a2 (sec2 tan 2 ) sin 2 4 cos2
a2 tan a2 b ab .
2
2a 2
由此可见, 平行四边形 MAOB 的面积恒为定值, 与点
M 在双曲线上的位置无关.
例3.设P是双曲线b2 x2 a2 y2 a2b2 (a 0,b 0)上任意一点, 过点P作双曲线两渐近线的平行线,分别与两渐近线相交 于点Q和R,求证: PQ PR a2 b2
1、解:因为2a 15565,2b 15443,所以
a 7782.5,b 7721.5,所求的椭圆的参数
方程为
x {
7782.5 cos
(为参数)
y 7721.5sin
2、证明:设M (a cos, b sin ), P(xp , 0), Q(xQ , 0),
因为P、Q分别为B1M , B2M 与x轴的交点, 所以 KB1P KB1M , KB2Q KB2M 由斜率公式计算得
(2 15, 0)
2、双曲线{x 3sec (为参数)的渐近线方程为_______ y tan y 1 x 3
例1、已知圆O : x2 ( y 2)2 1上一点P与双曲线 x2 y2 1上一点Q,求 P、Q 两点距离的最小值
解:设双曲线上点的坐标为Q(sec , tan )
x
y
a sec b tan
(为参数)
消去参数后,得
x2 a2
-
y2 b2
=1,
这是中心在原点,焦点在x轴上的双曲线。
双曲线的参数方程
x2 a2
-
y2 b2
1(a
0,b