SPSS列联表分析课件
- 格式:ppt
- 大小:2.14 MB
- 文档页数:53
SPSS基本统计分析(三):列联表分析1、引入在医学统计中,计数资料是非常常见的,比如(患病、未患病),(男、女),(有效、无效)等等,这类资料通常会被整理成列联表的形式,我们平常接触到的列联表多数都是二维的(R×C列联表)。
根据变量是否有序,又分为单向有序、双向有序属性相同、双向有序属性不同列联表,不同的列联表所用统计方法是不一样的。
在后续定性资料统计推断中我们会一一介绍其操作步骤,这节先通过一个例子看一下简单的2×2列联表的卡方检验(反映理论频数和实际频数的差异大小)过程。
2、问题与数据为了探讨吸烟与慢性支气管炎有无关系,调查了339人,结果如下:3、操作步骤3.1 数据录入注意数据的录入方式,给不同变量的不同分类定义新的标签值,这里,变量x代表是否吸烟:0代表吸烟,1代表不吸烟;变量y代表是否患病:0代表患病,1代表不患病。
3.2 数据加权因为数据是汇总格式,所以需要先对数据进行加权。
弹出个案加权对话框后,选择个案加权系数,激活频率变量,将人数放入频率变量栏中,点击确定。
3.3 卡方检验和Fisher精确检验将是否吸烟选入行,是否患慢性支气管炎选入列(结局变量放入列)点击精确,弹出的对话框中选择卡方点击格式,计数框中选择实测和期望,百分比框中选择列。
4、结果解读4.1个案处理摘要表中可以看出有效个案数、缺失个案数和总计个案数。
4.2交叉表由于使用卡方检验要求每个单元格频数不少于5,当条件不满足时,应当用Fisher精确检验。
由表格可以看出期望计数的最小值为22.14,大于5,所以可以直接采用卡方检验。
4.3卡方检验由结果得χ2=7.469,P=0.006<0.05,所以应该拒绝原假设,认为患慢性支气管炎与吸烟之间不是相互独立的。
研究问题时,当任何一个期望计数小于5时,便不再使用卡方检验,而是采用Fisher精确检验,由表格可以看出,本题的费希尔精确检验的双侧P值为0.007。