2.什么是空间烧孔?并说明对激光器模式的影响。
3.试写出二能级的速率方程。
并证明二能级不能产生自激震荡(设f1=f2)。
06~07激光原理与技术A答案2006-2007学年第1学期《激光原理与技术》A卷试题答案1.基本概念题(选做6小题,每小题5分)[30]1.1 试就你所了解的知识,对激光器进行科学分类。
按工作介质分:气体激光器、固体激光器、染料激光器、半导体激光器等按工作方式分:脉冲激光器(pulsed laser)、连续激光器(c.w laser)固定波长输出、波长可调谐的激光器……(按任一方式对其进行分类均可得分,答案是多样的)1.2 激光器一般包括哪三个基本单元?各单元的主要作用是什么?激光器三个基本组成单元(各自的作用描述方式可以不一样)泵浦源:提供输入能量,使粒子数反转分布?n?0。
增益介质:对入射光产生放大作用。
光子谐振腔:选模、储能,形成光振荡(变激光放大器为激光振荡器)。
1.3 对于线宽为??的洛仑兹函数和高斯函数,│ν-ν0│为多大时,这两个函数值相等?在什么频率范围内,洛仑兹函数值大于高斯函数值?│ν-ν0│= 0.75???时,洛仑兹函数与高斯函数值相等;│ν-ν0│> 0.75??时,洛仑兹函数大于高斯函数值。
1.4 三能级系统和四能级系统的主要区别是什么?就两系统各举一典型实例.三能级系统与四能级系统的主要区别是:前者基态与激光下能级共享,因而阈值反转粒子数密度为n/2,而后者的激光下能级抽空速率很快,阈值反转粒子数密度近似为激光上能级的阈值反转粒子数n2t。
典型的三能级系统激光器为红宝石激光器,典型四能级系统激光器为Nd:YAG激光器。
1.5 何谓烧孔效应?何谓兰姆凹陷?烧孔效应主要指非均匀加宽介质中,由于频率?1的强光入射引起的反转集居数的饱和现象。
即在频率为?1,光强为I?1的强光作用下,使表观中心频率处在?1±(1+ I?1 /Is)1/2???H/2范围内的粒子产生受激辐射,因此在?n???~??曲线上形成一个以?1为中心,宽度约为(1+ I?1 /Is)1/2???H的“烧孔”,这种现象称为烧孔效应。
第一章1、激光与普通光源相比有三个主要特点:方向性好,相干性好,亮度高。
2、激光主要是光的受激辐射,普通光源主要光的自发辐射。
3、光的一个基本性质就是具有波粒二象性。
光波是一种电磁波,是一种横波。
4、常用电磁波在可见光或接近可见光的围,波长为0.3~30μm,其相应频率为10^15~10^13。
5、具有单一频率的平面波叫作单色平面波,如果频率宽度Δν<<v 时,这种波叫作准单色波。
6、原子处于最低的能级状态称为基态,能量高于基态的其他能级状态叫作激发态。
7、两个或两个以上的不同运动状态的电子可以具有相同的能级,这样的能级叫作简并能级。
8、同一能级所对应的不同电子运动状态的数目,叫作简并度,用字母g表示。
9、辐射跃迁选择定则(本质:状态一定要改变),原子辐射或吸收光子,不是在任意两能级之间跃迁,能级之间必须满足下述选择定则:a、跃迁必须改变奇偶态;b、ΔJ=0,±1(J=0→J=0除外);对于采用LS耦合的原子还必须满足下列选择定则:c、ΔL=0,±1(L=0→L=0除外);d、ΔS=0,即跃迁时S不能发生改变。
10、大量原子所组成的系统在热平衡状态下,原子数按能级分布服从玻耳兹曼定律。
11、处于高能态的粒子数总是小于处在低能态的粒子数,这是热平衡情况的一般规律。
12、因发射或吸收光子从而使原子造成能级间跃迁的现象叫作辐射跃迁,必须满足辐射跃迁选择定则。
13、光与物质的相互作用有三种不同的基本过程:自发辐射,受激辐射,和受激吸收。
14、普通光源中自发辐射起主要作用,激光工作过程中受激辐射起主要作用。
15、与外界无关的、自发进行的辐射称为自发辐射。
自发辐射的光是非相干光。
16、能级平均寿命等于自发跃迁几率的倒数。
17、受激辐射的特点是:a、只有外来光子的能量hv=E2-E1时,才能引起受激辐射。
b、受激辐射所发出的的光子与外来光子的特性完全相同(频率相同,相位相同,偏振方向相同,传播方向相同)。
激光器的基本结构1、激光工作介质激光的产生必须选择合适的工作介质,可以是常体、液体、固体或半导体。
在这种介质中可以实现粒子数反转,以制造获得激光的必要条件。
显然亚稳态能级的存在,对实现粒子数反转世非常有利的。
现有工作介质近千种,可产生的激光波长包括从真空紫外道远红外,非常广泛。
作为激光器的核心,是由激活粒子(都为金属)和基质两部分组成,激活粒子的能级结构决定了激光的光谱特性和荧光寿命等激光特性,基质主要决定了工作物质的理化性质。
根据激活粒子的能级结构形式,可分为三能级系统(例如红宝石激光器)与四能级系统(例如Er:YAG激光器)。
工作物质的形状目前常用的主要有四种:圆柱形(目前使用最多)、平板形、圆盘形及管状。
2、激励源为了使工作介质中出现粒子数反转,必须用一定的方法去激励原子体系,使处于上能级的粒子数增加。
一般可以用气体放电的办法来利用具有动能的电子去激发介质原子,称为电激励;也可用脉冲光源来照射工作介质,称为光激励;还有热激励、化学激励等。
各种激励方式被形象化地称为泵浦或抽运。
为了不断得到激光输出,必须不断地“泵浦”以维持处于上能级的粒子数比下能级多。
泵浦源能够提供能量使工作物质中上下能级间的粒子数翻转,目前主要采用光泵浦。
泵浦光源需要满足两个基本条件:有很高的发光效率和辐射光的光谱特性应与工作物质的吸收光谱相匹配。
常用的泵浦源主要有惰性气体放电灯、太阳能及二极管激光器。
其中惰性气体放电灯是当前最常用的,太阳能泵浦常用在小功率器件,尤其在航天工作中的小激光器可用太阳能最为永久能源,二极管(LD)泵浦是目前固体激光器的发展方向,它集合众多优点于一身,已成为当前发展最快的激光器之一。
LD泵浦的方式可以分为两类,横向:同轴入射的端面泵浦;纵向:垂直入射的侧面泵浦。
LD泵浦的固体激光器有很多优点,寿命长、频率稳定性好、热光畸变小等等,当然最突出的优点是泵浦效率高,因为它泵浦光波长与激光介质吸收谱严格匹配。
激光器的工作原理一.光学谐振腔结构与稳定性激光是在光学谐振腔中产生的。
它的主要功能之一是使光在腔内来回反射多次以增长激活介质作用的工作长度,提高腔内的光能密度。
显而易见的是,不垂直于反射镜表面的傍轴光线经过有限次的反射就会投射到平面镜的通光口径之外,而使得激活介质作用的工作长度只得到很有限的增长。
所以,光线能够在谐振腔中反射的次数与其结构密切相关。
能够使腔中任一束傍轴光线经过任意多次往返传播而不逸出腔外的谐振腔能够使激光器稳定地发出激光,这种谐振腔叫做稳定腔,反之称为不稳定腔。
我们讨论光学谐振腔的结构与稳定性的关系。
1.共轴球面谐振腔的稳定性条件光学谐振腔都是由相隔一定距离的两块反射镜组成的。
无论是平面镜还是球面镜,无论是凸面镜还是凹面镜,都可以用“共轴球面”的模型来表示。
因为只要把两个反射镜的球心连线作为光轴,整个系统总是轴对称的,两个反射面可以看成是“共轴球面”。
平面镜是半径为无穷大的球面镜。
如果其中一块是平面镜,可以用通过另一块球面镜球心与平面镜垂直的直线作为光轴。
平行平面腔的光轴则可以是与平面镜垂直的任一直线。
当然两个平面镜不平行不能产生谐振,不在讨论之列。
图(2-1)共轴球面腔结构示意图如图(2-1)所示,共轴球面腔的结构可以用三个参数来表示:两个球面反射镜的曲率半径R1、R2,和腔长即与光轴相交的反射镜面上的两个点之间的距离L。
如果规定凹面镜的曲率半径为正,凸面镜的曲率半径为负,可以证明共轴球面腔的稳定性条件是111021≤⎪⎪⎭⎫ ⎝⎛-⨯⎪⎪⎭⎫ ⎝⎛-≤R L R L (2-1) 上式左边成立的条件等价于⎪⎪⎭⎫ ⎝⎛-11R L 和⎪⎪⎭⎫ ⎝⎛-21R L 同时为正或同时为负,这就要求两镜面的曲率半径为正时必须同时大于腔长或同时小于腔长。
如果镜面的曲率半径同时为负,尽管上式左边成立,右边的不等式却不成立。
如果镜面的曲率半径一正一负,则需要具体讨论。
2.共轴球面腔的稳定图及其分类为了直观起见,常用稳定图来表示共轴球面腔的稳定条件。
对了课本两遍,基本覆盖所有考点,部分小四字体重在辅助理解。
有填空、名词解释、计算、简答。
计算题四个中出三个。
↖(^ω^)↗第一章1、光的基本性质:波粒二象性;波动性(电磁波),粒子性(光子流)。
2、光与物质的相互作用有:自发辐射、受激辐射、受激吸收。
普通光源中(自发辐射)占主要;激光器中(受激辐射)占主要。
3、简答:自发辐射、受激辐射、受激吸收之间关系:A21n2dt+B21n2ρv dt=B12n1ρv dt在光和大量原子系统的相互作用中,三者是同时发生的。
在单位体积中,在dt时间内,由高能级E2通过自发辐射和受激辐射而跃迁到低能级E1的原子数,应等于低能级E1吸收光子而跃迁到高能级E2的原子数。
4、光谱的(线型)和(宽度)与光的(时间相干性)直接相关。
自然增宽的线型函数:f N(v)=A/(4π2(v-v0)2+(1/2τ)2)f N(v)表示在频率v附近单位频率间隔的相对光强随频率的分布。
A为比例常数。
所得谱线的自然增宽是因为作为电偶极子看待的原子做衰减振动而造成的谱线增宽。
5、(名词解释)光的多普勒效应:随着光源和接收器的相对运动而发生光源的频率发生改变(频移)称为多普勒效应。
运动对向接受体频率增高,背向接受体频率降低。
6、(名词解释)均匀增宽与非均匀增宽:均匀增宽:自然增宽和碰撞增宽中每一个原子所发的光对谱线内任一频率都有贡献,而且这个贡献对每个原子都是等同的,这种增宽为均匀增宽。
非均匀增宽:不同粒子对谱线不同频率部分的贡献不同, 即可分辨谱线线型哪一频带是由哪些特定粒子发射的(∵热运动速度矢量相同的粒子引起的频移相同)7、(简答)实现光的放大的条件:1)需要一个激励能源,用于把介质的粒子不断地由低能级抽送到高能级上去;2)需要合适的发光介质(激光工作物质),它能在激励能源的作用下形成n2/g2>n1/g1的粒子数密度反成分布状态。
8、(简答)产生激光的条件:1)有提供放大作用的增益介质作为激光工作物质,其激活粒子(原子、分子或离子)有适合于产生受激辐射的能级结构;2)有外界激励源,将下能级的粒子抽运到上能级,使激光上下能级之间产生粒子数反转;3)有光学谐振腔,增长激光介质的工作长度,控制光束的传播方向,选择被放大的受激辐射光频率以提高单色性。
四能级系统激光产生的原理1.引言1.1 概述概述四能级系统激光是一种基于四个能级的激光系统,其原理基于原子或分子能级的跃迁。
在这种激光系统中,激发光源将原子或分子从基态激发到第一激发态,然后通过跃迁到第二激发态,并进一步跃迁到亚稳态。
最后,在亚稳态和基态之间的跃迁释放出具有特定波长和相干性的激光光子。
四能级系统激光在许多领域中都有广泛的应用,包括激光切割、激光雷达、医学治疗和科学研究等。
它具有高度的激光效率和较长的寿命,可以提供强大且稳定的激光输出。
本文将介绍四能级系统激光的基本原理,包括能级结构和激发跃迁过程。
此外,还将探讨四能级系统激光的应用前景以及它所面临的优势和挑战。
通过深入理解四能级系统激光的原理和特性,我们可以更好地利用它的优势,并克服潜在的挑战,推动激光技术的进一步发展。
(字数: 175)1.2文章结构文章结构部分的内容应该包括以下信息:在文章结构部分,我们将介绍四能级系统激光产生的原理。
本章将分为三个部分来阐述:引言、正文和结论。
引言部分将对四能级系统激光进行概述,介绍其基本概念和重要性。
我们将讨论四能级系统激光在各个领域中的应用,并对本文的目的进行说明。
正文部分将详细介绍四能级系统激光的基本原理。
我们将解释四能级激光器的工作原理和发射过程,并着重介绍其能级结构。
通过对能级结构的分析,我们将深入探讨四能级系统激光的产生机制和特点。
结论部分将对四能级系统激光的应用前景进行讨论。
我们将探讨该技术在通信、医学、材料科学等领域的潜在应用,并分析四能级系统激光的优势和挑战。
最后,我们将总结本文的主要内容,并展望未来对于四能级系统激光研究的重要方向。
通过以上结构,本文将全面介绍四能级系统激光产生的原理,希望读者能够通过本文的阅读,对该领域有更深入的了解。
1.3 目的本文的目的是探讨四能级系统激光产生的原理。
随着科技的飞速发展,激光技术已经成为许多领域不可或缺的重要工具,如光通信、医疗、材料加工等。
三能级系统的能级结构
三能级系统是指有三个能级的系统,其中能级排列为E1<E2<E3。
其能级结构如下:
- 基态:能级E1是系统的基态,对应于最低的能量状态。
在该能级下,系统处于最稳定的状态。
- 激发态1:能级E2位于E1的上方,系统从基态过渡到该能级需要吸收一定的能量。
在该能级下,系统处于不稳定的状态。
- 激发态2:能级E3位于E2的上方,系统从激发态1过渡到该能级同样需要吸收一定的能量。
在该能级下,系统同样处于不稳定的状态。
三能级系统的能级结构在光谱学和量子光学等领域中有广泛的应用,例如在激光技术中,三能级系统的材料被用作激光器的工作物质,激光的产生就是通过对三能级系统进行激发产生的。
此外,三能级系统还可以用来研究光与物质的相互作用、粒子间的相互作用等问题,具有重要的理论和实际意义。
- 1 -。