求复合函数的单调区间
- 格式:ppt
- 大小:561.50 KB
- 文档页数:17
复合函数单调区间
复合函数的单调性可以通过分析各个函数的单调性来得到。
如果函数f(x) 和g(x) 都是在某个区间上单调递增或单调递减的,则复合函数 h(x) = f(g(x)) 在该区间上也是单调递增或单调递减的。
具体来说,设函数 f(x) 在区间 I 上是单调递增或单调递减的,
函数 g(x) 在区间 J 上是单调递增或单调递减的。
如果区间 J 的值域是区间 I 的子集,则复合函数 h(x) = f(g(x)) 在区间 J 上也
是单调递增或单调递减的。
举个例子,假设函数 f(x) = x^2,在区间I = [0, ∞) 上是单调递
增的;函数 g(x) = x+1,在区间 J = (-∞, ∞) 上是单调递增的。
由于区间 J 的值域 (-∞, ∞) 包含了区间 I,所以复合函数 h(x) =
f(g(x)) = (x+1)^2 在整个区间 J 上都是单调递增的。
需要注意的是,这里的结果只适用于两个函数的单调性相互影响的情况。
如果函数 f(x) 和 g(x) 的单调性没有明显的关系,
那么复合函数的单调性也很难确定。
在这种情况下,可以考虑绘制函数图像或利用导数分析来判断复合函数的单调性。
序轴法——复合函数单调区间的一种简捷求法复合函数是高中数学中的一类重要函数,讨论复合函数的单调性,求出其单调区间是复合函数问题中的一类重要问题。
而一些书刊上对复合函数单调区间的求法过于繁琐,本文介绍一种求复合函数单调区间的简捷方法,供大家参考。
本文介绍的复合函数单调区间求法的理论依据是下面的 定理(判定定理):若)(,),(),(1211x x x y F u F u F n n +=== 都是单调函数,则n 次复合函数][}{)(121x y F F F n += 在其定义域内也是单调函数,且它为增函数的充要条件是),(1x y F=),(21x Fu =)(,1x F u n n += 中减函数的个数为偶数;它为减函数的充要条件是)(,),(),(1211x x x y F u F u F n n +=== 中减函数的个数为奇数。
[]1下面我们先通过一个例子来说明具体的方法。
例1. 已知x x x f 228)(-+=,若)2()(2x f x g -=,求函数)(x g 的单调区间。
(89年高考理科(11)改编--原题为选择题)解:令t=2x 2-,则82)(2++-=t t f t ,故)(x g 是由这两个函数复合而成的,定义域为实数集R 。
当,1<t 即1122-<⇔<-x x 或1>x 时,)(t f ; 当,1≥t 即11221≤≤-⇔-≥x x 时, )(t f ; 当0<x 时,)(x t ;当0≥x 时,)(x t 。
将-1,0.1按大小顺序标在以向右为正方向的有向直线上(由于不考虑单位,只考虑顺序,故称这条直线为“序轴”),再把各层函数的增减性用升、降箭头标在相应区间上方,然后,在序轴下方的相应区间,根据复合函数单调性的判定定理,用箭头标出复合函数的单调性。
如(图1))(x t : )(t f :)(x g : -1 0 1 x(图1)由图1可知,)(x g 的递增区间为](1,-∞-,[0,1];递减区间为(-1,0),(1,+)∞。
序轴法——复合函数单调区间的一种简捷求法复合函数是高中数学中的一类重要函数,讨论复合函数的单调性,求出其单调区间是复合函数问题中的一类重要问题。
而一些书刊上对复合函数单调区间的求法过于繁琐,本文介绍一种求复合函数单调区间的简捷方法,供大家参考。
本文介绍的复合函数单调区间求法的理论依据是下面的定理(判定定理):若)(,),(),(1211x x x y F u F u F n n +=== 都是单调函数,则n 次复合函数][}{)(121x y F F F n += 在其定义域内也是单调函数,且它为增函数的充要条件是),(1x y F =),(21x F u =)(,1x F u n n += 中减函数的个数为偶数;它为减函数的充要条件是)(,),(),(1211x x x y F u F u F n n +=== 中减函数的个数为奇数。
[]1下面我们先通过一个例子来说明具体的方法。
例1. 已知x x x f 228)(-+=,若)2()(2x f x g -=,求函数)(x g 的单调区间。
(89年高考理科(11)改编--原题为选择题)解:令t=2x 2-,则82)(2++-=t t f t ,故)(x g 是由这两个函数复合而成的,定义域为实数集R 。
当,1<t 即1122-<⇔<-x x 或1>x 时,)(t f ;当,1≥t 即11221≤≤-⇔-≥x x 时, )(t f ; 当0<x 时,)(x t ;当0≥x 时,)(x t 。
将-1,0.1按大小顺序标在以向右为正方向的有向直线上(由于不考虑单位,只考虑顺序,故称这条直线为“序轴”),再把各层函数的增减性用升、降箭头标在相应区间上方,然后,在序轴下方的相应区间,根据复合函数单调性的判定定理,用箭头标出复合函数的单调性。
如(图1))(x t :)(t f :)(x g :x(图1)由图1可知,)(x g 的递增区间为](1,-∞-,[0,1];递减区间为(-1,0),(1,+)∞。
复合函数单调区间的求法汪 卫 国(孝昌二中,湖北 432900)函数的单调性是函数的最重要性质之一,它有很广泛的应用,在整个高中数学中占有重要的地位,每年全国各地的高考试题几乎都会涉及到函数的单调性,而且多数情况下都是考察难易程度不同的复合函数的单调性,因此,掌握复合函数单调区间的求法就显得尤为重要。
本文先通过介绍求解复合函数单调区间的一般步骤,再结合一些相应的例题,以帮助同学们切实掌握复合函数单调区间的求法。
定义 由函数)(u f y =和)(x g u =所构成的函数)]([x g f y =称为复合函数,其中)(u f y =通常称为外层函数,)(x g u =称为内层函数。
求上述复合函数)]([x g f y =的单调区间,我们一般可以按照下面这几个步骤来进行:(1) 写出构成原复合函数的外层函数)(u f y =和内层函数)(x g u =;(2) 求外层函数)(u f y =的单调区间(包括增区间和减区间)B A 、等;(3) 令内层函数A x g u ∈=)(,求出x 的取值范围M; (4) 若集合M 是内层函数)(x g u =的一个单调区间,则M 便是原复合函数)]([x g f y =的一个单调区间;若M 不是内层函数)(x g u =的一个单调区间,则需把M 划分成内层函数)(x g u =的若干个单调子区间,这些单调子区间便分别是原复合函数)]([x g f y =的单调区间;(5) 根据复合函数“同增异减”的复合原则,分别指出原复合函数)]([x g f y =在集合M 或这些单调子区间的增减性;(6) 令内层函数B x g u ∈=)(,同理,重复上述(3)、(4)、(5)步骤。
若外层函数)(u f y =还有更多的单调区间C 、D ,则同步骤(6)类似,不断地重复上述步骤。
例1 求函数2)21(-=x y 的单调区间 解 原函数是由外层函数u y =和内层函数2)21(-=x u 复合而成的;易知)0[∞+,是外层函数u y =的单调增区间; 令02)21(≥-=x u ,解得x 的取值范围为]1,(--∞; 由于]1,(--∞是内层函数2)21(-=x u 的一个单调减区间,于是]1,(--∞便是原函数的一个单调区间;根据复合函数“同增异减”的复合原则知,]1,(--∞是原函数的单调减区间。
复合函数求单调区间定义 由函数)(u f y =和)(x g u =所构成的函数)]([x g f y =称为复合函数,其中)(u f y =通常称为外层函数,)(x g u =称为内层函数。
求上述复合函数)]([x g f y =的单调区间,我们一般可以按照下面这几个步骤来进行:(1) 写出构成原复合函数的外层函数)(u f y =和内层函数)(x g u =;(2) 求外层函数)(u f y =的单调区间(包括增区间和减区间)B A 、等;(3) 令内层函数A x g u ∈=)(,求出x 的取值范围M ;(4) 若集合M 是内层函数)(x g u =的一个单调区间,则M 便是原复合函数)]([x g f y =的一个单调区间;若M 不是内层函数)(x g u =的一个单调区间,则需把M 划分成内层函数)(x g u =的若干个单调子区间,这些单调子区间便分别是原复合函数)]([x g f y =的单调区间;(5) 根据复合函数“同增异减”的复合原则,分别指出原复合函数)]([x g f y =在集合M 或这些单调子区间的增减性;(勿忘定义域)(6) 令内层函数B x g u ∈=)(,同理,重复上述(3)、(4)、(5)步骤。
若外层函数)(u f y =还有更多的单调区间C 、D ,则同步骤(6)类似,不断地重复上述步骤。
例题:求函数2)21(-=x y 的单调区间 解 原函数是由外层函数u y =和内层函数2)21(-=x u 复合而成的;易知)0[∞+,是外层函数u y =的单调增区间; 令02)21(≥-=xu ,解得x 的取值范围为]1,(--∞; 由于]1,(--∞是内层函数2)21(-=xu 的一个单调减区间,于是]1,(--∞便是原函数的一个单调区间;根据复合函数“同增异减”的复合原则知,]1,(--∞是原函数的单调减区间。
例2 求函数)23(log 221x x y --=的单调区间. 解 原函数是由外层函数u y 21log =和内层函数223x x u --=复合而成的; 易知),0(+∞是外层函数u y 21log =的单调减区间; 令0232>--=x x u ,解得x 的取值范围为)1,3(-;结合二次函数的图象可知)1,3(-不是内层函数223x x u --=的一个单调区间,但可以把区间)1,3(-划分成内层函数的两个单调子区间]1,3(--和)1,1[-,其中]1,3(--是其单调增区间,)1,1[-是其单调减区间;于是由复合函数“同增异减”的复合原则可知,]1,3(--是原函数的单调减区间,)1,1[-是原函数的单调增区间。
求解复合函数单调性【引理证明】已知函数))((x g f y =.若)(x g u =在区间b a ,( )上是减函数,其值域为(c ,d),又函数)(u f y =在区间(c,d)上是减函数,那么,原复合函数))((x g f y =在区间b a ,( )上是增函数.证明:在区间b a ,()内任取两个数21,x x ,使b x x a <<<21因为)(x g u =在区间b a ,()上是减函数,所以)()(21x g x g >,记)(11x g u =,)(22x g u =即),(,21,21d c u u u u ∈>且因为函数)(u f y =在区间(c,d)上是减函数,所以)()(21u f u f <,即))(())((21x g f x g f <,故函数))((x g f y =在区间b a ,()上是增函数. 【方法技巧】1.复合函数单调性的判断复合函数的单调性是由两个函数共同决定。
为了记忆方便,我们把它们总结成一个图表:以上规律还可总结为:“同向得增,异向得减”或“同增异减”. 2.复合函数))((x g f y =的单调性判断步骤: ⅰ 确定函数的定义域;ⅱ 将复合函数分解成两个简单函数:)(u f y =与)(x g u =。
ⅲ 分别确定分解成的两个函数的单调性;ⅳ 若两个函数在对应的区间上的单调性相同(即都是增函数,或都是减函数),则复合后的函数))((x g f y =为增函数; 若两个函数在对应的区间上的单调性相异(即一个是增函数,而另一个是减函数),则复合后的函数))((x g f y =为减函数。
【例题演练】例1、 求函数)32(log 221--=x x y 的单调区间,并用单调定义给予证明解:定义域 130322-<>⇒>--x x x x 或单调减区间是),3(+∞ 设2121),3(,x x x x <+∞∈且 则)32(log 121211--=x x y )32(log 222212--=x x y---)32(121x x )32(222--x x =)2)((1212-+-x x x x∵312>>x x ∴012>-x x 0212>-+x x ∴)32(121--x x >)32(222--x x 又底数1210<< ∴012<-y y 即 12y y < ∴y 在),3(+∞上是减函数同理可证:y 在)1,(--∞上是增函数[例]2、讨论函数)123(log )(2--=x x x f a 的单调性. [解]由01232>--x x 得函数的定义域为}.31,1|{-<>x x x 或则当1>a 时,若1>x ,∵1232--=x x u 为增函数,∴)123(log )(2--=x x x f a 为增函数.若31-<x ,∵1232--=x x u 为减函数. ∴)123(log )(2--=x x x f a 为减函数。
复合函数求单调区间的数形结合方法作者:冯艳超来源:《课程教育研究》2017年第28期【中图分类号】G633.6 【文献标识码】A 【文章编号】2095-3089(2017)28-0133-01对于复合函数求单调区间的问题常用解决方法有两种:第一种方法可以用导数方法来求;但是解不等式有的时候难度很大;第二种方法可以用数形结合的方法来求。
这种求复合函数单调区间的方法直观、简便、易懂、便于学生掌握,是值得一试的好方法。
现将这种方法解析如下:比如,求函数y=log■(x2-4x-5)的单调区间。
解:要先分内外层:内层函数为:t=x2-4x-5;外层函数为:y=log■t,画出内层函数t=x2-4x-5的图像;由内层图像可直接观察得到内层函数的定义域和单调区间,外层函数y=log■t当t∈(0,∞)是减函数,用方向箭头代表单调性标在内层图像上;在x轴上方图像对应外层函数为减函数,x轴下方图像无对应的外层单调性即复合函数在这部分范围无意义,只观察内层和外层单调性都同时存在的部分即可;x∈(-∞,-1)内层函数是减函数,外层函数是减函数,所以根据同增异减的原则复合函数在x∈(-∞,-1)是增函数;同理在x∈(5,+∞)内层函数是增函数而对应外层函数是减函数,根据同增异减的原则复合函数在是x∈(5,+∞)减函数。
即:复合函数在区间(-∞,-1)是增函数,在区间(5,+∞)减函数。
现将此方法总结一下:复合函数求单调区间,首先要把复合函数分为内层函数和外层函数;其次画内层函数图像,这是因为自变量范围和单调区间能直接可观察;第三步求出外层函数的单调区间标画在内层函数的图像上;第四步根据内外层函数的同增异减原则直接得出复合函数的单调区间。
再比如,求y=(sinx)2-sinx+1的单调区间。
解:内层函数: t=sinx外层函数:y=t2-t+1在t≥■范围上是增函数,在t≤■范围上是减函数。
周期函数画一个周期的图像即可,由图可知直线t=■上方的内层函数图像对应外层函数单调性是增函数;t=■下方的内层函数图象对应外层函数单调性是减函数;要先求出t=■与内层函数的交点的横坐标,因为交点把内层函数分成四段对应不同的外层单调性,在区间-■,■内层函数是增函数对应外层函数是减函数,所以在这个区间复合函数是减函数;在区间■,■内内层函数是增函数对应外层函数是增函数,所以在这个区间复合函数是增函数;其他同理可得;因为内层函数是周期函数,所以写复合函数的单调区间加上周期即可,所以复合函数单调区间即:2k?仔-■,2k?仔+■(k∈z)和2k?仔+■,2k?仔+■(k∈z)是增函数;2k?仔+■,2k?仔+■(k∈z)和2k?仔+■,2k?仔+■(k∈z)是减函数。
有关复合函数单调性的定义和解题方法一、复合函数的定义设y=f(u)的定义域为A ,u=g(x)的值域为B ,若A B ,则y 关于x 函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量.二、函数的单调区间1.一次函数y=kx+b(k ≠0).解 当k >0时,(-∞,+∞)是这个函数的单调增区间;当k <0时,(-∞,+∞)是这个函数的单调减区间.2.反比例函数y=x k (k ≠0).解 当k >0时,(-∞,0)和(0,+∞)都是这个函数的单调减区间,当k <0时,(-∞,0)和(0,+∞)都是这个函数的单调增区间.3.二次函数y=ax 2+bx+c(a ≠0).解 当a >1时(-∞,-a b 2)是这个函数的单调减区间,(-a b2,+∞)是它的单调增区间;当a <1时(-∞,-a b 2)是这个函数的单调增区间,(-a b2,+∞)是它的单调减区间;4.指数函数y=ax(a >0,a ≠1).解 当a >1时,(-∞,+∞)是这个函数的单调增区间,当0<a <1时,(-∞,+∞)是这个函数的单调减区间.5.对数函数y=log a x(a >0,a ≠1).解 当a >1时,(0,+∞)是这个函数的单调增区间,当0<a <1时,(0,+∞)是它的单调减区间.三、复合函数单调性相关定理引理1 :已知函数y=f [g(x)].若u=g(x)在区间(a,b)上是增函数,其值域为(c ,d),又函数y=f(u)在区间(c,d)上是增函数,那么,原复合函数y=f [g(x)]在区间(a,b)上是增函数.(本引理中的开区间也可以是闭区间或半开半闭区间.)证明 在区间(a,b)内任取两个数x 1,x 2,使a <x 1<x 2<b.因为u=g(x)在区间(a,b)上是增函数,所以g(x 1)<g(x 2),记u1=g(x 1),u2=g(x 2)即u 1<u 2,且u 1,u 2∈(c,d).因为函数y=f(u)在区间(c,d)上是增函数,所以f(u 1)<f(u 2),即f [g(x 1)]<f [f(x 2)], 故函数y=f [g(x)]在区间(a,b)上是增函数.引理2:已知函数y=f [g(x)].若u=g(x)在区间(a,b)上是减函数,其值域为(c ,d),又函数y=f(u)在区间(c,d)上是减函数,那么,复合函数y=f [g(x)]在区间(a,b)上是增函数.证明 在区间(a,b)内任取两个数x 1,x 2,使a <x 1<x 2<b.因为函数u=g(x)在区间(a,b)上是减函数,所以g(x 1)>g(x 2),记u1=g(x 1),u2=g(x 2)即u 1>u 2,且u 1,u 2∈(c,d).因为函数y=f(u)在区间(c,d)上是减函数,所以f(u 1)<f(u 2),即f [g(x 1)]<f [f(x 2)],故函数y=f [g(x)]在区间(a,b)上是增函数.规律:当两个函数的单调性相同时,其复合函数是增函数;当两个函数的单调性不同时,其复合函数为减函数。
复合函数的单调性
例1.(1)判断y=单调性。
解:判断函数y 的定义域,易知定义域为R 设u=,y= (将原函数分解为内函数和外函数) 由u==知u 在(-∞,-2]上为减函数,(-2,+∞)在上为增函数, y=为减函数 (分别判断内外函数的单调性) ∴原函数的增区间为(-∞,-2],减区间为(-2,+∞)
(2)判断32x y -=单调性
小结:求指数型复合函数单调性步骤:
第一步,确定复合函数的定义域,即看内外函数对自变量x 的限制,然后解不等式,求交集。
第二步,将原函数分解为初等函数y=f(u),g(x)的形式,
第三步,分别y=f(u),g(x)的单调区间
第四步,根据“同增异减”给出原函数的单调区间。
练习1.
(1)函数y=的单调递增区间为( )
A,(-∞,0] B[0,+∞) C(-∞,-1] D[1,+∞)(2 ) 函数y=2(x 3)2+的单调递增区间为____________________
(3)求函数y=232x
x a -++的单调区间
例2.求y=的单调区间
2412x x +⎛⎫ ⎪⎝⎭
2x 4x +12u ⎛⎫ ⎪⎝⎭
2x 4x +2
(x 2)4+-12u
⎛⎫ ⎪⎝⎭
2112x -⎛⎫ ⎪⎝
⎭
练习2.
求12y ⎛=
⎪⎝⎭
例3.求函数y=的单调区间与值域
练习3.求函数y=的单调区间与值域
21223x x +-+x 11242x ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭。
有关复合函数单调性的定义和解题方法一、复合函数的定义设y=f(u)的定义域为A ,u=g(x)的值域为B ,若A B ,则y 关于x 函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量.二、函数的单调区间1.一次函数y=kx+b(k ≠0).解 当k >0时,(-∞,+∞)是这个函数的单调增区间;当k <0时,(-∞,+∞)是这个函数的单调减区间.2.反比例函数y=x k (k ≠0).解 当k >0时,(-∞,0)和(0,+∞)都是这个函数的单调减区间,当k <0时,(-∞,0)和(0,+∞)都是这个函数的单调增区间.3.二次函数y=ax 2+bx+c(a ≠0).解 当a >1时(-∞,-a b 2)是这个函数的单调减区间,(-a b2,+∞)是它的单调增区间;当a <1时(-∞,-a b 2)是这个函数的单调增区间,(-a b2,+∞)是它的单调减区间;4.指数函数y=ax(a >0,a ≠1).解 当a >1时,(-∞,+∞)是这个函数的单调增区间,当0<a <1时,(-∞,+∞)是这个函数的单调减区间.5.对数函数y=log a x(a >0,a ≠1).解 当a >1时,(0,+∞)是这个函数的单调增区间,当0<a <1时,(0,+∞)是它的单调减区间.三、复合函数单调性相关定理引理1 已知函数y=f [g(x)].若u=g(x)在区间(a,b)上是增函数,其值域为(c ,d),又函数y=f(u)在区间(c,d)上是增函数,那么,原复合函数y=f [g(x)]在区间(a,b)上是增函数.(本引理中的开区间也可以是闭区间或半开半闭区间.)证明 在区间(a,b)内任取两个数x 1,x 2,使a <x 1<x 2<b.因为u=g(x)在区间(a,b)上是增函数,所以g(x 1)<g(x 2),记u1=g(x 1),u2=g(x 2)即u 1<u 2,且u 1,u 2∈(c,d).因为函数y=f(u)在区间(c,d)上是增函数,所以f(u 1)<f(u 2),即f [g(x 1)]<f [f(x 2)], 故函数y=f [g(x)]在区间(a,b)上是增函数.引理2 已知函数y=f [g(x)].若u=g(x)在区间(a,b)上是减函数,其值域为(c ,d),又函数y=f(u)在区间(c,d)上是减函数,那么,复合函数y=f [g(x)]在区间(a,b)上是增函数.证明 在区间(a,b)内任取两个数x 1,x 2,使a <x 1<x 2<b.因为函数u=g(x)在区间(a,b)上是减函数,所以g(x 1)>g(x 2),记u1=g(x 1),u2=g(x 2)即u 1>u 2,且u 1,u 2∈(c,d).因为函数y=f(u)在区间(c,d)上是减函数,所以f(u 1)<f(u 2),即f [g(x 1)]<f [f(x 2)],故函数y=f [g(x)]在区间(a,b)上是增函数.规律:当两个函数的单调性相同时,其复合函数是增函数;当两个函数的单调性不同时,其复合函数为减函数。