并网型风力发电机组的数学模型
- 格式:pdf
- 大小:1.81 MB
- 文档页数:10
风力发电系统建模与仿真摘要:风力发电作为一种清洁的可再生能源利用方式,近年来在世界范围内获得了飞速的发展。
本文基于风力机发电建立模型,主要完成了以下工作:(1)基于风资源特点,建立了以风频、风速模型为基础的风力发电理论基础;(2)运用叶素理论,建立了变桨距风力机机理模型;(3)分析了变速恒频风力发电机的运行区域与变桨距控制的原理与方法,并给出了机组的仿真模型,为风力发电软件仿真奠定了基础;(4)搭建了一套基于PSCAD/EMTDC仿真软件的风力发电系统控制模型以及完整的风力发电样例系统模型,并且已初步实现风力机特性模拟功能。
关键词:风力发电;风频;风速;风力机;变桨距;建模与仿真1 风资源及风力发电的基本原理1.1 风资源概述(1)风能的基本情况[1]风的形成乃是空气流动的结果。
风向和风速是两个描述风的重要参数。
风向是指风吹来的方向,如果风是从东方吹来就称为东风。
风速是表示风移动的速度即单位时间内空气流动所经过的距离。
风速是指某一高度连续10min所测得各瞬时风速的平均值。
一般以草地上空10m高处的10min内风速的平均值为参考。
风玫瑰图是一个给定地点一段时间内的风向分布图。
通过它可以得知当地的主导风向。
风能的特点主要有:能量密度低、不稳定性、分布不均匀、可再生、须在有风地带、无污染、分布广泛、可分散利用、另外不须能源运输、可和其它能源相互转换等。
(2)风能资源的估算风能的大小实际就是气流流过的动能,因此可以推导出气流在单位时间内垂直流过单位截面积的风能,即风能密度,表示如下:3ω= (1-1)5.0vρ式中,ω——风能密度(2W),是描述一个地方风能潜力的最方便最有价值的量;/mρ——空气密度(3kg);/mv ——风速(s m /)。
由于风速是一个随机性很大的量,必须通过一段时间的观测来了解它的平均状况,一个地方风能潜力的多少要视该地常年平均风能密度的大小。
因此需要求出在一段时间内的平均风能密度,这个值可以将风能密度公式对时间积分后平均来求得。
含风力发电机组的配电网潮流计算一、概述随着全球能源结构的转型和可再生能源的大力发展,风电作为一种清洁、可再生的能源形式,其在电力系统中的比重日益增加。
风电场的大规模接入为电力系统带来了新的活力,但同时也带来了诸多挑战。
尤其在配电网层面,风力发电机组的接入使得配电网从一个无源网络转变为有源网络,其潮流特性、电压分布以及网损情况都发生了显著变化。
含风力发电机组的配电网潮流计算,是电力系统分析与控制领域的重要课题。
通过潮流计算,可以准确描述风力发电机组接入后配电网的运行状态,分析其对系统电压稳定性、潮流分布以及网损的影响。
这不仅有助于电力系统的规划与设计,更对于电力系统的安全稳定运行和优化调度具有重要意义。
在含风力发电机组的配电网潮流计算中,风电场的特性建模是关键环节。
由于风速的随机性、间歇性和不可预测性,风电场的出力具有极大的不确定性。
在建模过程中需要充分考虑这些因素,建立准确的风电场出力模型。
配电网的结构特点、负荷分布以及控制策略等也是影响潮流计算的重要因素。
针对含风力发电机组的配电网潮流计算已有多种方法,如前推回代法、牛顿拉夫逊法等。
这些方法各有优缺点,需要根据实际情况进行选择和优化。
随着智能电网和分布式发电技术的不断发展,配电网潮流计算也面临着新的挑战和机遇。
本文旨在深入研究含风力发电机组的配电网潮流计算方法,分析风力发电机组接入对配电网潮流分布的影响,提出相应的优化策略和建议。
通过本文的研究,可以为含风力发电机组的配电网潮流计算提供理论支持和实践指导,有助于推动可再生能源在电力系统中的广泛应用和持续发展。
1. 风力发电机组在配电网中的应用背景随着全球能源结构的转型和可再生能源的大力发展,风力发电作为一种清洁、可再生的能源形式,其在配电网中的应用愈发广泛。
风力发电机组,作为风力发电的核心设备,在配电网中发挥着举足轻重的作用。
环境问题日益严重,化石燃料燃烧导致的碳排放量不断增加,加剧了全球气候变暖的速度。
风电火电抽水蓄能联合优化机组组合模型一、概述随着全球能源结构的转变和可再生能源的大力发展,风电作为一种清洁、可再生的能源形式,在全球范围内得到了广泛的关注和快速的发展。
风电的随机性、间歇性和波动性给电网的稳定运行带来了挑战。
为了克服风电的这些缺点,提高其并网量和稳定性,风电、火电与抽水蓄能电站的联合运行成为了研究的热点。
风电因其发电过程中CO2排放低,近年来在全球范围内得到了大力发展。
风电的不稳定性、不可预测性以及电网接纳风电的能力限制等问题,使得风电的大规模并网变得困难。
为了克服这些问题,研究者们提出了风电与火电、抽水蓄能电站的联合运行方式。
这种方式不仅能够利用抽水蓄能电站的调峰填谷能力,提高电网消纳风电的能力,还能够实现能源的互补和优化配置,提高整个系统的经济效益和环保效益。
本文旨在研究风电、火电与抽水蓄能电站的联合优化机组组合模型。
我们分析了风电的不确定性及其对电网的影响,然后建立了考虑风电不确定性影响及抽蓄水头变化影响的联合优化机组组合模型。
通过该模型,我们可以实现对风电、火电和抽水蓄能电站的协调优化,提高风电的并网量和稳定性,同时降低整个系统的发电成本。
本文的研究对于提高电网运行的安全性和经济性,促进风电的大规模开发和利用具有重要意义。
同时,也为其他间歇式能源的接入和消纳提供了有益的参考和借鉴。
在接下来的章节中,我们将详细介绍风电、火电与抽水蓄能电站的联合优化机组组合模型的建立过程、求解方法以及实际应用效果。
通过具体的算例分析和比较,我们将展示该模型的有效性和优越性,为相关领域的研究和实践提供有力的支持和指导。
1. 介绍风电、火电和抽水蓄能的基本概念及其在能源系统中的作用。
风电,即风力发电,是一种利用风力驱动风力发电机组的可再生能源发电方式。
风力发电以其清洁、可再生的特性,在全球范围内得到了广泛的关注和应用。
风力发电的随机性和波动性是其显著的特点,这使得风电并网需要其他能源发电作为备用服务,以保证电力供给的稳定性。
永磁直驱式变桨距风力发电机组的建模与控制1 引言永磁直驱式风力发电机组是我国风力发电机组的主流机型之一。
永磁风力发电机通过增加极对数,降低发电机转速,从而能够与风力机直接相连,取消了增速齿轮箱。
由于没有传统风力发电系统故障率很高的齿轮箱,直驱式风力发电系统稳定性和效率大大提高,且有效地抑制了噪声,具有比较广泛的市场应用前景。
图1 风力发电系统结构2 永磁直驱式并网型变桨距风力发电机组的结构永磁同步发电机的同步速较低,输出电压较低。
考虑到电网电压较高,电网与电机之间的能量变换装置,必须要有较大幅度的升压能力。
考虑到变压器体积较大,实际系统中,发电机组运送到塔顶成本较高,所以本文采取方法是直流母线侧先升压再进行并网逆变。
本文采用的机组方案如图1所示。
图2 桨距调节控制系统3 风力机的建模风力机建模一般只考虑其风能利用系数而忽略风力机的空气动力学过程。
本文即采用风力机的风能利用系数来建立其仿真模型。
图3 机侧电流内环控制系统风力机仿真模型的建立主要基于以下三个方程:(1)这里Cp-λ曲线采用文献[1]中给出的公式:(2)其中: (3)采用c1=,c2=116,c3=,c4=5,c5=21,c6=。
考虑到是发电机,建模时转矩要取反。
图4 网侧逆变器电流内环控制系统4 控制系统的设计桨距调节控制系统的设计当系统存在显著的不确定因素时,设计高精度的控制系统,必须研究控制系统在不确定情况下的鲁棒性。
PID控制器能够在很宽的运行条件下具有比较好的鲁棒性,并且形式简单,易于操作。
这里采用PID控制器来进行机组在高风速区的桨距调节。
变桨距风力发电系统在低风速区进行最大风能跟踪,节距角为零,即不进行变桨距调节。
图5 网侧逆变器电压外环控制系统风力机和发电机不经过增速齿轮箱而直接联接,传动系统的动态方程如下[4]:(4)式中,J是风轮转动惯量;ω是风轮转动的角速度;B是发电机的摩擦系数;Ta是风轮的气动转矩;Te是发动机获得的电磁转矩。