江苏省徐州市2020届高考物理二轮复习 专题7 电路 电磁感应规律及其应用导学案(无答案)
- 格式:doc
- 大小:1.45 MB
- 文档页数:15
回扣练12:电磁感应规律及其应用1.如图所示,两根相距为l 的平行直导轨ab 、cd ,b 、d 间连有一固定电阻R ,导轨电阻可忽略不计.MN 为放在ab 和cd 上的一导体杆,与ab 垂直,其电阻也为R .整个装置处于匀强磁场中,磁感应强度的大小为B ,磁场方向垂直于导轨所在平面(垂直纸面向里).现对MN 施力使它沿导轨方向以速度v 水平向右做匀速运动.令U 表示MN 两端电压的大小,则( )A .U =12Blv ,流过固定电阻R 的感应电流由b 经R 到dB .U =Blv ,流过固定电阻R 的感应电流由d 经R 到bC .MN 受到的安培力大小F A =B 2l 2v 2R,方向水平向右 D .MN 受到的安培力大小F A =B 2l 2v R,方向水平向左 解析:选A.当MN 运动时,相当于电源.但其两边的电压是外电路的电压,假设导轨没电阻,MN 两端的电压也就是电阻R 两端的电压,电路中电动势为E =BlV ,MN 的电阻相当于电源的内阻,二者加起来为2R ,则电阻上的电压为12Blv ,再由右手定则,拇指指向速度方向,手心被磁场穿过,四指指向即为电流方向,即由N 到M ,那么流过电阻的就是由b 到d .故A 正确,B 错误.MN 受到的安培力F =BIl =B 2l 2v 2R;由左手定则可知,安培力的方向水平向左;故CD 错误.故选A.2.如图所示,两相邻有界匀强磁场的宽度均为L ,磁感应强度大小相等、方向相反,均垂直于纸面.有一边长为L 的正方形闭合线圈向右匀速通过整个磁场.用i 表示线圈中的感应电流,规定逆时针方向为电流正方向,图示线圈所在位置为位移起点,则下列关于i x 的图象中正确的是( )解析:选C.线圈进入磁场,在进入磁场的0~L 的过程中,E =BLv ,电流I =BLv R ,根据右手定则判断方向为逆时针方向,为正方向;在L ~2L 的过程中,电动势E =2BLv ,电流I =2BLv R,根据右手定则判断方向为顺时针方向,为负方向;在2L ~3L 的过程中,E =BLv ,电流I =BLv R,根据右手定则判断方向为逆时针方向,为正方向;故ABD 错误,C 正确;故选C.3.如图所示,表面粗糙的U 形金属线框水平固定,其上横放一根阻值为R 的金属棒ab ,金属棒与线框接触良好,一通电螺线管竖直放置在线框与金属棒组成的回路中,下列说法正确的是( )A .当变阻器滑片P 向上滑动时,螺线管内部的磁通量增大B .当变阻器滑片P 向下滑动时,金属棒所受摩擦力方向向右C .当变阻器滑片P 向上滑动时,流过金属棒的电流方向由a 到bD .当变阻器滑片P 向下滑动时,流过金属棒的电流方向由a 到b解析:选C.根据右手螺旋定则可知螺线管下端为N 极,而穿过回路的磁通量分为两部分,一部分为螺线管内部磁场,方向竖直向下,一部分为螺线管外部磁场,方向竖直向上,而总的磁通量方向为竖直向下,当变阻器滑片P 向上滑动时,滑动变阻器连入电路的电阻增大,螺线管中电流减小,产生的磁场变弱,即穿过回路的磁通量向下减小,根据楞次定律可得流过金属棒的电流方向由a 到b ,A 错误C 正确;当变阻器滑片P 向下滑动时,滑动变阻器连入电路的电阻减小,螺线管中电流变大,产生的磁场变强,即穿过回路的磁通量向下增大,根据楞次定律可得流过金属棒的电流方向由b 到a ,而导体棒所处磁场方向为竖直向上的,金属棒所受安培力方向向右,故摩擦力方向向左,故BD 错误.故选C.4.如图所示,处于竖直面的长方形导线框MNPQ 边长分别为L和2L ,M 、N 间连接两块水平正对放置的金属板,金属板距离为d ,虚线为线框中轴线,虚线右侧有垂直线框平面向里的匀强磁场.两板间有一个质量为m 、电量为q 的带正电油滴恰好处于平衡状态,重力加速度为g ,则下列关于磁场磁感应强度大小B 的变化情况及其变化率的说法正确的是( )A .正在增强,ΔB Δt =mgd qL 2 B .正在减小,ΔB Δt =mgd qL 2C .正在增强,ΔB Δt =mgd 2qL 2D .正在减小,ΔB Δt =mgd 2qL2 解析:选B.电荷量为q 的带正电的油滴恰好处于静止状态,电场力竖直向上,则电容器的下极板带正电,所以线框下端相当于电源的正极,感应电动势顺时针方向,感应电流的磁场方向和原磁场同向,根据楞次定律,可得穿过线框的磁通量在均匀减小;线框产生的感应电动势:E =ΔB Δt S =ΔB Δt L 2;油滴所受电场力:F =E 场q ,对油滴,根据平衡条件得:q E d=mg ;所以解得,线圈中的磁通量变化率的大小为:ΔB Δt =mgd qL2;故选B. 5.如图所示,相距为d 的两条水平虚线L 1、L 2之间是方向水平向里的匀强磁场,磁感应强度为B ,正方形线圈abcd 边长为L (L <d ),质量为m 、电阻为R ,将线圈在磁场上方h 高处静止释放,cd 边刚进入磁场时速度为v 0,cd 边刚离开磁场时速度也为v 0,则线圈穿过磁场的过程中(从cd 边刚进入磁场一直到ab 边离开磁场为止)( )A .感应电流所做的功为3mgdB .线圈的最小速度一定大于mgR B 2L 2C .线圈的最小速度一定是2g (h +L -d )D .线圈穿出磁场的过程中,感应电流为逆时针方向解析:选C.据能量守恒,研究从cd 边刚进入磁场到cd 边刚穿出磁场的过程:动能变化量为0,重力势能转化为线框进入磁场的过程中产生的热量,Q =mgd .cd 边刚进入磁场时速度为v 0,cd 边刚离开磁场时速度也为v 0,所以从cd 边刚穿出磁场到ab 边离开磁场的过程,线框产生的热量与从cd 边刚进入磁场到ab 边刚进入磁场的过程产生的热量相等,所以线圈从cd 边进入磁场到ab 边离开磁场的过程,产生的热量Q ′=2mgd ,感应电流做的功为2mgd ,故A 错误.线框可能进入磁场先做减速运动,在完全进入磁场前已做匀速运动,刚完全进入磁场时的速度最小,有:mg =B 2L 2v R ,解得可能的最小速度v =mgR B 2L2,故B 错误.因为进磁场时要减速,线圈全部进入磁场后做匀加速运动,则知线圈刚全部进入磁场的瞬间速度最小,线圈从开始下落到线圈刚完全进入磁场的过程,根据能量守恒定律得:mg (h +L )=Q+12mv 2,解得最小速度v =2g (h +L -d ),故C 正确.线圈穿出磁场的过程,由楞次定律知,感应电流的方向为顺时针,故D 错误.故选C.6.如图所示的电路中,三个相同的灯泡a 、b 、c 和电感L 1、L 2与直流电源连接,电感的电阻忽略不计.电键S 从闭合状态突然断开时,下列判断正确的( )A .a 先变亮,然后逐渐变暗B .b 先变亮,然后逐渐变暗C .c 先变亮,然后逐渐变暗D .b 、c 都先变亮,然后逐渐变暗解析:选A.电键S 闭合时,电感L 1中电流等于两倍L 2的电流,断开电键S 的瞬间,由于自感作用,两个电感线圈相当于两个电源,与三个灯泡构成闭合回路,通过b 、c 的电流都通过a ,故a 先变亮,然后逐渐变暗,故A 正确; b 、c 灯泡由电流i 逐渐减小,B 、C 、D 错误 .故选A.7.(多选)如图甲所示,宽度为L 的足够长的光滑平行金属导轨固定在水平面上,导轨左端连接一电容为C 的电容器,将一质量为m 的导体棒与导轨垂直放置,导轨间存在垂直导轨平面向下的匀强磁场,磁感应强度为B .用与导轨平行的外力F 向右拉动导体棒,使导体棒由静止开始运动,作用时间t 1后撤去力F ,撤去力F 前棒内电流变化情况如图乙所示.整个过程中电容器未被击穿,不计空气阻力.下列说法正确的是 ( )A .有外力作用时,导体棒在导轨上做匀速运动B .有外力作用时,导体棒在导轨上做匀加速直线运动C .外力F 的冲量大小为It 1⎝ ⎛⎭⎪⎫BL +m CBL D .撤去外力F 后,导体棒最终静止在导轨上,电容器中最终储存的电能为零解析:选BC.对电容器Q =CU ,则ΔQ =C ΔU ,I =ΔQ Δt ;ΔU =ΔE =BL Δv ;解得I =CBL Δv Δt=CBLa ,则导体棒的加速度a 恒定,做匀加速运动,选项A 错误,B 正确;根据牛顿第二定律:F -BIL =ma ,则F =BIL +mI CBL ,则外力F 的冲量大小为I F =Ft 1=It 1⎝⎛⎭⎪⎫BL +m CBL ,选项C 正确;撤去外力F 后,导体棒开始时做减速运动,当导体棒产生的感应电动势与电容器两端电压相等时,回路中电流为零,此时安培力为零,导体棒做匀速运动,此时电容器两端的电压不为零,则最终储存的电能不为零,选项D 错误;故选BC.8.(多选)如图所示,在竖直平面内MN 、PQ 两光滑金属轨道平行竖直放置,两导轨上端M 、P 间连接一电阻R .金属小环a 、b 套在金属轨道上,质量为m 的金属杆固定在金属环上,该装置处在匀强磁场中,磁场方向垂直竖直平面向里.金属杆以初速度v 0从图示位置向上滑行,滑行至最高点后又返回到出发点.若运动过程中,金属杆保持水平,两环与导轨接触良好,不计轨道、金属杆、金属环的电阻及空气阻力.金属杆上滑过程和下滑过程相比较,以下说法正确的是( )A .上滑过程所用时间比下滑过程短B .上滑过程通过电阻R 的电量比下滑过程多C .上滑过程通过电阻R 产生的热量比下滑过程大D .上滑过程安培力的冲量比下滑过程安培力的冲量大解析:选AC. 如图所示,v t 图斜率代表加速度,其面积表示位移,上滑过程中,做加速度逐渐减小的减速运动,下滑过程中是加速度逐渐减小的加速运动,由于位移大小相等,可知上升时间小于下落时间,故A 正确;由q =ΔΦR,可知上滑过程通过电阻R 的电量等于下滑过程中电量,故B 错误;在相同位置,上滑时的速度大于下滑时的速度,则上滑过程安培力的平均值大于下滑过程安培力的平均值,导致上滑过程中导体棒克服安培力做功多,则上滑过程中电阻R 产生的热量大于下滑过程中产生的热量,故C 正确.安培力冲量I =BLq ,q =ΔΦR,可知上滑过程安培力的冲量等于下滑过程安培力的冲量,故D 错误.9.(多选)如图所示,两根足够长的光滑平行金属导轨MN 、PQ 相距为L ,导轨平面与水平面的夹角θ=30°,导轨电阻不计,整个装置处于磁感应强度大小为B 、方向垂直导轨平面向上的匀强磁场中.质量为m 、长为L 、电阻为R 的金属棒垂直导轨放置,且始终与导轨接触良好.金属导轨的上端连接一个阻值也为R 的定值电阻.现闭合开关K ,给金属棒施加一个平行于导轨斜向上、大小为F =2mg 的恒力,使金属棒由静止开始运动.若金属棒上滑距离s 时,金属棒开始匀速运动,则在金属棒由静止到刚开始匀速运动过程,下列说法中正确的是(重力加速度为g )( )A .金属棒的末速度为3mgRB 2L 2 B .金属棒的最大加速度为1.4gC .通过金属棒的电荷量为BLs RD .定值电阻上产生的焦耳热为34mgs -9m 3g 2R 24B 4L4 解析:选AD.设金属棒匀速运动的速度为v ,则感应电动势E =BLv ;回路电流I =E 2R =BLv2R ;安培力F 安=BIL =B 2L 2v 2R ;金属棒匀速时,受力平衡有F =mg sin 30°+F 安,即2mg =12mg +B 2L 2v 2R联立解得:v =3mgR B 2L2,故A 正确;金属棒开始运动时,加速度最大,即F -mg sin 30°=ma ,代入数据2mg -12mg =ma ,解得a =1.5g ,故B 错误;根据感应电量公式Q =ΔΦR 总=BLs 2R,故C 错误;对金属棒运用动能定理,有Fs -mgs sin 30°-Q =12mv 2,其中定值电阻上产生的焦耳热为Q R =12Q =34mgs -9m 3g 2R 24B 4L4,故D 正确;故选AD. 10.(多选)如图甲所示,光滑且足够长的金属导轨MN 、PQ 平行地固定在同一水平面上,两导轨间距L =0.2 m ,两导轨的左端之间连接的电阻R =0.4 Ω,导轨上停放一质量m =0.1 kg 的金属杆ab ,位于两导轨之间的金属杆的电阻r =0.1 Ω,导轨的电阻可忽略不计.整个装置处于磁感应强度B =0.5 T 的匀强磁场中,磁场方向竖直向下.现用一外力F 水平向右拉金属杆,使之由静止开始运动,在整个运动过程中金属杆始终与导轨垂直并接触良好,若理想电压表的示数U 随时间t 变化的关系如图乙所示.则在金属杆开始运动经t = 5.0 s 时( )A .通过金属杆的感应电流的大小为1.0 A ,方向由b 指向aB .金属杆的速率为4.0 m/sC .外力F 的瞬时功率为1.0 WD .0~5.0 s 内通过R 的电荷量为5.0 C解析:选AC.导体棒向右切割磁感线,由右手定则知电流方向为b 指向a ,金属杆开始运动经t =5.0 s ,由图象可知电压为0.4 V ,根据闭合电路欧姆定律得I =U R =0.40.4 A =1 A ,故A 正确;根据法拉第电磁感应定律知E =BLv ,根据电路结构可知:U =R R +r E ,解得v =5 m/s ,故B 错误;根据电路知U =R R +r BLv =0.08v =0.08at ,结合U t 图象知导体棒做匀加速运动,加速度为a =1 m/s 2,根据牛顿第二定律,在5 s 末时对金属杆有:F -BIL =ma 解得:F =0.2 N ,此时F 的瞬时功率P =Fv =0.2×5 W=1 W 故C 正确;0~5.0 s 内通过R 的电荷量为q =It =E R +r t =ΔΦt (R +r )×t =ΔΦR +r =B ×12at 2R +r =12.5 C ,故D 错误;综上所述本题答案是AC.。
专题七电场挖命题【考情探究】分析解读电场强度的计算最多只考虑两个电场的叠加;带电粒子在匀强电场中的运动计算限于带电粒子进入电场时速度平行或垂直于场强的情况。
本专题虽然是电学知识,但大部分试题是从力学的本质去分析解决,本专题内容是高考的重点。
以选择题形式结合各种“美丽”的电场图考查电场的叠加、带电粒子在电场中运动的动力学及功能分析是高频考点;E-x、φ-x图像的分析多年考到。
带电粒子在匀强电场中的运动经常以计算题形式考查,往往结合洛仑兹力一起考查。
在复习时应重视对基本概念规律的理解;注重知识的应用,加强本专题知识与其他物理知识的综合应用;掌握处理较为复杂的物理问题的方法,如类比、等效、建立模型等。
【真题典例】破考点【考点集训】考点一电场力的性质1.(2017江苏淮阴中学月考,1)如图所示的电场中,虚线为某带电粒子只在电场力作用下的运动轨迹,a、b、c 是轨迹上的三个点,则( )A.粒子可能带负电B.粒子一定是从a点运动到b点C.粒子在c点的加速度可能小于在b点的加速度D.粒子在电场中c点的电势能一定大于在b点的电势能答案D2.(2018江苏无锡期末,3)真空中两个等量异种电荷(电荷量均为q)连线的中点处电场强度为E,则两个电荷之间的库仑力大小是( )A. B. C. D.qE答案A3.(2018江苏常州摸底,5)如图所示,光滑绝缘细杆与水平面成θ角固定,杆上套有一带正电小球,质量为m,带电荷量为q,为使小球静止在杆上,可加一匀强电场,所加电场的场强满足什么条件时,小球可在杆上保持静止( )A.垂直于杆斜向上,场强大小为B.竖直向上,场强大小为C.垂直于杆斜向上,场强大小为D.水平向右,场强大小为答案B4.(2017江苏如东中学联考,13)如图所示,在倾角为θ=30°足够长的光滑绝缘斜面的底端A点固定一电荷量为Q的正点电荷,在与A距离为s0的C处由静止释放某带正电荷的小物块P(可看做点电荷),已知小物块P 释放瞬间的加速度大小恰好为重力加速度g。
2022年高考物理二轮复习经典试题电磁感应规律及其应用一、选择题(本题共8小题,每小题8分,共64分,其中第2、3、4、5、7、8小题为多选题.)1.[2021·湖北七市联考]奥斯特发觉了电流的磁效应,揭示了电现象和磁现象之间存在着某种联系,法拉第发觉了电磁感应定律,使人们对电和磁内在联系的生疏更加完善.关于电磁感应,下列说法中正确的是()A. 运动的磁铁能够使四周静止的线圈中产生电流B. 静止导线中的恒定电流可以使四周静止的线圈中产生电流C. 静止的磁铁不行以使四周运动的线圈中产生电流D. 运动导线上的恒定电流不行以使四周静止的线圈中产生电流解析:依据感应电流产生条件,运动的磁铁能够使四周静止的闭合线圈中产生电流,选项A正确.静止导线中的恒定电流不行以使四周静止的线圈中产生电流,选项B错误.静止的磁铁可以使四周运动的闭合线圈中产生电流,选项C错误.运动导线上的恒定电流可以使四周静止的闭合线圈中产生电流,选项D错误.答案:A2.[2021·武汉调研]如图是生产中常用的一种延时继电器的示意图,铁芯上有两个线圈A和B,线圈A跟电源连接,线圈B的两端接在一起,构成一个闭合回路.下列说法正确的是()A. 闭合开关S时,B中产生图示方向的感应电流B. 闭合开关S时,B中产生与图示方向相反的感应电流C. 断开开关S时,电磁铁会连续吸住衔铁D一小段时间D. 断开开关S时,弹簧K马上将衔铁D拉起解析:闭合开关S时,线圈B的磁通量增大,由楞次定律知,线圈B中产生与图示方向相反的感应电流,选项A错误,B正确;断开开关S时,线圈B中的磁通量减小,线圈B产生感应电流,感应电流的磁场连续吸引衔铁D一小段时间,选项C正确,D错误.答案:BC3.如图,水平的平行虚线间距为d=60 cm,其间有沿水平方向的匀强磁场.一个阻值为R的正方形金属线圈边长l<d,线圈质量m=100 g.线圈在磁场上方某一高度处由静止释放,保持线圈平面与磁场方向垂直,其下边缘刚进入磁场和刚穿出磁场时的速度相等.不计空气阻力,取g =10 m/s 2.则( )A. 线圈下边缘刚进磁场时加速度最小B. 线圈进入磁场过程中产生的电热为0.6 JC. 线圈在进入磁场和穿出磁场的过程中,电流均为逆时针方向D. 线圈在进入磁场和穿出磁场的过程中,通过导线截面的电荷量相等 解析:由于线圈下边缘刚进入磁场和刚穿出磁场时的速度相等,且线圈全部在磁场中运动时有一段加速阶段,则可推断出线圈下边缘刚进入磁场时安培力大于重力,线圈做减速运动,加速度渐渐减小,选项A 错误;线圈进入磁场过程中,由能量守恒定律得Q =ΔE p =mgd =0.1×10×0.6 J =0.6 J ,选项B 正确;线圈进入磁场过程中电流为逆时针方向,线圈离开磁场过程中,电流为顺时针方向,选项C 错误;线圈进入磁场和穿出磁场过程中,通过导线截面的电荷量均为q =Bl 2R ,选项D 正确.答案:BD4.上海磁悬浮列车于2003年10月1日正式运营.如图所示为其磁悬浮原理,B 是用高温超导材料制成的超导圆环,A 是圆柱形磁铁,将超导圆环B 水平放在磁铁A 上,它就能在磁场力作用下悬浮在磁铁A 的上方空中.以下推断正确的是( )A. 在B 放入磁场的过程中,B 中将产生感应电流,当稳定后,感应电流消逝B. 在B 放入磁场的过程中,B 中将产生感应电流,当稳定后,感应电流仍存在C. 在B 放入磁场的过程中,如B 中感应电流方向如图所示,则A 的N 极朝上D. 在B 放入磁场的过程中,如B 中感应电流方向如图所示,则A 的S 极朝上解析:当B 环靠近A 时,穿过B 环中的磁通量增大,在该环中会产生感应电流.由于超导体(电阻率为零)没有电阻,所以B 环中的电流不会变小,永久存在,故选项A 错、B 对;由安培定则可推断出B 环的下面是N 极,因此A 的N 极朝上,故选项C 对、D 错.答案:BC5.如图所示,正方形匀强磁场区域内,有一个正方形导线框abcd ,导线粗细均匀,导线框平面与磁感线垂直,导线框各边分别与磁场边界平行.第一次将导线框垂直磁场边界以速度v 匀速拉出磁场,其次次朝另一个方向垂直磁场边界以速度3v 匀速拉出磁场,则将导线框两次拉出磁场的过程中( )A. 导线框中产生的感应电流方向相同B. 导线框中产生的焦耳热相同C. 导线框ad 边两端电势差相同D. 通过导线横截面的电量相同。
专题7 感应电荷量的应用1.安培力的冲量大小感应电流通过直导线时,直导线在磁场中要受到安培力的作用,当导线与磁场垂直时,安培力的大小为F=BIL。
方法1 微元法由于感应电流通常变化,所以安培力为变力,求时间t内安培力的冲量必须用微元法,在极短时间∆t内认为安培力为定值,则安培力冲量大小为I i=BI i L∆t = BLq i,求和可得全过程安培力冲量大小为I = BL∆q,其中∆q为此过程流过导体棒任意截面的电荷量。
方法2 平均电流法设此过程电流对时间的平均值为I,则∆q=It,所以安培力冲量通用表达式为:BILt BL q=∆,即感应电荷量与时间和安培力的冲量相联系。
2.感应电荷量在前面利用平均感应电流I=ER与和平均感应电动势E nt∆Φ=解得感应电荷量q=I t = nR∆Φ。
如果是由于导体棒切割产生的感应电荷量,则B S BLxq n nR R∆==,其中x为导体棒运动的距离,即感应电荷量与空间距离相联系。
3.感应电荷量的时空联系感应电荷量连接空间距离和安培力的冲量,因此在非匀变速运动中,如果题目求导体棒的位移,通常用感应电荷量和动量定理求解。
在分析电磁感应问题中,往往求解物体的初速度v0、末速度v、时间t、位移x、电荷量q 这5个物理量的时候,通常采用安培力的冲量,按此模型处理方法进行处理。
4.实例分析以2022年6月浙江选考19题第3问为例,如图1所示,用于推动模型飞机的动子(图中未画出)与线圈绝缘并固定,线圈带动动子,可在水平导轨上无摩擦滑动。
线圈位于导轨间的辐向磁场中,其所在处的磁感应强度大小均为B 。
开关S 与1接通,恒流源与线圈连接,动子从静止开始推动飞机加速,飞机达到起飞速度时与动子脱离;此时S 掷向2接通定值电阻R 0,同时施加回撤力F ,在F 和磁场力作用下,动子恰好返回初始位置停下。
若动子从静止开始至返回过程的v -t 图如图2所示,在t 1至t 3时间内F =(800-10v )N ,加速度不变恒为a =160m/s 2,t 3时撤去F 。
电磁感应规律及其应用(45分钟100分)一、选择题(本大题共7小题,每小题9分,共63分。
多选题已在题号后标出)1. 朝南的钢窗原来关着,今将它突然朝外推开,转过一个小于90°的角度,考虑到地球磁场的影响,则钢窗活动的一条边中(西边)()A. 有自下而上的微弱电流B. 有自上而下的微弱电流C. 有微弱电流,方向是先自上而下,后自下而上D. 有微弱电流,方向是先自下而上,后自上而下2. (多选)(2020 •资阳二模)如图所示,水平面内两根光滑的平行金属导轨,左端与电阻R相连接,匀强磁场B竖直向下分布在R导轨所在的空间内,一定质量的金属棒垂直于导轨并与导轨接触良好。
若对金属棒施加一个水平向右的外力F,使金属棒从a位置由静止开始向右做匀加速运动并依次通过位置b和c。
若导轨与金属棒的电阻不计,a到b与b到c的距离相等,则下列关于金属棒在运动过程中的说法正确的是()A. 在从a到b与从b到c的两个过程中,通过电阻R的电量之比为1 : 1B. 在从a到b与从b到c的两个过程中,电阻R上产生的热量之比为1 : 1C. 金属棒通过b、c两位置时,电阻R消耗的功率之比为1 : 2D. 金属棒通过b、c两位置时,外力F做功的功率之比为1 : 23. (2020 •绵阳二模)矩形导线框abcd放在匀强磁场中,磁感线方向与线圈平面垂直磁感应强度B随时间变化的图像如图所示,t=0时刻磁感应强度的方向垂直纸面向里。
若规定导线框中感应电流逆时针方向为正,则在0〜4s时间内线框中的感应电流I以及线框的ab边所受安培力F随时间变化的图像为图中的(安培力取向上为正方向)()4.(多选)如图所示的电路中,两根光滑金属导轨平行放置在倾 角为B 的斜面上,导轨下端接有电阻 R,导轨电阻不计,斜面处在竖直向上的磁感应强度为 B 的匀强磁场中,电阻可略去不计 的金属棒ab 质量为m,受到沿斜面向上且与金属棒垂直的恒力F 的作用,金属棒沿导轨匀速下滑,则它在下滑h 高度的过程中,以下说法正确的是 ( )A. 作用在金属棒上各力的合力做功为零B. 重力做功将机械能转化为电能C. 重力与恒力F 做功的代数和等于电阻R 上产生的焦耳热D. 金属棒克服安培力做的功等于重力与恒力 F 做的总功与电阻R 上产生的焦耳热之 和 5.(2020 •烟台一模)如图甲所示,匀强磁场垂直纸面向里,磁感应强 度的大小为B,磁场在y 轴方向足够宽,在x 轴方向宽度为a 。
电磁感应是电磁学中最为重要的内容,也是高考命题频率最高的内容之一。
题型多为选择题、计算题。
主要考查电磁感应、楞次定律、法拉第电磁感应定律、自感等知识。
本部分知识多结合电学、力学部分出压轴题,其命题形式主要是电磁感应与电路规律的综合应用、电磁感应与力学规律的综合应用、电磁感应与能量守恒的综合应用。
复习中要熟练掌握感应电流的产生条件、感应电流方向的判断、感应电动势的计算,还要掌握本部分内容与力学、能量的综合问题的分析求解方法。
预测2015年的高考基础试题重点考查法拉第电磁感应定律及楞次定律和电路等效问题.综合试题还是涉及到力和运动、动量守恒、能量守恒、电路分析、安培力等力学和电学知识.主要的类型有滑轨类问题、线圈穿越有界磁场的问题、电磁感应图象的问题等.此除日光灯原理、磁悬浮原理、电磁阻尼、超导技术这些在实际中有广泛的应用问题也要引起重视。
一、法拉第电磁感应定律法拉第电磁感应定律的内容是感应电动势的大小与穿过回路的磁通量的变化率成正比.在具体问题的分析中,针对不同形式的电磁感应过程,法拉第电磁感应定律也相应有不同的表达式或计算式.二、楞次定律与左手定则、右手定则1.左手定则与右手定则的区别:判断感应电流用右手定则,判断受力用左手定则.2.应用楞次定律的关键是区分两个磁场:引起感应电流的磁场和感应电流产生的磁场.感应电流产生的磁场总是阻碍引起感应电流的磁场的磁通量的变化,“阻碍”的结果是延缓了磁通量的变化,同时伴随着能量的转化.3.楞次定律中“阻碍”的表现形式:阻碍磁通量的变化(增反减同),阻碍相对运动(来拒去留),阻碍线圈面积变化(增缩减扩),阻碍本身电流的变化(自感现象).三、电磁感应与电路的综合电磁感应与电路的综合是高考的一个热点内容,两者的核心内容与联系主线如图4-12-1所示:1.产生电磁感应现象的电路通常是一个闭合电路,产生电动势的那一部分电路相当于电源,产生的感应电动势就是电源的电动势,在“电源”内部电流的流向是从“电源”的负极流向正极,该部分电路两端的电压即路端电压,U=RR+r E.2.在电磁感应现象中,电路产生的电功率等于内外电路消耗的功率之和.若为纯电阻电路,则产生的电能将全部转化为内能;若为非纯电阻电路,则产生的电能除了一部分转化为内能,还有一部分能量转化为其他能,但整个过程能量守恒.能量转化与守恒往往是电磁感应与电路问题的命题主线,抓住这条主线也就是抓住了解题的关键.在闭合电路的部分导体切割磁感线产生感应电流的问题中,机械能转化为电能,导体棒克服安培力做的功等于电路中产生的电能.说明:求解部分导体切割磁感线产生的感应电动势时,要区别平均电动势和瞬时电动势,切割磁感线的等效长度等于导线两端点的连线在运动方向上的投影.高频考点一对楞次定律和电磁感应图像问题的考查例1、(2018年全国II卷)如图,在同一平面内有两根平行长导轨,导轨间存在依次相邻的矩形匀强磁场区域,区域宽度均为l,磁感应强度大小相等、方向交替向上向下。
2020年高考物理二轮精准备考复习讲义第四部分电磁感应与电路第13讲电磁感应规律及其应用目录一、理清单,记住干 (1)二、研高考,探考情 (2)三、考情揭秘 (5)四、定考点,定题型 (5)超重点突破1楞次定律和法拉第电磁感应定律的应用 (5)超重点突破2电磁感应中的图象问题 (7)超重点突破3电磁感应中的电路与动力学问题 (8)超重点突破4电磁感应中的能量问题 (10)五、固成果,提能力 (11)一、理清单,记住干1.电磁问题方向判断“三定则、一定律”的应用(1)安培定则:判断运动电荷、电流产生的磁场方向。
(2)左手定则:判断磁场对运动电荷、电流的作用力的方向。
(3)楞次定律:判断闭合电路磁通量发生变化产生的感应电流的磁场方向。
(4)右手定则:判断闭合电路中部分导体切割磁感线产生的感应电流的方向。
2.楞次定律推论的应用技巧(1)“增反减同”;(2)“来拒去留”;(3)“增缩减扩”。
3.四种求电动势的方法(1)平均电动势E=nΔΦΔt。
(2)垂直切割E=BLv。
Bl2ω。
(3)导体棒绕与磁场平行的轴匀速转动E=12(4)线圈绕与磁场垂直的轴匀速转动e=nBSωsinωt。
4.感应电荷量的两种求法(1)当回路中的磁通量发生变化时,由于感应电场的作用使电荷发生定向移动而形成感应电流。
通过的电荷量表达式为q=IΔt=nΔΦΔtR总·Δt=nΔΦR总。
(2)导体切割磁感线运动通过的电荷量q满足的关系式:-B I lΔt=-Blq=mΔv。
5.解决电磁感应图象问题的两种常用方法(1)排除法:定性地分析电磁感应过程中物理量的变化趋势(增大还是减小)、变化快慢(均匀变化还是非均匀变化),特别是分析物理量的正负以及是否过某些特殊点,以排除错误的选项。
(2)函数法:根据题目所给条件定量地写出两个物理量之间的函数关系,然后由函数关系对图象进行分析和判断。
6.三步解决电磁感应中电路问题(1)确定电源:E=nΔΦΔt或E=Blv。
(专题7 电路电磁感应规律及其应用)1.关于传感器,下列说法正确的是( )A.话筒是一种常用的声传感器,其作用是将电信号转换为声信号B.电熨斗能够自动控制温度的原因是它装有双金属片温度传感器,这种传感器的作用是控制电路的通断C.霍尔元件能把磁感应强度这个磁学量转换成这个电阻电学量D.光敏电阻在光照射下其电阻会显著变大2. 如图所示,在长载流直导线近旁固定有两平行光滑导轨 A、B,导轨与直导线平行且在同一水平面内,在导轨上有两根可自由滑动的导体棒 ab 和 cd。
当载流直导线中的电流逐渐减弱时,导体棒ab 和cd 的运动情况是( )A.一起向左运动B.一起向右运动C.相向运动,相互靠近D.相背运动,相互远离3.如图所示,面积为 S、匝数为N、电阻为r 的线圈与阻值为 R 的电阻构成闭合回路,理想交流电压表并联在电阻 R 的两端。
线圈在磁感应强度为 B 的匀强磁场中,绕垂直于磁场的转动轴以角速度ω匀速转动。
设线圈转动到图示位置的时刻t=0,则( )A.在 t=0 时刻,穿过线圈的磁通量达到最大,流过电阻 R 的电流为零,电压表的读数也为零ωB.1 秒钟内流过电阻R 的电流方向改变次ππ C.经的时间,通过电阻 R2ω 4(R +r )D.在电阻 R 的两端再并联一只电容较大的电容器后,电压表的读数不变 4.(多选)如图所示的电路中,电感L 的自感系数很大,电阻可忽略,D 为理想二 极管,则下列说法正确的有( )A.当 S 闭合时,L 1 立即变亮,L 2 逐渐变亮 B .当 S 闭合时,L 1 一直不亮,L 2 逐渐变亮 C .当 S 断开时,L 2 立即熄灭D.当 S 断开时,L 1 突然变亮,然后逐渐变暗至熄灭5.在如图所示的电路中,E 为电源,电源内阻为 r ,L 为小灯泡(其灯丝电阻可视 为不变),为理想电压表,R 1、R 2 为定值电阻,R3 为滑动变阻器,将滑动变阻 器的滑片向上移动,则( )A.电压表的示数变大B.小灯泡消耗的功率变小 C .通过 R 2 的电流变小 D.电源的内耗电压变大6.(多选)如图所示,A 为巨磁电阻,当它周围的磁场增强时,其阻值增大,C 为 电容器。
当有磁铁靠近 A 时,下列说法正确的有( )A.电流表的示数减小B.电容器C 的电荷量增大C.电压表的示数变小D.电源内部消耗的功率变大7.如图所示,矩形线圈abcd 在磁感应强度大小为B=216πT 的匀强磁场中绕垂直于磁场的 dc 边以角速度ω=100π rad/s 匀速转动。
线圈的匝数 N=100,边长ad=0.4 m,ab=0.2 m。
理想变压器原、副线圈的匝数比是2∶1,一只理想二极管和一个阻值为25 Ω的定值电阻 R 串联在副线圈电路中,已知电压表和电流表均为理想交流电表,线圈和导线的电阻不计,则下列说法正确的是( )A.该矩形线圈产生的电动势的最大值为 50 VB.电压表的示数为50 VC.1 min 内电阻R 上产生的热量为 750J D.减小电阻R 的值,电流表示数变小8.如图所示为远距离输电的示意图,升压变压器和降压变压器均为理想变压器,发电厂的输出电压和输电线的电阻均不变。
闭合开关S 后()A.升压变压器的输出电压增大B.降压变压器的输出电流减小C.输电线上损耗的功率增大D.输电线上交流电的频率减小9.一个圆形线圈,共有n=10 匝,其总电阻 r=4.0 Ω。
线圈与阻值 R0=16 Ω的外电阻连成闭合回路,如图甲所示。
线圈内部存在着一个边长 l=0.20 m 的正方形区域,其中有分布均匀但强弱随时间变化的磁场,图乙显示了一个周期内磁场的变化情况,周期T=1.010-2s,磁场方向以垂直线圈平面向外为正方向.求:1T 时刻,电阻R0 上的电流大小和方向;(1)t=81(2)0T 时间内,流过电阻R0 的电荷量;~2(3)一个周期内电阻R0 的发热量。
10.如图甲所示,质量m=1 kg,边长 ab =1.0 m,电阻r=2 Ω单匝正方形闭合线圈 abdc 放置在倾角θ=30°的斜面上,保持静止状态。
匀强磁场垂直线圈平面向上,磁感应强度B 随时间t 变化如图乙所示,整个线圈都处在磁场中,重力加速度g=10 m/s2。
求:(1)t=1 s 时穿过线圈的磁通量;(2)第 4 s 内线圈中产生的焦耳热;(3)t=3.5 s 时,线圈受到的摩擦力。
11.如图所示,光滑的金属导轨间距为L,导轨平面与水平面成α角,导轨下端接有阻值为R 的电阻。
质量为m 的金属细杆ab 与绝缘轻质弹簧相连静止在导轨上,弹簧劲度系数为k,上端固定,弹簧与导轨平面平行,整个装置处在垂直于导轨平面斜向上的匀强磁场中,磁感应强度为B。
现给杆一沿导轨向下的初速度v0,杆向下运动至速度为零后,再沿导轨平面向上运动达到最大速度v1,然后减速为零,再沿导轨平面向下运动,一直往复运动到静止(金属细杆的电阻为 r,导轨电阻忽略不计)。
试求(1)细杆获得初速度的瞬间,通过R 的电流大小;(2)当杆速度为v1 时,离最初静止位置的距离L1;(3)杆由v0 开始运动直到最后静止,电阻R 上产生的焦耳热Q。
12.如图所示,MN、PQ 为光滑平行的水平金属导轨,电阻 R=3.0 Ω,置于竖直向下的有界匀强磁场中,OO′为磁场边界,磁场磁感应强度 B=1.0 T,导轨间距 L=1.0 m,质量 m=1.0 kg 的导体棒垂直置于导轨上且与导轨接触良好,导体棒接入电路的电阻为r=1.0 Ω。
t=0 时刻,导体棒在F=1.0 N 水平拉力作用下从OO′左侧某处由静止开始以加速度a0=1.0 m/s2 做匀加速运动, t0=2.0 s 时刻棒进入磁场继续运动,导体棒始终与导轨垂直。
(1)求t0 时刻回路的电功率P0;(2)求 t0 时刻导体棒的加速度 a 的大小;(3)导体棒进入磁场后,改变拉力大小,使棒以(2)情况下的加速度a 匀加速运动至t1=4.0 s 时刻,已知t0~t1 时间内拉力做功W=5.7 J,求此过程中回路中产生的焦耳热Q。
13.自从英国物理学家狄拉克提出磁单极子以来,寻找磁单极子一直是人类的一个追求。
如图设想一个磁单极子从远处沿一个闭合金属线圈的轴线匀速通过,设从右向左观察顺时针方向电流为正,则和该线圈串联的仪表中记录到的线圈中感生电流的i-t 图象是( )14.如图所示为一交流发电机的原理示意图,其中矩形线圈abcd 的边长ab=cd =L1,b c=ad=L2,匝数为n,线圈的总电阻为r,线圈在磁感应强度为B 的匀强磁场中绕垂直于磁场的转轴OO′匀速转动,角速度为ω,线圈两端通过电刷E、 F 与阻值为R 的定值电阻连接。
从线圈经过中性面开始计时,则( )A.线圈中感应电动势的最大值为 B ωL 1L 2B.线圈中感应电动势随时间变化的函数表达式为 e =nB ωL 1L 2cos ωtC.经过14周期时间通过电阻 R 的电荷量为12BL L R r+ D.此发电机在上述工作状态下的输出功率为22221222()n B L L RR r +15.如图所示电路中的电源为恒流源,不管外电路的电阻如何变化,它都能够提 供持续的定值电流。
电压表、电流表都为理想电表,当滑动变阻器 R 的滑动触 头向右滑动时,电压表 V 1、V 2 示数变化的绝对值分别为ΔU 1 和ΔU 2,电流表 A 示数变化的绝对值为ΔI 。
下列说法中正确的是( )A. V 1 示数减小,A 示数增大,1U I∆=R 2 B.V 1 示数减小,A 示数减小,1U I∆=R 1 C.V 2 示数减小,A 示数增大,2U I∆=R 1 D.V 2 示数不变,A 示数增大,2U I∆=R16.如图所示,匀强磁场垂直纸面向里,磁感应强度的大小为B,磁场在y 轴方向足够宽,在x 轴方向宽度为a。
一直角三角形导线框ABC(BC 边的长度为a)从图示位置向右匀速穿过磁场区域,以逆时针方向为电流的正方向,在下图中感应电流I、BC 两端的电压U BC 与线框移动的距离x 的关系图象正确的是( )17.如图所示,在某一输电线路的起始端接入两个互感器,原、副线圈的匝数比分别为 100∶1 和 1∶100,图中 a、b 表示电压表或电流表,已知电压表的示数为22 V,电流表的示数为1 A,则( )A.a 为电流表,b 为电压表B.a 为电压表,b 为电流表C.线路输送电功率是220 kWD.输电线路总电阻为22 Ω18.某电厂要将电能输送到较远的用户,输送的总功率为 100 kW,电厂输出电压仅为 200 V。
为减少输送功率损失,先用一理想升压变压器将电压升高再输出,到达目的地后用理想降压变压器降压。
已知输电线路的总电阻为 120 Ω,若在输电线路上消耗的功率为输送功率的12%,用户所需电压为220 V,则( )A.理想升压变压器的原、副线圈的匝数比为1∶50B.理想降压变压器的原、副线圈的匝数比为35∶1C.理想升压变压器的原、副线圈中的电流分别为400 A 和10 AD.理想降压变压器的原、副线圈中的电流分别为 10 A 和 400A19.如图甲所示,一单匝圆形闭合导线框半径为r,线框电阻为R,连接一交流电流表(内阻不计)。
线框内充满匀强磁场,已知该磁场磁感应强度 B 随时间按正弦规律变化,如图乙所示(规定向下为 B 的正方向),则下列说法正确的是( )A.0.005 s 时线框中的感应电流最大B.0.01 s 时线框中感应电流方向从上往下看为顺时针方向C.0.015 s 时电流表的示数为零π4r4D.0~0.02 s 内闭合导线框上产生的热量为R20.某学习小组设计了一种发电装置如图甲所示,图乙为其俯视图,将 8 块外形相同的磁铁交错放置组合成一个高h=0.5 m、半径r=0.2 m 的圆柱体,其可绕固定轴 OO′逆时针(俯视)转动,角速度ω=100 rad/s,设圆柱外侧附近每个磁场区域的磁感应强度大小均为B=0.2 T,方向都垂直于圆柱体侧表面,靠紧圆柱体外侧固定一根与其等高,电阻为R1=0.5 Ω的细金属杆ab,杆与轴 OO′平行,图丙中阻值R=1.5 Ω的电阻与理想电流表A 串联后接在杆a、b 两端,下列说法正确的是( )A.电流表A 的示数约为1.41 AB.杆ab 中产生的感应电动势的有效值为E=2 VC.电阻R 消耗的电功率为 2 W D.在圆柱体转过一周的时间内,流过电流表A 的总电荷量为零21.如图所示,边长为L、电阻为R、质量为m 的正方形线框abcd 放在光滑水平面上,其右边有一磁感应强度大小为 B、方向竖直向上的有界匀强磁场,磁场宽度为L,左边界与线框的ab 边相距为L。
线框在水平恒力F 作用下由静止向右运动,cd 边进入磁场前已做匀速运动。