七年级第一学期数学期末抽考试卷
- 格式:docx
- 大小:139.02 KB
- 文档页数:6
2022-2023学年第一学期期末调研测试 七年级数学试卷注意事项:1.本试卷共5页.全卷满分100分.考试时间为100分钟.考生答题全部答在答卷纸上,答在本试卷上无效.2.答选择题必须用2B 铅笔将答卷纸上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答卷纸上的指定位置,在其他位置答题一律无效.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的) 1.-43的相反数是A. 34B. 43C. -34D. -432.一个由长方体截去一部分后得到的几何体如图水平放置,其俯视图是A. B.C.D.3.根据等式的性质,下列变形正确的是A. 如果8a =4,那么a =2B. 如果ac =bc ,那么a =bC. 如果a 2=b3,那么2a =3bD. 如果1-2a =3a ,那么3a +2a =14.用代数式表示“a 的3倍与b 的平方的和”,正确的是A. (3a +b )2B. 3(a +b )2C. 3a +b 2D. (a +3b )25.某小组计划做一批“中国结”,如果每人做5个,那么可比计划多做9个;如果每人做4个,那么将比计划少做15个.设计划做x 个“中国结”,则可列方程为 A. 5x +9=4x -15 B. 5x -9=4x +15 C. x +95=x -154D.x -95=x +154(第2题)6.如图,∠BOC 在∠AOD 的内部,且∠BOC =x °,∠AOD =y °,则图中所有角的度数之和为 (注:图中所有角均指小于180°的角)A. x +3yB. 2x +2yC. 3x +yD. 3y -x二、填空题(本大题共10小题,每空2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.南京江北新区地下空间一期建设规划:地下建筑面积851 000平方米. 将851 000用科学记数法表示为 ▲ .8.如果∠A =46°28',那么∠A 的余角为 ▲ . 9.化简:2(a +1)-3(a -1)= ▲ .10.下列各数:-5,3.14,-34,0,2.13131313…,π2,其中分数的个数是 ▲ 个.11.已知∠AOB =84°,在同一平面内作射线OC ,使得∠AOC =24°,则∠COB = ▲ . 12.已知a 2-2a =3,则多项式2023-2a 2+4a 的值是 ▲ .13.某商品按成本价提高50%后标价,再打8折出售,仍可获利280元,则该商品的成本价为 ▲ 元.14.有理数a 、b 在数轴上如图所示,则化简 |a |-|b |+|a -1| 的结果是 ▲ . 15.若关于x 的一元一次方程12022x +4=3x +m 的解是x =-2023,那么关于y 的一元一次方程12022(y +1)+4=3y +m +3的解是 ▲ .16.在数轴上有一点A ,将点A 向左移动2个单位得到点B ,点B 向左移动4个单位得到点C ,点A 、B 、C 分别表示有理数a 、b 、c . 若a 、b 、c 三个数的乘积为负数且这三个数的和与其中的一个数相等,则a 的值为 ▲ .三、解答题(本大题共11小题,共68分.请在答题卡指定区域内作答,解答时应写出演算步骤或文字说明)17.(8分)计算:① -14+(-2)÷(-13)-|-8|;② (―14―56+89)÷(-136).(第14题)OA BC D (第6题)18.(8分)解方程:①5x +1=3(x -1)+4;②3x -24-5x -76=1.19.(5分)先化简,再求值:3(a 2b -2ab 2-1)―2(2a 2b ―3ab 2)+1,其中a =3,b =-2.20.(5分)某课外活动小组中女生人数占全组人数的一半,如果再增加6名女生,那么女生人数就占全组人数的23.求这个课外活动小组的人数.21.(6分)在如图所示的方格纸中,每个小正方形的顶点都叫做格点.(请利用网格作图,画出的线请用铅笔描黑) (1)过点A 画线段BC 的平行线AD ; (2)过点A 画线段BC 的垂线BE ,垂足为E ; (3)若每个小正方形的边长为1,连接AB 、AC , 则三角形ABC 的面积为 ▲ .22.(6分)一个几何体的表面展开图如图1所示.(1)这个几何体的名称是 ▲ ;(2)图(2)是根据a 、b 、c 、h 的取值画出的几何体的主视图和俯视图,请在网格中画出......该几何体的.....左.视图..; (3)请用含a 、b 、c 、h 的代数式表示这个几何体的表.面积..: ▲ .(不必化简)图(1)图(2)主视图 俯视图左视图23.(5分)某校要在两块紧挨在一起的长方形荒地上修建一个半圆形花圃,尺寸如图所示.(1)求阴影部分的面积(用含a 的代数式表示). (2)当a =20,π取3时,求阴影部分的面积.24.(6分)如图,点O 在直线AB 上,OC ⊥OD ,OE 平分∠BOC . (1)如图1,若∠AOC =20°,求∠DOE 的度数;(2)如图2,若∠DOE =α,直接写出∠AOC 的度数 ▲ (用含α的代数式表示).25.(7分)对于有理数a ,b 定义一种新运算“△”,规定:a △b =2a -3b . (1)计算:(-3)△2= ▲ ;(2)试比较(-2)△x 2与x 2△(-2)的大小;(3)若关于x 的方程2△(kx -1)=-2的解为正整数...,则整数..k 的值为 ▲ .A OBCDEAOBCDE图(1)图(2)26.(5分)如图,已知线段AB =10,C 是线段AB 延长线上一点,点D 是AC 的中点. 若点E 为线段CD 上一点,且DE =5,试说明点E 是线段BC 的中点? 小明的做法如下,请你帮忙他完成解答过程. 解:设BC =x . …………27.(7分)一辆卡车从A 地出发匀速..开往B 地,速度为40千米/时,卡车出发两小时后,一辆出租车从B 地出发匀速..开往A 地,卡车出发6小时,两车同时到达各自的目的地(到达目的地后两车都停止行驶). 解答下列问题:(1)出租车的速度为 ▲ 千米/时;(2)用含x 的代数式表示两车行驶的路程之和....; (3)当两车相距180千米时,求卡车行驶的时间.CB A E D七年级(上)期末参考答案说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每题2分,共20分)7.8.51×1058.43°32′9.-a+510.311.60°或108°12.201713.140014.b+115.y=-202416.4或3三、解答题(本大题共9小题,共66分)17.(本题8分)①-3 ………………4分②7 ………………4分18.(本题8分)①x=0 ………………4分②x=-4 ………………4分19.(本题5分)-a2b-2 ………………3分3216 520.(本题5分)设这个课外活动小组的人数为x 人 ………………1分126(6)23x x +=+ ………………3分 解得:x =12 ………………4分 答:…… ………………5分 21.(本题6分)(1)图略 ………………2分 (2)图略 ………………4分 (3)4 ………………6分 22.(本题6分)(1)三棱柱 ………………2分 (2)图略 ………………4分 (3)ab +(a +b +c )h ………………6分 (无需化简) 23.(本题5分)(1)104412.5a π−− ………………3分 (2)118.5 ………………5分 24.(本题6分) (1)∵∠AOC =20°180 1 160∵OE 平分∠BOC∴∠COE =12∠BOC ………………2分=80° ∵OC ⊥OD∴∠COD =90° ………………3分 ∴∠EOD =∠COD -∠COE=10° ………………4分 (2)2α ………………6分 25.(本题7分)(1)-12; ………………2分 (2)(-2)△x 2=222(2)343x x ⨯−−=−− ………………3分x 2△(-2)=2223(2)26x x −⨯−=+ ………………4分x 2△(-2)-(-2)△x 22226(43)x x =+−−−25+10x =∵25+100x > ………………5分 ∴x 2△(-2)>(-2)△x 2(3)1或3 ………………7分 26.(本题5分) 设BC =x10 1 115222∵DE=5∴12EC DC DE x=−=………………3分∴1122BE BC EC x x x=−=−=………………4分∴BE EC=………………5分∴E是线段BC的中点27.(本题7分)(1)60 ………………1分(2)出租车未出发时(即:当0≤x≤2)路程和为:40x………………2分出租车也出发后(即:当2<x≤6)路程和为:40x+60(x-2) ………………3分=100x-120 ………………4分(3)40240180x=−x=1.5 ………………5分100120240180x−=+x=5.4 ………………6分答:……………………7分。
七年级数学(上)期末考试试题一、选择题(每小题2,共12分)1. 下列方程中,是一元一次方程的是()A. =3B. x2+1=5C. x=0D. x+2y=3【答案】C故选C.2. 若a>1,则a,﹣a,从大到小排列正确的是()A. a>﹣a>B. a>>﹣aC. >﹣a>aD. >﹣a>a>【答案】B【解析】∵a>1,∴﹣a<0,0<<1,∴a>>﹣a,故选B.3. 下列各式中,正确的是()A. ﹣(2x+5)=2x+5B. ﹣(4x﹣2)=﹣2x+2C. ﹣a+b=﹣(a﹣b)D. 2﹣3x=(3x+2)【答案】C【解析】A、原式=﹣2x﹣5,故A选项错误;B、原式=﹣2x+1,故B选项错误;C、原式=﹣(a﹣b),故C选项正确;D、原式=﹣(3x﹣2),故D选项错误,故选C.4. 由5个大小相同的正方体组成的几何体如图所示,从正面看到的图形是()A. B. C. D.【答案】A【解析】从正面看易得下面一层有3个正方形,上面一层中间有一个正方形,故选A.5. 在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,则∠AOB的大小为()A. 69°B. 111°C. 159°D. 141°【答案】D【解析】试题分析:如下图,由题意得:∠1=54°,∠2=15°,计算出∠3=90°-54°=36°,再计算∠AOB=36°+90°+15°=141°.故选:D.考点:方位角6. 下列说法中,正确的是()①射线AB和射线BA是同一条射线;②若AB=BC,则点B为线段AC的中点;③同角的补角相等;④点C在线段AB上,M,N分别是线段AC,CB的中点.若MN=5,则线段AB=10.A. ①②B. ②③C. ②④D. ③④【答案】D【解析】①射线AB和射线BA不是同一条射线,错误;②若AB=BC,点B在线段AC上时,则点B为线段AC的中点,错误;③同角的补角相等,正确;④点C在线段AB上,M,N分别是线段AC,CB的中点.若MN=5,则线段AB=10,正确,故选D.【点睛】本题考查了直线、射线、线段;两点间的距离;余角和补角等知识,注意基本概念的掌握是解题的关键.二、填空题(每小题3分,共24分)7. 单项式﹣x2y的次数是_____.【答案】3【解析】单项式的次数是指所有字母指数的和,2+1=3,所以单项式﹣x2y的次数是3,故答案为:3.8. 阅览室某一书架上原有图书20本,规定每天归还图书为正,借出图书为负,经过两天借阅情况如下:(﹣3,+1),(﹣1,+2),则该书架上现有图书_____本.【答案】19【解析】由题意可得20﹣3+1﹣1+2=19本.9. 科学家们发现,太空中距离银河系约2500000光年之遥的仙女星系正在向银河系靠近.其中2500000用科学记数法表示为_____.【答案】2.5×106【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数,2500000用科学记数法表示为2.5×106,故答案为2.5×106.10. 如果我们将一副三角尺按如图所示的位置摆放,并且已知∠a=118°28',那么∠B的度数为_____.【答案】61°32'【解析】∠β=180°﹣∠α=180°﹣118°28'=61°32',故答案为:61°32'.【点睛】本题考查了平角的定义,熟知平角的定义是解题的关键.11. 如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是_____.【答案】两点之间线段最短【解析】田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是:两点之间线段最短,故答案为:两点之间线段最短.12. 已知,m,n互为相反数,p、q互为倒数,x的绝对值为2,则代数式+2013pq+的值为_____.【答案】2017【解析】由题意可知,m+n=0,pq=1,x=±2,∴ +2013pq+=0+2013×1+(±2)2=0+2013+4=2017,故答案为:2017.13. 一件商品按成本价提高20%标价,然后打9折出售,此时仍可获利16元,则商品的成本价为_____元.【解析】设成本价为x元,则,解得x=200.14. 如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),把剩余部分沿虚线又剪拼成一个长方形(不重叠无缝隙),则拼得的长方形的周长为_____cm.(用含a的代数式表示)【答案】(4a+16)【解析】根据题意得,长方形的宽为(a+4)﹣(a+1)=3,则拼成得长方形的周长为:2(a+4+a+1+3)=2(2a+8)=(4a+16)cm,故答案为:(4a+16).【点睛】本题主要考查了整式加减的应用,关键是根据题意列出式子.三、解答题(一)(每小题5分,共20分)15. 计算:(2a2b﹣5ab)﹣2(﹣ab+a2b)【答案】﹣3ab【解析】试题分析:去括号后合并同类项即可得.试题解析:原式=2a2b﹣5ab+2ab﹣2a2b=﹣3ab.16. 解方程:﹣=2.【答案】﹣12【解析】试题分析:按去分母、去括号、移项、合并同类项、系数化为1的步骤进行求解即可.试题解析:去分母得,3(x+2)﹣2(2x﹣3)=24,去括号得,3x+6﹣4x+6=24,移项得,3x+6﹣4x+6=24,合并同类项得,﹣x=12,系数化为1得,x=﹣12.17. 计算:﹣14﹣(﹣2)3×﹣16×(﹣+)学|科|网...学|科|网...学|科|网...学|科|网...学|科|网...学|科|网...试题解析:原式=﹣14﹣(﹣8)×﹣8+4﹣6=﹣14+2﹣10=﹣22.18. 已知如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,求∠AOD的度数.【答案】110°【解析】试题分析:首先根据角平分线定义可得∠BOD=2∠BOC=70°,再根据邻补角的性质可得∠AOD的度数.试题解析:∵OC平分∠DOB,∴∠BOD=2∠BOC =2×35°=70°,又∵∠AOB=180°,∴∠AOD=∠AOB﹣∠DOB=180°﹣70°=110°.【点睛】本题主要考查了角平分线定义,关键是掌握角平分线把角分成相等的两部分.四、解答题(二)(每小题7分,共28分)19. 如图,C、D是线段AB上的两点,若CB=4cm,DB=7cm,且D是AC的中点,求AB的长.【答案】10cm【解析】试题分析:根据CB=4cm,DB=7cm可求出DC的长,再根据D是AC的中点可得出AD的长,再根据AB=AD+DB即可求出答案.试题解析:∵CB=4cm,DB=7cm,∴DC=DB﹣CB=3cm,又∵D是AC的中点,∴AD=DC=3cm,∴AB=AD+DB=10cm.20. 列方程解应用题:在某中学矩形的“我的中国梦”征文活动中,七年级和八年级共收到118篇,且七年级收到的征文篇数比八年级收到的征文篇数的一半还少2篇,求七年级收到的征文有多少篇?【答案】38篇【解析】试题分析:根据“七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇” 设八年级收到的征文有x篇,则七年级收到的征文有(x-2)篇;根据“七年级和八年级共收到征文118篇”列方程,解出方程即可.试题解析:设八年级收到的征文有x篇,则七年级收到的征文有(x﹣2)篇,根据题意得:(x﹣2)+x=118,解得:x=80,∴x﹣2=38,答:七年级收到的征文有38篇.21. 已知m、x、y满足:(1)﹣2ab m与4ab3是同类项;(2)(x﹣5)2+|y﹣|=0.求代数式:2(x2﹣3y2)﹣3()的值.【答案】【解析】试题分析:由同类项的定义可得m的值,由非负数之和为0,非负数分别为0可得出x、y的值,代入所求式子中计算即可得到结果.试题解析:∵﹣2ab m与4ab3是同类项,(x﹣5)2+|y﹣|=0,∴m=3,x=5,y=,则原式=2x2﹣6y2﹣2x2+3y2+3m=﹣3y2+3m=﹣+9=.22. 如图所示是一个长方形.(1)根据图中尺寸大小,用含x的代数式表示阴影部分的面积S;(2)若x=3,求S的值.【答案】(1) 8+2x (2) 14【解析】试题分析:根据图形可知:阴影部分的面积可用长方形的面积减去两个直角三角形的面积.试题解析:(1)由图形可知:S=4×8-×4×8-×4(4-x)=16-8+2x=8+2x(2)将x=3代入上式,S=8+2×3=14五、解答题(三)(每小题8分,共16分)23. 某水果销售店用1000元购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:进价(元/千克)售价(元/千克)甲种 5 8乙种9 13(1)这两种水果各购进多少千克?(2)若该水果店按售价销售完这批水果,获得的利润是多少元?【答案】(1) 75千克(2) 495元【解析】试题分析:(1)首先设甲种水果x千克,则乙种水果(140-x)千克,根据进价总数列出方程,求出x的值;(2)根据每种水果的利润得出总利润.试题解析:(1)设购进甲种水果x千克,则购进乙种水果(140﹣x)千克,根据题意得:5x+9(140﹣x)=1000,解得:x=65,∴140﹣x=75(千克),答:购进甲种水果65千克,乙种水果75千克。
2021~2022学年度第一学期期末抽测七年级数学试题一、选择题(本大题有8小题)1.下列四个数中,无理数是()A.πB.13 C.0 D.3.14152.下列算式中,计算结果与其它三个不同的是()A.-12B.(-1)2C.(-1)3D.-2+13.单项式2xy的系数是()A.-1B.1C.2D.34.有理数a、b在数轴上的位置如图所示,则a+b的值()A.大于0B.小于0C.等于0D.大于b5.一个正方体的表面展开图如图所示,将其围成正方体后,“战”字对面的字是()A.早B.胜C.疫D.情6.上午10:00,钟面上时针与分针所成角的度数是()A.30°B.45°C.60°D.75°7.下列说法中,错误的是()A.两点之间线段最短B.若AC=BC,则点C是线段AB的中点C.过直线外一点有且只有一条直线与已知直线平行D.平面内过直线外一点有且只有一条直线与已知直线垂直8.下列一组数:1,2,3,4,3,2,1,2,3,4,3,2,1,2,…其中第2022个数是()A.1B.2C.3D.4二、填空题(本大题共有8小题)9.若室内温度是10℃,室外温度是-5℃,则室内温度比室外温度高___℃.10.徐州地铁10月份的客运量约为7000000人次,7000000人次用科学记数法可表示为________人次.11.比较大小:227-______3-(填“>”“<”或“=”).12.若x =-2是关于x 的方程2x +a =1的解,则a 的值为______.13.若a -2b +1=0,则代数式3a -6b 的值为_______.14.某商品标价为200元/件,按标价打八折出售时每件可获利40元,该商品的成本价为每件_____元.15.如图,直线AB 、CD 相交于点O ,OE 平分∠BOD ,若∠BOE =35°,则∠AOC 的度数为_____.16.如图,宽为50cm 的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为____cm 2.三、解答题(本大题共有9小题)17.计算:(1)3+(-4)+6-(-2);(2)2×(-3)2-5÷1218.先化简,再求值;3(x 2﹣3y )﹣(3x 2+y ﹣x ),其中x =﹣2,y =12.19.解下列方程:(1)13x -2=x -6;(2)123123x x+--=.20.如图是用6个棱长为1cm的正方体搭成的几何体.(1)在所给方格纸中,用实线画出它的三个视图;(2)该几何体的表面积(含底部)为cm2.21.如图,方格纸中每个小正方形的边长均为1, ABC的顶点均为格点.请在方格纸中完成下列作图(不写作法);(1)过点A画BC的平行线l1;(2)过点C画BC的垂线l2;(3)用尺规作∠PAC,使得∠PAC=∠BAC(保留作图痕迹).22.用方程解决问题:元旦联欢会上,班长买了一些糖果分给全班同学.若每人分3颗,则余25颗;若每人分4颗,则少20颗.请问班长共买了多少颗糖果?23.如图,直线AB、CD相交于点O,∠COE=90°.(1)若∠BOD=35°,则∠BOE=°;(2)若∠BOC=5∠BOD,求∠AOE的度数;(3)∠BOD=20°,过点O作射线OF⊥AB,则∠EOF=°.24.已知甲地到乙地的单程汽车票价为75元/人,春运期间,为了给春节回家的旅客提供优惠,汽车客运站给出了如下优惠方案:乘客优惠方案学生凭学生证票价一律打六折;非学生10人以下(含10人)没有优惠;团购:超过10人,其中10人按原价售票,超出部分每张票打八折.(1)若12名非学生乘客采用团购方式买票,则总票款为元;(2)一辆汽车共有50名乘客,其中非学生乘客若达到团购人数则按团购方式买票,已知该车乘客总票款为3000元,问:车上有学生乘客、非学生乘客各多少人?25.已知AB=8,点P从点A出发,以每秒2个单位长度的速度沿射线AB运动,M为线段AP的中点.设点P的运动时间为t秒.(1)若点P在线段AB上,则t=______秒时,PB=2AM.(2)若点P在AB的延长线上(如图),设线段BP的中点为N.①线段MN的长度是否保持不变?请说明理由;②是否存在t的值,使M、N、B三点中的某个点是其余两点所连线段的中点?若存在,求出所有满足条件的t的值;若不存在,请说明理由.。
初中七年级数学上册期末考试题及答案【可打印】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1.若单项式am﹣1b2与的和仍是单项式, 则nm的值是()A. 3B. 6C. 8D. 92.如图, 点D, E分别在线段AB, AC上, CD与BE相交于O点, 已知AB=AC, 现添加以下的哪个条件仍不能判定△ABE≌△ACD()A. ∠B=∠CB. AD=AEC. BD=CED. BE=CD3. ①如图1,AB∥CD,则∠A +∠E +∠C=180°;②如图2,AB∥CD,则∠E =∠A +∠C;③如图3,AB∥CD,则∠A +∠E-∠1=180°;④如图4,AB∥CD,则∠A=∠C +∠P.以上结论正确的个数是()A. 、1个B. 2个C. 3个D. 4个4.如图, 若AB, CD相交于点O, ∠AOE=90°, 则下列结论不正确的是()A. ∠EOC与∠BOC互为余角B. ∠EOC与∠AOD互为余角C. ∠AOE与∠EOC互为补角D. ∠AOE与∠EOB互为补角5.如图所示, 已知∠AOB=64°, OA1平分∠AOB, OA2平分∠AOA1, OA3平分∠AOA2, OA4平分∠AOA3, 则∠AOA4的大小为()A. 1°B. 2°C. 4°D. 8°6.有理数m, n在数轴上分别对应的点为M, N, 则下列式子结果为负数的个数是()①;②;③;④;⑤.A. 2个B. 3个C. 4个D. 5个7.下列图形既是轴对称图形, 又是中心对称图形的是()A. B.C. D.8.如图, 已知在四边形中, , 平分, , , , 则四边形的面积是()A. 24B. 30C. 36D. 429.已知实数a、b满足a+b=2, ab= , 则a﹣b=()A. 1B. ﹣C. ±1D. ±10.将一副直角三角板按如图所示的位置摆放, 使得它们的直角边互相垂直, 则 的度数是( )A. B. C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 若a 、b 为实数, 且b = +4, 则a+b =________.2.如图, AB ∥CD, FE ⊥DB, 垂足为E, ∠1=50°, 则∠2的度数是_____.3. 若 , , , , 则 ________ .4.如果一个数的平方根是a+6和2a ﹣15, 则这个数为________.5. 分解因式: 4ax2-ay2=_____________.6. 已知一组从小到大排列的数据:2, 5, x, y, 2x, 11的平均数与中位数都是7, 则这组数据的众数是________.三、解答题(本大题共6小题, 共72分)1. 解方程:(1)()()371323x x x --=-+ (2)21252x x x +--=-2. 已知关于x 的不等式组 恰有两个整数解,求实数a 的取值范围.3. 如图, 已知点A(-2, 3), B(4, 3), C(-1, -3).(1)求点C到x轴的距离;(2)求三角形ABC的面积;(3)点P在y轴上, 当三角形ABP的面积为6时, 请直接写出点P的坐标.4. 尺规作图: 校园有两条路OA.OB, 在交叉路口附近有两块宣传牌C.D, 学校准备在这里安装一盏路灯, 要求灯柱的位置P离两块宣传牌一样远, 并且到两条路的距离也一样远, 请你帮助画出灯柱的位置P. (不写画图过程, 保留作图痕迹)5. 为了解学生对“垃圾分类”知识的了解程度, 某学校对本校学生进行抽样调查, 并绘制统计图, 其中统计图中没有标注相应人数的百分比. 请根据统计图回答下列问题:(1)求“非常了解”的人数的百分比.(2)已知该校共有1200名学生, 请估计对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有多少人?6. 某网店销售甲、乙两种羽毛球, 已知甲种羽毛球每筒的售价比乙种羽毛球多15元, 王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球, 共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求, 该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒, 且甲种羽毛球的数量大于乙种羽毛球数量的, 已知甲种羽毛球每筒的进价为50元, 乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒, 则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出, 请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式, 并说明当m为何值时所获利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1.C2.D3.C4.C5.C6.B7、D8、B9、C10、C二、填空题(本大题共6小题, 每小题3分, 共18分)1.5或32.40°3.<4.815.a(2x+y)(2x-y)6.5三、解答题(本大题共6小题, 共72分)1.(1)x=5;(2)x=-72.-4≤a<-3.3、(1)3;(2)18;(3)(0, 5)或(0, 1).4.略.5.(1)20%;(2)6006、(1)该网店甲种羽毛球每筒的售价为60元, 乙种羽毛球每筒的售价为45元;(2)①进货方案有3种, 具体见解析;②当m=78时, 所获利润最大, 最大利润为1390元.。
七年级数学上册期末考卷(含答案)一、选择题(每题4分,共40分)1. 下列数中,最小的无理数是()A. √2B. √3C. πD. √52. 已知a=3,b=2,则a+b的值是()A. 1B. 5C. 5D. 13. 下列各式中,正确的是()A. (x+y)² = x² + y²B. (x+y)² = x² + 2xy + y²C. (xy)² = x² y²D. (xy)² = x² 2xy y²4. 下列关于单项式的说法,错误的是()A. 单项式中的数字因数叫做单项式的系数B. 单项式中的所有字母的指数和叫做单项式的次数C. 单项式是数或字母的积组成的式子D. 单项式中不含加减号5. 下列各式中,多项式的是()A. 5x² + 3x 2B. √x + 1C. 2x³ 4x² + 5D. 1/a + 3a²6. 已知一个等差数列的首项为2,公差为3,第五项是()A. 14B. 16C. 18D. 207. 下列关于平行线的说法,正确的是()A. 同位角相等B. 内错角相等C. 同旁内角互补8. 下列图形中,既是中心对称图形又是轴对称图形的是()A. 线段B. 等腰三角形C. 正方形D. 梯形9. 已知直角三角形的两条直角边分别为3和4,则斜边的长度是()A. 5B. 6C. 7D. 810. 下列关于概率的说法,错误的是()A. 概率是0到1之间的数B. 必然事件的概率为1C. 不可能事件的概率为0D. 随机事件的概率一定大于0二、填空题(每题4分,共40分)11. 已知|x|=3,则x的值为______。
12. 若3x6=0,则x的值为______。
13. 已知a²=9,则a的值为______。
14. 若(x2)(x+2)=0,则x的值为______。
2022-2023学年七上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列语句中准确规范的是( )A .直线a ,b 相交于一点mB .反向延长直线ABC .反向延长射线AO (O 是端点)D .延长线段AB 到C ,使BC =AB2.如图,点O 在直线AB 上,射线OC ,OD 在直线AB 的同侧,∠AOD =40°,∠BOC =50°,OM ,ON 分别平分∠BOC 和∠AOD ,则∠MON 的度数为( )A .135°B .140°C .152°D .45°3.用科学记数法表示3500000( )A .0.35×107B .3.5×107C .3.5×106D .35×1054.已知23,34a b c m a b c m ++=++=,则b 和c 的关系为( )A .互为相反数B .互为倒数C .相等D .无法确定5.方程3122x x +=-的解为( )A .3x =B .3x =-C .1x =D .1x =-6.一个无盖的正方体盒子的平面展开图可以是下列图形中的( )A .①B .①②C .②③D .①③7.如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF =8,CD =4,则AB 的长为( )A .9B .10C .12D .168.已知a =b ,下列等式不一定成立的是( )A .a ﹣c =b ﹣cB .ac =bcC .a 2=b 2D .a b =1 9.如果一个数的绝对值等于本身,那么这个数是( )A .正数B .0C .非正数D .非负数10.已知点C 在线段AB 上,则下列条件中,不能确定点C 是线段AB 中点的是( )A .AC =BCB .AB =2AC C .AC +BC =ABD .12BC AB = 11.某县三月中旬每天平均空气质量指数(AQI )分别为:118,96,60,82,56,69,86,112,108,94,为了描述这十天空气质量的变化情况,最适合用的统计图是( ) A .折线统计图 B .频数分布直方图 C .条形统计图 D .扇形统计图12.下列叙述不正确的是( )A .两点之间,线段最短B .对顶角相等C .单项式233ab c -的次数是5 D .等角的补角相等 二、填空题(每题4分,满分20分,将答案填在答题纸上)13.如果+5表示收入5元.那么-1表示__________________.14.瑞士中学教师巴尔末成功地从光谱数据9162536,,,,5122132⋅⋅⋅中得到巴尔末公式,从而打开了光谱奥妙的大门。
西安西工大附中2023-2024学年第一学期期末考试七年级数学试题一、选择题(共10小题,每小题3分,计30分) 1.计算2-1的结果是( ) A.-2B.2C.-12D.122.如图所示的几何体的左视图是( )3.如图,已知点B 在点A 的北偏东65°方向,点C 在点A 的南偏西20°方向,则∠BAC 的度数为( ) A.135°B.130°C.125°D.120°4.下列计算,正确的是( ) A.a 2·a 3=a 6B.a 2+a 3=a 5C.(-a 2)3=-a 6D.a 6÷(-a)3=-a 25.点O 、A 、B 、C 在数轴上的位置如图所示,其中点A 、B 到原点O 的距离相等,点A 、C 之间的距离为2.若点C 表示的数为x ,则点B 所表示的数为( ) A.x +2B.x -2C.-x +2D.-x -26.已知a 是两位数,b 是三位数,把b 直接写在a 的右面,就成为一个五位数,这个五位数用代数式可表示成( )第3题图第5题图D.C.B.A. 第2题图A.abB.100a+bC.a+100bD.1000a+b7.若M(5x -y 2)=y 4-25x 2,那么代数式M 应为( ) A.5x 2-y 2B.5x +y 2C.-y 2+5xD.-5x -y 28.《孙子算经》中有一道题,原文是:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车;若每2人共乘一车,则最终剩余9个人无车可乘,问共有多少人,多少辆车?设共有x 人,则可列方程为( ) A.x+23=x 2-9B.x 3+2=x−92C.x 3-2=x+92D.x−23=x 2+99.计算24046×(-0.25)2024的结果为() A.-22022B.22022C.14D.-1410.有理数a 、b 、c 所对应的点在数轴上的位置如图所示,化简|a -b|-|2c -a|+|c -b|的结果是( ) A.cB.3c -2bC.2a -3cD.-3c二、填空题(共6小题,每小题3分,计18分)11.西安市冬季里某一天的气温为-7℃~-1℃,这一天西安市的温差是____℃. 12.科学家可以使用冷冻显微术以高分辨率测定溶液中的生物分子结构,使用此技术测定细菌蛋白结构的分辨率达到0.22纳米,即0.00000000022米.将0.00000000022用科学记数法表示为________.13.小明用若干根等长的小木棒设计出如图所示的图形,则第n 个图形中有小木棒____根.第13题图第3个图形第1个图形第2个图形第4个图形…第10题图14.已知m 、n 为有理数,且4x 2+m x +9=(2x +n)2,则m+n 的值为____.15.如图,∠AOB=126°,射线OC 在∠AOB 外,且∠BOC=2∠AOC ,若OM 平分∠BOC ,ON 平分∠AOC ,则∠MON=____°.16.在如图所示的三阶幻方中,填写了一些数、代数式和汉字(其中每个代数式或汉字都表示一个数),若每一横行,每一竖列,以及每条对角线上的3个数之和都相等,则“诚实守信”这四个字表示的数之和为____. 三、解答题(共7小题,计52分) 17.计算题(每小题4分,共12分) (1)-14÷(-5)2×(-53)-|0.8-1|(2)(-2x 2)3+ x 2·x 4-(-3x 3)2(3)解方程:3+x−12=x -x+1418.(5分)先化简,再求值:[(x -2y)2-(x +3y)(x -3y)+3y 2]÷(-4y),其中x =2023,y=-14.19.(6分)列方程解决下面问题.甲、乙两人分别从A ,B 两地同时出发、沿同一条路线相向匀速行驶,已知出发后3h 两人相遇.乙的速度比甲快20km/h ,相遇后乙再经1h 到达A 地.求甲、乙两人的速度. 20.(6分)如图,B 、C 两点把线段AD 分成2︰5︰3三部分,M 为AD 的中点,BM=6,求CM 的长度.第20题图ABM C D第15题图AN BC MO0 信实守诚-8-11 x +1 -x -3第16题图21.(6分)为了解某校七年级学生数学期中考试情况,小亮随机抽取了部分学生的数学成绩(成绩都为整数)为样本,分为A(100~90分)、B(89~80分)、C(79~60分)、D(59~0分)四个等级进行统计,并将统计结果制成如下统计图,请根据图中信息解答以下问题.(1)这次抽样调查的样本容量为_____. (2)请补全条形统计图.(3)这个学校七年级共有学生1200人,若分数为80分(含80分)以上为优秀,估计这次七年级学生期中数学考试成绩为优秀的学生人数大约有多少?22.(7分)如图①,点O 为直线AB 上一点,过点O 作射线0C ,使∠AOC=60°,将一把直角三角尺的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)将图①中的三角尺绕点O 逆时针旋转至图②,使得点N 在OC 的反向延长线上,求∠MOB 的度数.(2)将图①中的三角尺绕点O 顺时针旋转至图③,使ON 在∠AOC 的内部,请探究∠AOM 与∠NOC 之间的数量关系,并说明理由.第21题图A B C D 25%50%10%CD 等级23.(10分)探究与实践 问题发现(1)用四个长为a ,宽为b 的长方形拼成如图所示的正方形ABCD ,由此可以得到(a+b)2、(a -b)2、ab 的等量关系是_____. 问题探究(2)如图②,将边长为a 的正方形APCD 和边长为b 正方形BPEF 拼在一起,使得A 、P 、B 共线,点E 落在PC 上,连接AB.若AB=8,△APE 的面积为7.5,求CE 的长度. 问题解决(3)如图③,某小区物业准备在小区内规划设计一块休闲娱乐区,其中BE 、CF 为两条互相垂直的道路,且BG=CG ,EG=FG ,四边形ABGF 与四边形CDEG 为长方形,现计划在两个三角形区域种植花草,两个长方形区域铺设塑胶地面,按规划要求,道路BE 的长度为80米.若种值花草每平方米需要100元,铺设塑胶地面每平方米需要30元,若物业为本次修建休闲娱乐区筹集了25万元,请你通过计算说明该物业筹集的资金是否够用?(道路的宽度均不计)第22题图图①B 图②BN 图③BM西安西工大附中2023-2024学年第一学期期末考试七年级数学试题参考答案一、选择题(共10小题,每小题3分,计30分) 1.计算2-1的结果是( ) A.-2B.2C.-12D.121.解:2-1=121=12,故选D 。
七年级数学上册期末检测卷七年级数学的复习对于学生进步是很关键的,在即将到来的数学期末考试,教师们要如何准备期末检测卷的内容呢?下面是店铺为大家带来的关于七年级数学上册期末检测卷,希望会给大家带来帮助。
七年级数学上册期末检测卷:一、单项选择题(每小题2分,共12分)1.一个数的倒数是3,这个数是( )A. B. ﹣ C. 3 D. ﹣3考点:倒数.分析:利用倒数的定义求解即可.解答:解:一个数的倒数是3,则这个数是,故选A.点评:本题主要考查了倒数,解题的关键是熟记倒数的定义.2.有理数3.645精确到百分位的近似数为( )A. 3.6B. 3.64C. 3.7D. 3.65考点:近似数和有效数字.分析:把千分位上的数字5进行四舍五入即可.解答:解:3.645≈3.65(精确到百分位).故选D.点评:本题考查了近似数和有效数字:经过四舍五入得到的数称为近似数;从一个近似数左边第一个不为0的数数起到这个数完,所以这些数字都叫这个近似数的有效数字.3.若单项式﹣3a5b与am+2b是同类项,则常数m的值为( )A. ﹣3B. 4C. 3D. 2考点:同类项.分析:根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程求得m的值.解答:解:根据题意得:m+2=5,解得:m=3.故选C.点评:本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.4.下列四个式子中,是一元一次方程的是( )A. 2x﹣6B. x﹣1=0C. 2x+y=25D. =1考点:一元一次方程的定义.分析:根据一元一次方程的定义对各选项进行逐一分析即可.解答:解:A、不是等式,故不是方程,故本选项错误;B、符合一元一次方程的定义,故本选项正确;C、含有两个未知数,是二元一次方程,故本选项错误;D、分母中含有未知数,是分式方程,故本选项错误.故选B.点评:本题考查的是一元一次方程的定义,即只含有一个未知数(元),且未知数的次数是1,这样的整式方程叫一元一次方程.5.如图所示绕直线m旋转一周所形成的几何体是( )A. B. C. D.考点:点、线、面、体.分析:根据面动成体的原理,直角梯形绕直腰旋转一周为圆台进行解答.解答:解:本题图形可看作是两个梯形绕直线m旋转一周得到的几何体,是上底重合的两个圆台体的组合体.故选:B.点评:本题考查学生立体图形的空间想象能力及分析问题,解决问题的能力.6.把一副三角板按照如图所示的位置摆放,则形成两个角,设分别为∠α、∠β,若已知∠α=65°,则∠β=()A. 15°B. 25°C. 35°D. 45°考点:角的计算.专题:计算题.分析:按照如图所示的位置摆放,利用∠α、∠β和直角正好在一条直线上,用平角减去直角再减去65°即可得出答案.解答:解:如图所示,一副三角板按照如图所示的位置摆放,则∠α+∠β+90°=180°,即∠β=180°﹣90°﹣65°=25°.故选B.点评:此题主要考查学生对角的计算的理解和掌握,解答此题的关键是利用∠α、∠β和直角正好在一条直线上,难度不大,是一道基础题.二、填空题(每小题3分,共24分)7.如果温度上升3℃记作+3℃,那么下降8℃记作﹣8 ℃.考点:正数和负数.专题:计算题.分析:解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解答:解:“正”和“负”相对,所以如果温度上升3℃记作+3℃,那么下降8℃记作﹣8℃.点评:解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.8.单项式﹣的次数是 3 .考点:单项式.分析:根据单项式次数的定义来确定单项式﹣的次数即可.解答:解:单项式﹣的次数是3,故答案为:3.点评:本题考查了单项式次数的定义,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.9.点A、B、C是同一直线上的三个点,若AB=8cm,BC=3cm,则AC= 11或5 cm.考点:比较线段的长短.分析:分点B在点A、C之间和点C在点A、B之间两种情况讨论.解答:解:(1)点B在点A、C之间时,AC=AB+BC=8+3=11cm;(2)点C在点A、B之间时,AC=AB﹣BC=8﹣3﹣5cm.∴AC的长度为11cm或5cm.点评:分两种情况讨论是解本题的难点,也是解本题的关键.10.写出一个满足下列条件的一元一次方程:①所含未知数的系数是﹣1,②方程的解3.则这样的方程可写为﹣x+3=0(此题答案不唯一) .考点:一元一次方程的解.专题:开放型.分析:只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程;它的一般形式是ax+b=0(a,b是常数且a≠0);根据题意,写一个符合条件的方程即可.此题要求的是满足条件的一元一次方程,形如﹣x+a=﹣3+a都是正确的答案.解答:解:此题答案不唯一,如:﹣x=﹣3,﹣x+3=0都是正确的.点评:此题考查的是一元一次方程的解法,只要满足条件,此题答案不唯一,如﹣x=﹣3,﹣x﹣2=﹣5等都是正确的.11.如图,表示南偏东40°的方向线是射线OD .考点:方向角.分析:利用方位角的概念解答即可.解答:解:根据方位角的概念可知,表示南偏东40°的方向线是射线OD.点评:本题较简单,只要同学们掌握方位角的概念即可.12.如图,小明上学从家里A到学校B有①、②、③三条路线可走,小明一般情况下都是走②号路线,用几何知识解释其道理应是两点之间线段最短.考点:线段的性质:两点之间线段最短.分析:根据两点之间线段最短解答.解答:解:用几何知识解释其道理应是:两点之间线段最短.故答案为:两点之间线段最短.点评:本题考查了线段的性质,熟记两点之间线段最短是解题的关键.13.数a,b在数轴上对应点的位置如图所示,化简a﹣|b﹣a|=b .考点:绝对值;数轴.专题:计算题.分析:由图先判断a,b的正负值和大小关系,再去绝对值求解.解答:解:由图可得,a>0,b<0,且|a|>|b|,则b﹣a<0,a﹣|b﹣a|=a+b﹣a=b.故本题的答案是b.点评:此题综合考查了数轴、绝对值的有关内容,对绝对值的代数定义应熟记:①正数的绝对值是它本身;②负数的绝对值是它的相反数;③零的绝对值是零.14.某中学的学生自己动手整修操场,如果让初二学生单独工作,需要6小时完成;如果让初三学生单独工作,需要4小时完成.现在由初二、初三学生一起工作x小时,完成了任务.根据题意,可列方程为( + )x=1 .考点:由实际问题抽象出一元一次方程.专题:常规题型;压轴题.分析:假设工作量为1,初二学生单独工作,需要6小时完成,可知其效率为 ;初三学生单独工作,需要4小时完成,可知其效率为,则初二和初三学生一起工作的效率为( ),然后根据工作量=工作效率×工作时间列方程即可.解答:解:根据题意得:初二学生的效率为,初三学生的效率为,则初二和初三学生一起工作的效率为( ),∴列方程为:( )x=1.故答案为:( + )x=1.点评:本题考查了由实际问题抽象出一元一次方程的问题,同时考查了学生理解题意的能力,解题关键是知道工作量=工作效率×工作时间,从而可列方程求出答案.三、解答题(每小题5分,共20分)15. .考点:有理数的混合运算.分析:按照有理数混合运算的顺序,先乘除后算加减,有括号的先算括号里面的.解答:解:=42×(﹣)× ﹣3=﹣8﹣3=﹣11.点评:本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.16.计算:(﹣2)3+(﹣﹣+ )×(﹣24).考点:有理数的混合运算.专题:计算题.分析:原式第一项利用乘方的意义计算,第二项利用乘法分配律计算即可得到结果.解答:解:原式=﹣8+16+20﹣22=﹣8+14=6.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.化简:3(x3+2x2﹣1)﹣(3x3+4x2﹣2).考点:整式的加减.专题:计算题.分析:原式去括号合并即可得到结果.解答:解:原式=3x3+6x2﹣3﹣3x3﹣4x2+2=2x2﹣1.点评:此题考查了整式的加减,熟练掌握运算法则是解本题的关键.18.解方程: .考点:解一元一次方程.专题:计算题.分析:方程去分母,去括号,移项合并,将y系数化为1,即可求出解.解答:解:去分母,得3(y+1)=24﹣4(2y﹣1),去括号,得9y+3=24﹣8y+4,移项,得 9y+8y=24+4﹣3,合并同类项,得17y=25,系数化为1,得y= .点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.四、解答题(每小题7分,共28分)19.一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)通过计算说明小虫是否回到起点P.(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.考点:有理数的加减混合运算;正数和负数.专题:应用题.分析: (1)把记录到得所有的数字相加,看结果是否为0即可;(2)记录到得所有的数字的绝对值的和,除以0.5即可.解答:解:(1)∵(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10),=5﹣3+10﹣8﹣6+12﹣10,=0,∴小虫能回到起点P;(2)(5+3+10+8+6+12+10)÷0.5,=54÷0.5,=108(秒).答:小虫共爬行了108秒.点评:此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.20.化简求值:3x2y﹣[2x2y﹣3(2xy﹣x2y)﹣xy],其中x=﹣1,y=﹣2.考点:整式的加减—化简求值.专题:计算题.分析:原式去括号合并得到最简结果,将x与y的值代入计算即可求出值.解答:解:原式=3x2y﹣2x2y+6xy﹣3x2y+xy=﹣2x2y+7xy,由x=﹣1,y=﹣2,得原式=18.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.21.定义新运算:对于任意有理数a,b,都有a※b=a(a﹣b)+1,等式右边是通常的加法,减法及乘法运算,比如:2※5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5.(1)求(﹣2)※3的值;(2)若3※x=5※(x﹣1),求x的值.考点:解一元一次方程;有理数的混合运算.专题:新定义.分析: (1)原式利用题中的新定义化简,计算即可得到结果;(2)已知等式利用题中的新定义化简,求出解即可得到x的值.解答:解:(1)(﹣2)※3=(﹣2)×(﹣2﹣3)+1=﹣2×(﹣5)+1=10+1=11;(2)由3※x=5※(x﹣1),得到3(3﹣x)+1=5(5﹣x+1)+1,解得:x=10.5.点评:此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.。
七年级数学上册期末考试试卷一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. -2B. 0C. 3D. -52. 计算下列哪个表达式的结果为负数?A. 5 - 3B. 2 + 4C. 8 × 1D. 9 ÷ 33. 以下哪个图形是正方形?A. 四边形,对角线相等B. 四边形,四条边相等且四个角都是直角C. 三角形,三条边相等D. 四边形,对边平行且相等4. 以下哪个方程的解是x=2?A. 2x + 3 = 7B. 3x - 5 = 10C. 4x = 8D. 5x = 155. 以下哪个选项表示的是不等式?A. 2x + 3 = 7B. 3x - 5 > 10C. 4x = 8D. 5x = 156. 以下哪个选项是正确的因式分解?A. x^2 - 4 = (x + 2)(x - 2)B. x^2 - 4 = (x + 2)(x + 2)C. x^2 - 4 = (x - 2)(x + 2)D. x^2 - 4 = (x - 2)(x - 2)7. 以下哪个选项是正确的比例关系?A. 3:4 = 6:8B. 3:4 = 6:9C. 3:4 = 9:12D. 3:4 = 9:68. 以下哪个选项是正确的几何图形的周长计算公式?A. 正方形的周长= 4 × 边长B. 长方形的周长= 2 × (长 + 宽)C. 三角形的周长= 3 × 边长D. 圆的周长 = 直径× π9. 以下哪个选项是正确的几何图形的面积计算公式?A. 正方形的面积 = 边长× 边长B. 长方形的面积= 2 × 长× 宽C. 三角形的面积= 1/2 × 底× 高D. 圆的面积 = 半径× 半径10. 以下哪个选项是正确的统计图表示方法?A. 条形图用于表示时间序列数据B. 折线图用于表示分类数据C. 饼图用于表示部分与整体的关系D. 散点图用于表示两个变量之间的相关性二、填空题(每题2分,共20分)11. 一个数的相反数是-5,那么这个数是_________。
初中七年级数学上册期末考试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若2n +2n +2n +2n =2,则n=( )A .﹣1B .﹣2C .0D .142.实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简2a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b3.如图,AB CD ⊥,且AB CD =.E 、F 是AD 上两点,CE AD ⊥,BF AD ⊥.若CE a =,BF b =,EF c =,则AD 的长为( )A .a c +B .b c +C .a b c -+D .a b c +-4.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( )A .亏了10元钱B .赚了10钱C .赚了20元钱D .亏了20元钱5.实效m ,n 在数轴上的对应点如图所示,则下列各式子正确的是( )A .m n >B .||n m ->C .||m n ->D .||||m n <6.下列图形中,不能通过其中一个四边形平移得到的是( )A .B .C .D .7.如图,△ABC 的面积为3,BD :DC =2:1,E 是AC 的中点,AD 与BE 相交于点P ,那么四边形PDCE 的面积为( )A .13B .710C .35D .1320 8.如图,△ABC ≌△ADE ,若∠B=70°,∠C=30°,∠DAC=35°,则∠EAC 的度数为( )A .40°B .45°C .35°D .25°9.一副直角三角板如图放置,点C 在FD 的延长线上,AB//CF ,∠F=∠ACB=90°,则∠DBC 的度数为( )A .10°B .15°C .18°D .30° 10.一个多边形的内角和与外角和相等,则这个多边形是( )A .四边形B .五边形C .六边形D .八边形二、填空题(本大题共6小题,每小题3分,共18分)1.若0abc >,化简ac b abc a b c abc +++结果是________. 2.袋中装有6个黑球和n 个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为34”,则这个袋中白球大约有________个. 3.关于x 的不等式组430340a x a x +>⎧⎨-≥⎩恰好只有三个整数解,则a 的取值范围是_____________.4.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.5.如图,在△ABC 中,AF 平分∠BAC ,AC 的垂直平分线交BC 于点E ,∠B=70°,∠FAE=19°,则∠C=______度.6.已知13a a +=,则221+=a a__________; 三、解答题(本大题共6小题,共72分)1.解下列方程(1)12225y y y -+-=- (2)()()()22431233x x x ---=-+2.已知关于x 的方程23x m m x -=+与12x +=3x ﹣2的解互为倒数,求m 的值.3.如图,∠BAD=∠CAE=90°,AB=AD ,AE=AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC ≌△ADE ;(2)求∠FAE 的度数;(3)求证:CD=2BF+DE .4.如图,直线AB,CD相交于点O,OD平分∠BOE,OF平分∠AOE(1)判断OF与OD的位置关系,并进行证明.(2)若∠AOC:∠AOD=1:5,求∠EOF的度数.5.某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.(1)请补全条形统计图;(2)若该校共有志愿者600人,则该校九年级大约有多少志愿者?6.某电脑经销商计划购进一批电脑机箱和液晶显示器,若购电脑机箱10台和液液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液示器5台,共需要资金4120元.(1)每台电脑机箱、液晶显示器的进价各是多少元?(2)该经销商购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分) 1、A2、C3、D4、A5、C6、D7、B8、B9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、4或02、23、4332a ≤≤ 4、50°5、246、7三、解答题(本大题共6小题,共72分)1、(1)711=y (2)x=0 2、353、(1)证明见解析;(2)∠FAE=135°;4、(1)OF ⊥OD ,证明详略;(2)∠EOF =60°.5、(1)作图见解析;(2)120.6、(1)每台电脑机箱、液晶显示器的进价各是60元,800元;(2)利润最大为4400元.。
七年级第一学期数学期末抽考试卷班级 考号 姓名同学们, 你们好! 一转眼一个学期飞快地过去了. 在这一个学期里, 我们学到了许多新的数学知识, 提高了数学思维的能力. 现在让我们在这里展示一下自己的真实水平吧!一. 细心选一选 (本题有10个小题, 每小题2分, 共20分) 下面每小题给出的四个选项中, 只有一个是正确的, 请把正确选项前的字母填在题中相应的格子内. 注意可以用各种不同的方法来解决你面前的选择题哦!1. 以下四个有理数运算的式子中: ① (2+3)+4=2+(3+4); ② (2-3)-4=2-(3-4); ③ (2×3)×4=2×(3×4); ④ 2÷3÷4=2÷(3÷4). 正确的运算式子有 (A) 1个 (B) 2个 (C) 3个 (D) 4个2. 如果a 表示有理数, 那么下列说法中正确的是(A) a +和a -一定不相等 (B) a -一定是负数 (C) )(a +-和)(a -+一定相等 (D) ||a 一定是正数 3. 对于多项式13222-+t t , 下列说法中不正确的是(A) 它是关于t 的二次三项式 (B) 它是按t 降幂排列 (C) 它的常数项是1- (D) 二次项的系数是24. 以下3个说法中: ① 在同一直线上的4点,,,A B C D 可以表示5条不同的线段; ② 大于90的角叫做钝角; ③ 同一个角的补角一定大于它的余角. 错误说法的个数有(A) 0个 (B) 1个 (C) 2个 (D) 3个5. 掷两个普通的正方体骰子, 把两个骰子的点数相加, 在以下6个事件中: ① 和为6; ②和为12; ③ 和为14; ④ 和大于2; ⑤ 和小于2; ⑥ 和小于20. 其中不可能发生的事件有 (A) 2个 (B) 3个 (C) 4个 (D) 5个6. 如图, 在数轴上有b a ,两个有理数, 则下列结论中, 不正确的是(A) 0<+b a (B) 0>-b a (C) 0)(2>ba (D) 0)(3>-b a 7. 我国西部地区约占我国国土面积的32, 我国国土面积约960万平方公里. 若用科学记数法表示, 则我国西部地区的面积为(A) 6.4×106平方公里 (B) 6.4×107平方公里 (C) 640×104平方公里 (D) 64×105平方公里ab2112--8. 为了让人们感受随地丢弃废电池对环境造成的影响, 某班环保小组的6名同学记录了自己一学期内自己家中用完的电池数量, 结果如下(单位: 节): 33, 25, 28, 26, 25, 31. 如果该班有45名学生, 那么根据所提供的数据, 请你估计一下, 一学期内全班同学总共用完的电池数量约为(A) 900节 (B) 1 080节 (C) 1 260节 (D) 7 560节9. 将一张大小为10cm ⨯10cm 的正方形纸片,依下图所示方式折叠并剪裁后再展开,其中折线(虚线)正好过三角形两边的中点,则展开后内部的正方形(无阴影部份)面积等于(A) 50cm. (B) 25cm (C) 75cm (D) 40cm 10. 设,,a b c 为不为零的实数, 那么||||||b ac a bc x=++的不同的取值共有(A) 6种 (B) 5种 (C) 4种 (D) 3种二. 耐心填一填 (本题有10个小题, 每小题3分, 共30分) 开动你的脑筋, 将与题目条件有关的内容尽可能全面完整地填在相应的位置上. 大家都在为你加油啊! 11. –2的相反数是 ____ ;73的绝对值是 ____ ; 最大的负整数是 _____ .12. 在括号内填上适当的项: _____)]()][_____([))((-+=+--+a a c b a c b a .13. 如图, 直线CD AB ,相交于点F , AB EF ⊥, 则 ______ 与 ______ 互为余角; ______ 与 ______ 是对顶角.14. 如果一个有理数的绝对值等于它本身, 那么这个数是 ____________ .15. 由一个平面图形绕着它的一条边所在的直线旋转一周形成的几何体,叫做旋转体. 如果有一个几何体,围成它的各个面都是多边形,那么这个几何体叫做多面体.在你所熟悉的立体图形中,旋转体有 ;多面体有 . (要求各举两个例子)16. 右面是两个立体图形的三视图, 请填 出它们的名称是:E DA FB C_____________ 和 ______________ . 17. 右图是一个正方体纸盒的展开图, 请把 -15, 8, -3, 15四个数分别填入余下的四个 正方形中, 使得按虚线折成正方体后, 相对 面上的两个数互为相反数.18. 观察右面的图形, 把你的发现 告诉大家, 我发现了:_____________________________ .19. 我国政府为解决老百姓看病难的问题, 决定下调药品价格. 某种药品在1999年涨价30%后, 2003年降价70%至a , 那么这种药品在1999年涨价前的价格应为 _________ .20. 有以下四个命题: ① 经过直线外一点, 有且只有一条直线与已知直线平行; ② 经过直线外或直线上一点, 有且只有一条直线与已知直线垂直; ③ 两直线被第三条直线所截, 同旁内角互补;④ 两平行直线被第三条直线所截, 内错角相等. 那么, 其中正确命题的序号是 _____________ . (把你认为正确的命题序号都填上)三. 用心答一答 (本题有6个小题, 共50分) 解答要求写出文字说明, 证明过程或计算步骤, 如果你觉得有的题目有点困难, 那么把自己能写出的解答写出一部分也可以, 可不要有题目下面是空白的喔!21. (本小题满分7分)计算: (从以下3个小题中任选一个小题进行计算, 但你得到的分数有点不一样哦! 如果几个小题都做, 则按最高的分数给分) (1) 2003-200+20+23-32; (计算正确得5分)(2) 2003-(200+20)-(23-32) (计算正确得6分) (3) 2003-[200-(20-23+32)] (计算正确得7分)22. (本小题满分7分) 作图: (可以使用刻度尺和圆规) 在右面的三角形中 (1) 画线段BC 的中点D , 并连接AD ; (2) 过点A 画BC 的垂线, 垂足为E ;(3) 过E 画AB 的平行线, 交AC 于点F ; (4) 画ABC 的平分线, 交AC 于G .3-8AB C23. (本小题满分8分)右边有两个大小形状完全相同的直角三角形, 请你在平面上把这两个三角形拼出所有不同形状的四边形,并画出所拼四边形的示意图(标出图中的直角).24. (本小题满分8分)当||3,2bba-----后, 再求这个代数式a+)==-时, 化简代数式]}a b aa([1b{的值.25. (本小题满分10分)学期结束前, 学校想调查学生对初一数学新教材的意见, 特向初中一年级400名学生作了问卷调查, 其结果如下:(1)(2)请画出反映此调查结果的扇形统计图;(3)从统计图中你能得出什么结论? 说说你的理由.26. (本小题满分10分)看过《西游记》的同学, 一定都知道孙悟空会分身术. 他摇身一变, 就变成2个悟空; 这两个悟空摇身一变, 又各变成两个, 一共有4个悟空; 这4个悟空再变, 又变成8个悟空…, 假设悟空一连变了80次, 那么一共有多少个悟空呢? 若已知地球重约5.9×1023千克, 那么请你列出算式来估计一下, 这些悟空的体重总和相当于多少个地球的重量呢? (假设每个悟空重50千克)第一学期七年级期末检测数学参考答案及评分标准一. 选择题(每小题2分, 共20分)二. 填空题(每小题3分, 共30分)(每小题可以酌情给1或2或3分) 11. 2,73, -1 12. c b c b --, 13. AFC BFD EFD BFD ∠∠∠∠,;,14. 非负数 15. 圆柱, 球; 正方体, 三棱锥 16. 三棱锥, 六棱柱 17. 18. 随着多边形(多面体)的边数(面数)增加, 逐渐 地会成为一个圆(圆柱)(意思正确均可给分)19.a 3910020. ① ④ (有一个正确可给1分)三. 解答题(6小题共50分) 21. (本题7分)(1) 1822(5分) (2) 1784(6分) (3) 1824(7分) (计算步骤正确可酌情给分)22. (本题7分) (可分别给分)23. (本题8分, 每种图形正确得2分)24. (本题8分)化简代数式得b a ++1 (3分); 当3=a 时, 1-=b , 代数式的值为3 (3分);8315-3 -15-8AG F BEDC当3-=a 时, 5-=b , 代数式的值为-7 (2分)25. (本题10分)(3分)(2)(4分)(3) 喜欢和非常喜欢新教材的同学占绝大多数, 因为新教材贴近我们的生活, 内容生动有趣, 培养了我们的学习兴趣和动手能力, 提高了我们的数学思维能力. (3分)(回答内容大致正确均可给分)26. (本题10分)寻找悟空 “裂变” 的规律. 我们发现悟空变了80次, 一共有280个悟空; (4分)而210=1024≈103, 所以280≈1024. 1024个悟空的重量约为50×1024=5×1025千克, 那么280个悟空的重量总和应该是地球重量的(5×1025)÷(5.9×1023)≈85倍, 既相当于85个地球的重量. (6分) (答案在80至90之间的都可以给4分)说明:如果利用计算功能较强的计算器,则可得到102的答案.。