列联表分析
- 格式:ppt
- 大小:442.00 KB
- 文档页数:29
第5章列联表分析与对数线性模型实验5-1 列联表分析一、列联表若总体中的个体可按两个属性A与B分类,A有r个等级,B有c个等级,从总体中抽取大小为N的样本,每种属性的样本数如下表所示:称上表为r×c列联表。
当r=2=c时,称上表为2×2列联表或四格表。
本节仅涉及四格表检验。
例1 对肺癌患者和对照组的调查结果:问是否患肺癌与是否吸烟独立与否?例2 1976年至1977年美国佛罗里达州29个区的凶杀案件中凶手的肤色和是否被判死刑的326个犯人的情况如下,问是否存在种族歧视与审判不公?二、实验内容数据来源:wushujiance.sav某防疫站观察当地一个污水排放口在高温和低温季节中伤寒病菌检出情况。
其中高温和低温季节各观测12次,数据有24个观测样本,有两个属性变量degree 和test,degree有1(高温季节)和2(低温季节)两个等级;test有1(+)和2(-)两个等级。
问:两个季节的伤寒菌检出率有无差别?数据如下图所示:意为:Degree1(高温) 2(低温) 合计 test1(检出)17 8 2(没有检出) 115 16合计121224设A :高温季节;A :低温季节;B :检出;B :没有检出。
记)|(1A B P p =,2p =)|(A B P 此处欲检验0H :21p p =1H ↔:21p p ≠检验统计量:Pearson 卡方统计量=21212211222112)(++++-=n n n n n n n n n χ~)(12χ (渐进)称此检验为卡方检验。
此外,可以证明:卡方检验等价于独立性检验(A 属性与B 属性独立),即:0H :21p p =1H ↔:21p p ≠等价于0H :j i ij p p p ⋅⋅=1H ↔:j i ij p p p ••≠,.2,1,=j i其中nn p ij ij =,nn p i i +•=,n n p j j +•=,.2,1,=j i实验过程:(1)打开数据文件;(2)分析->描述统计->交叉表;相依系数:其数值在0~1之间,但不能达到1,是行变量和列变量相关性的度量指标。
用SPSS进行列联表分析(Crosstabs)实例列联表分析(Crosstabs)列联表是指两个或多个分类变量各水平的频数分布表,又称频数交叉表。
SPSS的Crosstabs过程,为二维或高维列联表分析提供了22种检验和相关性度量方法。
其中卡方检验是分析列联表资料常用的假设检验方法。
例子:山东烟台地区病虫测报站预测一代玉米螟卵高峰期。
预报发生期y为3级(1级为6月20日前,2级为6月21-25日,3级为6月25日后);预报因子5月份平均气温x1(℃)分为3级(1级为16.5℃以下,2级为16.6-17.8℃,3级为17.8℃以上),6月上旬平均气温x2(℃)分为3级(1级为20℃以下,2级为20.1-21.5℃,3级为21.5℃以上),6月上旬降雨量x3(mm)分为3级(1级为15mm以下,2级为15.1-30mm,3级为30mm以上),6月中旬降雨量x4(mm)分为3级(1级为29mm以下,2级为29.1-36mm,3级为36mm以上)。
数据如下表。
注:摘自《农业病虫统计测报》131页。
1) 输入分析数据在数据编辑器窗口打开“data1-3.sav”数据文件。
数据文件中变量格式如下:2)调用分析过程在菜单选中“Analyze-Descriptive- Crosstabs”命令,弹出列联表分析对话框,如下图3)设置分析变量选择行变量:将“五月气温[x1],六月上气温[x2],六月上降雨[x3],六月中降雨[x4]”变量选入“Rows:”行变量框中。
选择列变量:将“玉米螟卵高峰发生期[y]”变量选入“Columns:”列变量框中。
4)输出条形图和频数分布表Display clustered bar charts: 选中显示复式条形图。
Suppress table: 选中则不输出多维频数分布表。
5)统计量输出点击“Statistics”按钮,弹出统计分析对话框(如下图)。
Chi-Square: 卡方检验。
列联表分析2篇【篇一:列联表分析基础知识】列联表是数据分析中一种重要的数据技术,利用列联表可以发现不同类型变量之间的关联规律和趋势,进行变量之间的比较和分析。
以下是列联表分析的基础知识。
一、列联表的概念列联表是一种统计数据表格,用于显示两个或多个分类变量之间的关系。
对于两个分类变量,列联表又称为二维列联表。
该表格提供了一种比较各个类别之间差异的方式,便于发现不同类别的相似性和差异性。
二、列联表的结构二维列联表通常由行和列组成,其中行指的是一个分类变量的各个类别,列指的是另一个分类变量的各个类别。
表格中,每一个单元格的数值表示了两个变量在该部分的相交点上的交叉频数,或者是各组别之间的距离。
三、列联表的分析列联表的分析可以通过一些指标进行,包括比例、百分比以及卡方检验等。
通过这些指标,可以进行列联表的符号分析、比较分析和推理分析等。
列联表中的数据也可以用来绘制柱状图或其他图形,以呈现不同类型变量之间更为明显和直观的关系。
四、列联表在数据分析中的应用列联表在数据分析中的应用非常广泛,例如在医学、社会学、市场研究和心理学等学科领域。
通过列联表可以发现不同群体的特征和行为模式,同时也可以帮助研究人员确定统计分析或其它类型的方法,以更好地了解数据中的变量关系。
五、列联表分析的注意事项在进行列联表分析时,需要注意以下事项:1. 结果的解释应当以具体的单元格数值、比例、百分比等为主要参考,而不是简单地依赖对整个表格的描述性统计信息进行解释。
2. 在进行比较分析时,需要对被比较的群体之间进行条件控制,以减少外部变量的影响。
3. 不同类型变量之间的关联性结果不一定具有因果关系,因此需要谨慎解读结果。
以上就是列联表分析的基础知识介绍,希望能对读者进行参考和借鉴,更好地应用于实际数据分析工作中。
【篇二:列联表分析案例】列联表分析是一种重要的数据分析方法,以下是一个旅游服务公司的列联表分析案例。
该公司在大连和厦门两地开展业务,通过对两地客户的调查数据进行分析,了解不同地区客户的特征和需求,并为下一步决策提供数据支持。
统计学中常用的数据分析方法列联表分析列联表是观测数据按两个或更多属性(定性变量)分类时所列出的频数表。
简介:一般,若总体中的个体可按两个属性A、B分类,A有r个等级A1,A2,…,Ar,B有c个等级B1,B2,…,Bc,从总体中抽取大小为n的样本,设其中有nij个个体的属性属于等级Ai和Bj,nij称为频数,将r×c个nij排列为一个r行c列的二维列联表,简称r×c 表。
若所考虑的属性多于两个,也可按类似的方式作出列联表,称为多维列联表。
列联表又称交互分类表,所谓交互分类,是指同时依据两个变量的值,将所研究的个案分类。
交互分类的目的是将两变量分组,然后比较各组的分布状况,以寻找变量间的关系。
用于分析离散变量或定型变量之间是否存在相关。
列联表分析的基本问题是,判明所考察的各属性之间有无关联,即是否独立。
如在前例中,问题是:一个人是否色盲与其性别是否有关?在r×с表中,若以pi、pj和pij分别表示总体中的个体属于等级Ai,属于等级Bj和同时属于Ai、Bj的概率(pi,pj称边缘概率,pij称格概率),“A、B两属性无关联”的假设可以表述为H0:pij=pi·pj,(i=1,2,…,r;j=1,2,…,с),未知参数pij、pi、pj的最大似然估计(见点估计)分别为行和及列和(统称边缘和)为样本大小。
根据K.皮尔森(1904)的拟合优度检验或似然比检验(见假设检验),当h0成立,且一切pi>0和pj>0时,统计量的渐近分布是自由度为(r-1)(с-1) 的Ⅹ分布,式中Eij=(ni·nj)/n称为期望频数。
当n足够大,且表中各格的Eij都不太小时,可以据此对h0作检验:若Ⅹ值足够大,就拒绝假设h0,即认为A与B有关联。
在前面的色觉问题中,曾按此检验,判定出性别与色觉之间存在某种关联。
需要注意:若样本大小n不很大,则上述基于渐近分布的方法就不适用。
列联表分析公式总结卡方检验与列联表关联度的计算公式列联表分析公式总结,卡方检验与列联表关联度的计算公式随着数据分析的广泛应用,列联表分析成为了一种常见的研究方法。
用于研究两个或多个分类变量之间的关联程度。
本文将总结列联表分析相关的公式,特别重点介绍卡方检验以及计算列联表关联度的公式。
一、列联表的基本概念和符号表示在列联表分析中,我们通常会使用一个二维的表格来表示两个或多个分类变量之间的关系。
这个表格称为列联表或交叉表。
为了方便理解本文后续的公式,我们先来介绍列联表的基本概念和符号表示。
在一个二维的列联表中,分类变量A有r个水平,分类变量B有c个水平。
我们可以将列联表表示为如下的形式:B1 B2 B3 ... Bc 总计(A)A1 n11 n12 n13 ... n1c n1.A2 n21 n22 n23 ... n2c n2.A3 n31 n32 n33 ... n3c n3.... ... ... ... ... ... ...Ar nr1 nr2 nr3 ... nrc nr.总计(B) n.1 n.2 n.3 ... n.. N其中,rij表示两个分类变量A和B的第i个水平与第j个水平的交叉频数。
n1.表示分类变量A的第1个水平的总频数,nr.表示分类变量A的第r个水平的总频数。
而n.1表示分类变量B的第1个水平的总频数,n..表示所有水平的总频数。
二、卡方检验公式卡方检验是利用列联表数据来检验两个或多个分类变量之间的关联程度。
卡方检验的原假设是两个分类变量是独立的,备选假设是两个分类变量是相关的。
卡方检验的统计量为卡方值(χ2),其计算公式如下:χ2 = ∑ [ (Oij - Eij)^2 / Eij ]其中,Oij表示观察到的频数,Eij表示期望的频数。
期望的频数Eij 可以通过下面的公式进行计算:Eij = (ni. * n.j) / N上述公式中,ni.表示分类变量A的第i个水平的总频数,n.j表示分类变量B的第j个水平的总频数,N表示总频数。
列联分析一、列联表的构造列链表是由两个以上的变量进行交叉分类的频数分布表。
例如表1:表1(列)的划分类别视为C,则可以把每一个具体的列联表称为R×C列联表。
二、列联表的分布在表1中,最右边显示了态度变量的总数,如赞成改革方案的共有279人,反对改革方案的共有141人,对此称为行的边缘分布。
同理,100、120、90、110称为列边缘分布。
这样列联表所表现的就是在变量X条件下变量Y的分布,或者是在变量Y的条件下变量X的分布,因此又把列联表中的观察值分布称为条件分布,每个具体的观察值就是条件频数。
例如,一个公司赞成改革方案的职工有68人就是一个条件频数。
为了能在相同的基数上比较,使列联表中的数据提以对变量的联合分布的关系看得更清楚一些。
为了更深入的分析,需引入期望分布的概念。
期望值分布表。
如表3所示。
在全部420个样本中,赞成改革方案的有279人,占总数的66.4%,那么对第一分公司来说,赞成该方案的人数应当为0.664×100=66人,66人即为期望值。
将观察值和期望值频数结合在一起,就可以得到观察值和期望值对比分布表,如表4所示。
就应该有664.04321====ππππ(i π为第i 个分公司赞成改革方案的百分比),对于需要验证这一假设,可以采用2χ分布进行检验。
三、2χ统计量2χ可以用于变量间拟合优度检验和独立性检验,可以利用测定两个分类变量之间的相关程度。
若用0f 表示观察值频数,用e f 表示期望值频数,则2χ统计量为:()∑-=ee f f f 202χ计算2χ统计量的步骤(可见表5): 步骤一:用观察值0f 减去期望值e f 。
步骤二:将()e f f -0之差平方。
步骤三:将平方20)(e f f -结果除以e f 。
步骤四:将步骤三的结果加总。
表5 2χ计算表0fe f()e f f -020)(e f f - 20)(e f f -/e f68 66 2 4 0.060606 75 80 -5 25 0.3125 57 60 -3 9 0.15 79 73 6 36 0.493151 32 34 -2 4 0.117647 45 40 5 25 0.625 33 30 3 9 0.3 31 37 -6 36 0.9729733.031877()∑-=ee f f f 202χ=3.03192χ统计量有这样几个特征:首相2χ≥0,因为它是对平方值结果的汇总。
列联分析一、列联表的构造列链表是由两个以上的变量进行交叉分类的频数分布表。
例如表1:表1(列)的划分类别视为C,则可以把每一个具体的列联表称为R×C列联表。
二、列联表的分布在表1中,最右边显示了态度变量的总数,如赞成改革方案的共有279人,反对改革方案的共有141人,对此称为行的边缘分布。
同理,100、120、90、110称为列边缘分布。
这样列联表所表现的就是在变量X条件下变量Y的分布,或者是在变量Y的条件下变量X的分布,因此又把列联表中的观察值分布称为条件分布,每个具体的观察值就是条件频数。
例如,一个公司赞成改革方案的职工有68人就是一个条件频数。
为了能在相同的基数上比较,使列联表中的数据提以对变量的联合分布的关系看得更清楚一些。
为了更深入的分析,需引入期望分布的概念。
期望值分布表。
如表3所示。
在全部420个样本中,赞成改革方案的有279人,占总数的66.4%,那么对第一分公司来说,赞成该方案的人数应当为0.664×100=66人,66人即为期望值。
将观察值和期望值频数结合在一起,就可以得到观察值和期望值对比分布表,如表4所示。
就应该有664.04321====ππππ(i π为第i 个分公司赞成改革方案的百分比),对于需要验证这一假设,可以采用2χ分布进行检验。
三、2χ统计量2χ可以用于变量间拟合优度检验和独立性检验,可以利用测定两个分类变量之间的相关程度。
若用0f 表示观察值频数,用e f 表示期望值频数,则2χ统计量为:()∑-=ee f f f 202χ计算2χ统计量的步骤(可见表5): 步骤一:用观察值0f 减去期望值e f 。
步骤二:将()e f f -0之差平方。
步骤三:将平方20)(e f f -结果除以e f 。
步骤四:将步骤三的结果加总。
表5 2χ计算表0fe f()e f f -020)(e f f - 20)(e f f -/e f68 66 24 0.060606 75 80 -5 25 0.3125 57 60 -3 9 0.15 79 736 36 0.493151 32 34 -2 4 0.117647 45 40 5 25 0.625 33 30 3 9 0.3 31 37 -6 36 0.9729733.031877()∑-=ee f f f 202χ=3.03192χ统计量有这样几个特征:首相2χ≥0,因为它是对平方值结果的汇总。
列联表分析列联表分析是统计学中一种常用的方法,用于研究两个或更多个变量之间的关系。
它通过对数据进行分类和统计,能够揭示变量之间的相关性和相互影响。
列联表分析是一种二维表格形式的统计分析方法,也被称为交叉表或表格分析。
在一张列联表中,变量被分成若干行和列,交叉点处给出的是两个变量的交集部分的频数或频率。
通过对这些频数或频率进行分析,我们可以观察和推断两个变量之间的关系。
列联表可以应用于各种领域,例如市场调研、社会学、医学研究等。
在市场调研中,列联表可以用来分析不同产品类型的销售数据和顾客的购买偏好。
在社会学领域,列联表可以用来研究不同人群的特征和行为差异。
在医学研究中,列联表可以用来分析不同治疗方法的有效性和副作用。
列联表分析的基本原理是比较预期频数和观察频数之间的差异。
预期频数是基于各个变量的边际总数和整体频数的比例来计算的。
观察频数是实际观察到的频数。
通过比较预期频数和观察频数的差异,我们可以判断两个变量之间是否存在相关性。
进行列联表分析时,常用的统计指标包括卡方检验和列联比率。
卡方检验用于检验观察频数和预期频数之间的差异是否显著。
如果差异显著,即意味着两个变量之间存在相关性。
而列联比率则用于衡量两个变量之间的相关性强度,它是各个交叉点处的观察频数与预期频数的比值。
除了卡方检验和列联比率,还可以使用列联表的可视化方法来展示两个变量之间的关系。
常见的可视化方法有堆叠柱状图和热力图。
堆叠柱状图可以将两个变量的分布情况进行可视化比较,而热力图则可以直观地展示不同交叉点处的频数或频率大小。
在进行列联表分析时,需要注意的是样本的选取和数据的收集。
样本的选取应该具有一定的代表性,以确保统计结果的可靠性和推广性。
数据的收集应该严格按照统一的标准和方法进行,以减小误差和偏差的影响。
总之,列联表分析是一种重要的统计方法,可以用来揭示两个或更多个变量之间的关系。
通过对数据进行分类和统计,可以得出变量之间的相关性和相互影响。