zemax应用举例-无焦光学系统
- 格式:ppt
- 大小:399.50 KB
- 文档页数:13
zemax光学设计案例
Zemax光学设计案例。
在光学设计领域,Zemax是一个非常优秀的光学设计软件,它能够帮助工程师
们进行光学系统的设计、优化和分析。
下面,我们将介绍一个使用Zemax进行光
学设计的案例,以便更好地了解Zemax软件的应用和优势。
在这个案例中,我们需要设计一个具有特定光学性能的摄像头透镜系统。
首先,我们需要明确设计要求和约束条件,然后利用Zemax软件进行光学系统的建模和
优化。
在建模过程中,我们需要考虑透镜的曲率、厚度、材料等参数,同时还需要考虑系统的光路布局、光学元件的位置和角度等因素。
利用Zemax的光学设计工具,我们可以对透镜系统进行快速而准确的建模和分析。
通过Zemax的光学优化算法,我们可以对系统的光学性能进行优化,以满足
设计要求。
同时,Zemax还提供了丰富的光学分析工具,可以对系统的像差、光学传递函数、热像模拟等进行全面的分析和评估。
在这个案例中,我们利用Zemax软件成功设计出了一个具有优秀光学性能的摄像头透镜系统。
通过对系统的建模、优化和分析,我们实现了对系统光学性能的精确控制和调节,最终达到了设计要求。
这充分展示了Zemax软件在光学设计领域
的强大功能和广泛应用价值。
总的来说,Zemax是一款非常优秀的光学设计软件,它能够帮助工程师们实现
复杂光学系统的设计、优化和分析。
通过这个案例,我们可以更好地了解Zemax
软件的应用和优势,相信在未来的光学设计工作中,Zemax将会发挥越来越重要的作用,为光学工程领域的发展做出更大的贡献。
在光学设计中,Zemax是一款非常受欢迎的软件,它提供了强大的工具和功能,可以帮助设计师轻松地完成各种光学设计任务。
本文将通过一个具体的例子,向大家展示如何使用Zemax进行光学设计。
一、设计背景我们假设需要设计一款望远镜,需要观察远处的星空。
望远镜的主要性能指标包括放大倍率、像差和亮度。
我们需要通过Zemax软件,找到最佳的光学系统方案,以达到最佳的观察效果。
二、设计步骤1.建立基本光学系统模型:在Zemax中,我们需要建立一个基本的光学系统模型,包括望远镜的主镜和次镜。
可以通过手动输入镜片数据或者使用预设的镜片库来建立模型。
2.调整参数:在Zemax中,我们可以调整各种参数来优化望远镜的性能。
例如,可以通过调整放大倍率和亮度参数来找到最佳的观察效果。
3.检测像差:在调整参数后,我们需要检测望远镜的像差。
Zemax 提供了强大的像差检测功能,可以帮助我们找到镜片上的缺陷和误差。
4.优化镜片:根据检测结果,我们可以对镜片进行优化。
可以通过添加或删除镜片、调整镜片位置和角度等方式来改善望远镜的性能。
5.模拟观察:在完成镜片优化后,我们可以模拟观察望远镜的成像效果。
可以通过调整望远镜的焦距和观察角度来查看不同情况下的成像效果。
6.调整和优化:根据模拟观察结果,我们可以再次调整和优化望远镜的设计。
直到达到满意的观察效果为止。
三、设计结果经过一系列的设计和优化步骤,我们得到了一个满意的光学设计方案。
该方案包括两片反射镜,放大倍率为10倍,像差在可接受范围内,亮度较高。
通过Zemax模拟观察,成像效果清晰、稳定,符合我们的预期。
四、总结通过这个具体的例子,我们展示了如何使用Zemax进行光学设计。
虽然只是一个简单的望远镜设计,但是它涵盖了光学设计的基本步骤和技巧。
在实际应用中,光学设计需要考虑的因素很多,例如环境因素、成本预算、材料选择等。
Zemax提供了丰富的工具和功能,可以帮助设计师轻松应对各种挑战。
使用ZEMAX于设计、优化、公差和分析武汉光迅科技股份有限公司宋家军(QQ:41258981)转载并修改摘要光学设计软件ZEMAX的功能讨论可藉由使用ZEMAX去设计和分析一个投影系统来讨论,包括使用透镜数组(lenslet arrays) 来建构聚光镜(condenser)。
简介ZEMAX以非序列性(non-sequential) 分析工具来结合序列性(sequential) 描光程序的传统功能,且为一套能够研究所有表面的光学设计和分析的整合性软件包,并具有研究成像和非成像系统中的杂散光(stray light) 和鬼影(ghosting) 的能力,从简单的绘图(Layout)一直到优化(optimization)和公差分析(tolerance analysis)皆可达成。
根据过去的经验,对于光学系统的端对端(end to end)分析往往是需要两种不同的设计和分析工具。
一套序列性描光软件,可用于设计、优化和公差分析,而一套非序列性或未受限制的(unconstrained) 描光软件,可用来分析杂散光、鬼影和一般的非成像系统,包括照明系统。
“序列性描光程序”这个名词是与定义一个光学系统为一连串表面的工具有关。
所有的光线打到光学系统之后,会依序的从一个表面到另一个表面穿过这个系统。
在定义的顺序上,所有的光线一定会相交到所有的表面,否则光路将终止。
光线不会跳过任何中间的表面,且光线只能打在每一个已定义的表面一次。
若实际光线路径交到一个表面上超过一次,如使用在二次描光(double pass) 中的组件,必须在序列性列表中,再定义超过一次的表面参数。
大部份成像光学系统,如照相机镜头、望远镜和显微镜,可在序列性模式中完整定义。
对于这些系统,序列性描光具有许多优点:非常快、非常弹性和非常普遍。
几乎任何形状的光学表面和材质特性皆可建构。
在成像系统中,序列性描光最重要的优点为使用简单且高精确的方法来做优化和分析。
引言● 在我们要求具焦的能● 所谓变同范围变焦距● 由于一是使用大家通变焦镜头我们知道说一个系统大小、视场I 为像高im变焦镜头对孔径保持变焦时采取通过改变ZE 们成像镜头设具备变焦的能能力便可以应变焦,即镜头围景物的成像距来改变拍摄一个系统的焦用类似定焦镜通过举一反三头设计原道,设计好的统的接收面尺场和焦距三者mage, f 为焦头的变焦倍数持不变,但对取相对孔径(变镜片与镜片焦EMAX 设计要求中,能力,如CCT 应用于多种环头的焦距在一像。
我们通常所摄范围,因此焦距在某一范镜头的分析优三的练习可掌理介绍:的一组镜头如寸大小是固定有如下关系焦距,theta 为数为长焦距和于实际的高变即F/#)也跟片之间的间隔焦距变化,视角相应改变X 基础通常分两种:TV 监控镜头,环境条件,放大定范围可调节所说的变焦镜此非常利于画面范围可变,相当优化方法,本节掌握变焦镜头在如果变化镜片定不变的(像: 为视场角度。
和短焦距比值变倍比系统,跟随变化的方隔达到设计的视场变础实例-:定焦镜头与,红外探测镜大缩小或局部节,通过改变镜头一般指摄面构图。
当于由无数多节我们将带领在ZEMAX中片与镜片之间像面:CCD 或。
如下图所不值,也称为“,由于外形尺方案。
的焦距要求,变焦镜与变焦镜头。
镜头,摄影镜部特写,这是变焦距从而改摄像镜头,即多个定焦系统领大家使用Z 中的设计优化间的空气厚度COMS 或其它不:“倍率”。
理尺寸不希望过当系统的入镜头设成像镜头在镜头,双筒望是一个定焦镜改变系统视场即在不改变拍统组成的。
我ZEMAX 来设计化方法。
度,镜头的焦它探测面),理论定义下,过大或二级光入瞳直径D 固设计在很多实际应望远镜等等,镜头所无法完场大小,达到拍摄距离的情我们在设计变计一个完整的焦距会随之变在基础光学在变焦过程光谱校正等问固定时,即系像面尺寸相同应用中通常也镜头具备变完成的。
到不同矩离不情况下通过改变焦镜头时也的变焦镜头,变化。
第二章 基础实例设计ZEMAX基础实例 ‐ 单透镜设计引言• 在成像光学系统设计中,主要指的是透镜系统设计,当然也有一些反射系统或棱镜系统。
• 在透镜系统设计中,最基础、最简单的便是单透镜设计。
但我们不要小看这样的单透镜系统,因为它也代表了一个光学系统设计的完整流程。
麻雀虽小,五脏俱全!• 本节中,我们通过手把手的操作,为大家展示使用 ZEMAX 进行成像光学设计的完整流程。
使初学者快速领略到ZEMAX光学设计的风采,在轻松的设计中感受到光学设计的乐趣。
• 通过单透镜设计,可以使大家学习到Z EMAX 序列编辑器建模方法,光束大小设置方法,视场设置方法,变量的设罝方法,评价函数设置方法,优化方法,像差分析方法和提髙像质的像差平衡方法等,单透镜系统参数设计任何一个镜头,我们都必须有特定的要求,比如焦距,相对口径,视场,波长,材料,分辨率,渐晕,MTF等等,根据系统的简易程度客户给的要求也各不相同。
由于单透镜最简单的系统,要求也就很少。
本例中我们设计单透镜规格参数如下:EPD = 20mmF/#=10FFOV= 10 degreeWavelength 0.587umMaterial BK7Best RMS Spot Radius首先我们需要把知道的镜头的系统参数输入软件中,系统参数包括三部分:光束孔径大小,视场类型及大小,波长。
在这个单透镜的规格参数中,入瞳直径(EPD)为20mm,全视场(FFOV)为10度,波长0.587微米,分别如下说明。
1、点击System » General或点快捷按扭Gen打开通用设置对话框:入瞳直径即到还有其它像空间F 数互转换。
物空间数值直接定义物随光阑尺寸用这种类型本例中,我2、点击打开即用来直接确它几种光束孔(Image Space 值孔径(Object 物点发光角度寸漂移(Float B 型来计算入瞳我们只需选择开视场对话框定进入系统光孔径定义类型e F/#),用于t Space NA),来约束进入系By Stop Size),瞳的大小。
ZEMAX光学设计软件操作说明详解】介绍这一章对本手册的习惯用法和术语进行说明。
ZEMAX使用的大部分习惯用法和术语与光学行业都是一致的,但是还是有一些重要的不同点。
活动结构活动结构是指当前在镜头数据编辑器中显示的结构。
详见“多重结构”这一章。
角放大率像空间近轴主光线与物空间近轴主光线角度之比,角度的测量是以近轴入瞳和出瞳的位置为基准。
切迹切迹指系统入瞳处照明的均匀性。
默认情况下,入瞳处是照明均匀的。
然而,有时入瞳需要不均匀的照明。
为此,ZEMAX支持入瞳切迹,也就是入瞳振幅的变化。
有三种类型的切迹:均匀分布,高斯型分布和切线分布。
对每一种分布(均匀分布除外),切迹因素取决于入瞳处的振幅变化率。
在“系统菜单”这一章中有关于切迹类型和因子的讨论。
ZEMAX也支持用户定义切迹类型。
这可以用于任意表面。
表面的切迹不同于入瞳切迹,因为表面不需要放置在入瞳处。
对于表面切迹的更多信息,请参看“表面类型”这一章的“用户定义表面”这节。
后焦距ZEMAX对后焦距的定义是沿着Z轴的方向从最后一个玻璃面计算到与无限远物体共轭的近轴像面的距离。
如果没有玻璃面,后焦距就是从第一面到无限远物体共轭的近轴像面的距离。
基面基面(又称叫基点)指一些特殊的共轭位置,这些位置对应的物像平面具有特定的放大率。
基面包括主面,对应的物像面垂轴放大率为+1;负主面,垂轴放大率为-1;节平面,对应于角放大率为+1;负节平面,角放大率为-1;焦平面,象空间焦平面放大率为0,物空间焦平面放大率为无穷大。
除焦平面外,所有的基面都对应一对共轭面。
比如,像空间主面与物空间主面相共轭,等等。
如果透镜系统物空间和像空间介质的折射率相同,那么节面与主面重合。
ZEMAX列出了从象平面到不同象方位置的距离,同时也列出了从第一面到不同物方平面的距离。
主光线如果没有渐晕,也没有像差,主光线指以一定视场角入射的一束光线中,通过入瞳中央射到象平面的那一条。
注意,没有渐晕和像差时,任何穿过入瞳中央的光线也一定会通过光阑和出瞳的中心。
ZEMAX的使用中几何光学和物理光学的划分领域ZEMAX是一种常用的光学设计软件,它可以在几何光学和物理光学领域进行光学系统的设计和分析。
在使用ZEMAX时,几何光学和物理光学的划分领域包括光学元件的设计和特性分析、光场传播的模拟和分析、光照度和光强度的计算和优化等等。
在几何光学的划分领域中,ZEMAX可以用于设计和分析光学元件,例如透镜、反射镜、棱镜等,以及光学系统,例如显微镜、望远镜、摄像头等。
在设计光学元件时,可以使用ZEMAX的光学设计工具来优化元件的形状、曲率、厚度等参数,以实现所需的光学性能。
例如,可以使用ZEMAX 进行平面透镜的形状优化,以最小化球差和像散。
同时,ZEMAX还可以进行光学元件的特性分析,例如光学元件的波前畸变、像差、散焦程度等。
在物理光学的划分领域中,ZEMAX可以用于光场传播的模拟和分析。
在模拟光场传播时,可以使用ZEMAX的非几何光学工具来模拟光线的传播和相互作用,例如衍射、干涉、散射等现象。
这些模拟结果可以帮助分析系统的成像质量、传递函数、衍射等效应等。
例如,在设计一个光学系统时,可以使用ZEMAX模拟光线的通过,以及光场的传播和衍射效应,以评估系统的成像质量和性能。
此外,ZEMAX还可以用于光照度和光强度的计算和优化。
光照度是指单位面积上通过单位时间的光通量,通常用于评估光源的亮度分布和光照条件。
使用ZEMAX的光照度计算工具,可以帮助计算光源在特定环境中的光照度分布,并优化光源布置和光照条件。
光强度是指单位立体角内的光通量,通常用于描述光源的辐射强度和光束的传播特性。
使用ZEMAX的光强度计算工具,可以帮助计算光源的辐射强度和光束的传播特性,以优化光源的设计和性能。
总之,ZEMAX在使用中划分了几何光学和物理光学的不同领域,包括光学元件的设计和特性分析、光场传播的模拟和分析、光照度和光强度的计算和优化等。
这些功能可以帮助光学工程师和研究人员在光学设计和分析中提高效率和准确性。
zemax案例
以下是一些关于Zemax仿真软件的案例:
1. 光学系统设计
Zemax可以用于光学系统设计和优化。
例如,可以使用Zemax来设计望远镜、显微镜、放大镜和其他光学仪器。
2. 焦散问题分析
Zemax可以用于分析和优化光学系统的焦散问题。
通过模拟光线的轨迹和相位变化,可以确定焦点的位置和形状,并确定任何可能的相位偏差。
3. 光学组件模型建立
Zemax可以用于建立光学组件的三维模型,包括透镜、棱镜和反射器等,以更准确地模拟光学系统的性能。
4. 光学系统图像模拟
Zemax可以用于模拟光学系统中的图像。
可以通过更改光线的特定属性,如入射角度和波长,以模拟不同的光学系统图像。
5. 激光光束分析
Zemax可以用于分析激光光束的特性,包括光斑大小、波前畸变、相位传输和偏振特性等。
6. 照明系统设计
Zemax可以用于设计照明系统,以确定最佳的光源和透镜组合来实现所需的照明效果。
第十三章表面类型§1 简介ZEMAX 模拟了许多种类型的光学元件。
包括常规的球面玻璃表面,正非球面,环带,柱面等。
ZEMAX 还可以模拟诸如衍射光栅、“薄”透镜、二元光学、菲涅耳透镜、全息元件之类的元件。
因为ZEMAX 支持大量的表面类型,用常用的电子表格形式安排用户界面就比较困难。
例如,对于一个没有发生衍射的表面,开辟“衍射阶数”一列就没什么必要。
为了使用户界面尽可能不显得乱,ZEMAX 使用了不同的类型界面以便指出定义某一种类型的表面时,需要哪一些数据。
§2 参数数据一个标准的表面可以是一个紧随着一均匀介质(如空气,反射镜或玻璃)的平面、球面或圆锥非球面。
所要求的参数仅仅是半径(半径也可以是无穷大,使之成为一个平面),厚度,圆锥系数(缺省值为0,表示是球面),和玻璃类型的名字。
其他的表面类型除使用一些其他值外,同样使用这些基本数据。
例如,“偶次非球面”表面就是使用所有的“标准”列数据再加上八个附加值,这些附加值是用来描述多项式的系数的。
这八个附加值被称为参数,且被称为参数1,参数2,等等。
要理解的参数值的最重要特性是它们的意思会随着所选择的表面类型的不同而改变意思。
例如,“偶次非球面”表面类型用参数1 来指定非球面近轴抛物线项的系数,而“近轴”面则用参数1 来指定表面焦距。
两个表面同样使用参数1,但用途却不同,因为这两个表面类型永远不会同时在同一个面上使用。
数据存储的共享性简化了ZEMAX 界面,也减少了运行程序时所要求的总内存。
但由于你必须去记每一个参数的作用,是否这样的共享反而会使ZEMAX 用起来变得麻烦呢?回答是否定的,因为ZEMAX始终掌握着你所定义的每一面上的每一个参数代表什么的记录。
当你将一个表面从“标准的”改成其他的表面类型后,ZEMAX 会自动改变参数列的列头以使你知道你对表面上的每一个参数作了什么改动。
所有需要你做的只是在正确的格子中键入适当的数据。
当你将光标从一个格子移动到另一个时,列头会一直显示该格是用来作什么的。
Zemax在光学设计中的应用Zemax 在光学设计中的应用进入21世纪,光学,与计算机,电子,自动化等技术融合,形成了光机电一体的综合高新技术,光学已经成为信息科学的信息载体之一。
随着光学的蓬勃发展,各种光学CAD软件层出不穷。
目前,常用的光学设计软件包括Zemax,TracePro,ASAP,LightTools,CODEV,OSLO 等,这些软件功能强大,能够从各个角度分析光学系统从而判断光学系统优劣性,可执行度等,是从事光学设计行业工程师的有力工具。
Zemax由美国华盛顿州贝尔维尤市的Zemax软件开发公司研制发售,它将光学系统的设计概念、优化、分析、公差以及报表集成在一起,形成一套综合性的光学设计仿真软件。
到目前为止,Zemax已经成为当今使用最广泛的光学设计软件之一,市场占有率达到85%。
目前Zemax使用群集中在光学公司,光电研究所,投影仪,望远镜,扫描仪等光学设计公司。
Zemax常常被应用于各种相机镜头,显微镜,望远镜,目镜等光学镜头的设计;各种变焦镜头,手机摄像头的设计;LCD 背光板和LED建模;DVD、VCD 激光读写头;干涉仪、全息光学;各种激光器谐振腔的设计等等。
Zemax有两个等级的版本,包括Zemax-SE(标准版),Zemax-EE(专业版)。
使用序列性与非序列性的方法来模拟成像系统和非成像系统的反射,折射和散射光线追迹。
序列性光线追迹的光线追迹速度快、适合多数面的形状和性质,可以直接优化和进行公差预算,主要针对相机镜头、望远镜镜头、显微镜头等光学系统。
而非序列主要针对非成像系统或者是复杂的形状对象,可以对光线传播进行更细节的分析,包括散射光或部分反射光。
Zemax光学设计软件支持不同类型的光源,包括自定义的光源,同时提供近60种光学曲面面形,以及自定义的面形,包含很多玻璃库,材料库,样板库等。
同时可以进行镀膜分析,热分析,偏振光分析,物理光学分析等。
当设计好一个光学系统之后,可以运用二维或者是三维图来观察系统结构。
zemax激光光学设计实例与应用
ZEMAX是一种用于光学系统设计和分析的软件工具,它可以应用于激光光学设计与优化。
以下是一些激光光学设计实例及应用。
1. 二极流CO2激光器的光路设计
二极流CO2激光器是一种常见的光学器件,其光路设计需要考虑到多种物理效应。
使用ZEMAX进行二极流CO2激光器光路设计,可以优化光路的效率和性能。
例如,通过添加适当的激光束扩展器可以提高光束质量和稳定性;优化反射镜的性能可以提高激光器的输出功率和效率。
2. 红外光学系统的设计
使用ZEMAX进行光学系统设计可有效提高系统的性能和光学吸收率。
例如,在红外激光器中,设计合适的焦距和两个镜头之间的距离,并对光学系统进行优化,可以显著提高系统的分辨率和成像质量。
3. 光束仿真
另一种常见的激光光学设计应用是光束仿真。
ZEMAX可以用于模拟光束在特定光学系统中的传播和焦聚。
这可以帮助设计师更好地理解光线如何在光学系统中传播。
例如,在激光切割中,设计师可以使用ZEMAX来仿真光束的传播路径和聚焦质量,以优化切割效果。
4. 激光雕刻机的光路设计
激光雕刻机是一种常见的激光光学器件,用于刻蚀或切割材料表面。
在设计激光雕刻机时,需要考虑到多种物理效应,例如材料的吸收率和光束的聚焦度。
使用ZEMAX进行光路设计和优化,可以改善雕刻效果和机器的精度。
Zemax光学设计:一个显微镜照明系统的设计实例技术指标:设计一个中等倍率显微镜的照明系统。
显微镜的技术规格如下所述:放大倍率:10NA:0.2(CCD对角的1/2)无限远校正系统(infinity corrected ): 12mm成像镜头焦点距离:200mm工作距离:45mm使用的光源:2mm NA=0.25设计仿真:1.显微物镜的设计首先输入系统特性参数,如下:在系统通用对话框中设置孔径。
在孔径类型中选择“Entrance Pupil Diameter”,并按设计要求输入“8.0”:在视场设定对话框中设置3个视场,要选择“Angle”,如下图:在波长设定对话框中,输入F.d.C三个波长,如下图:LDE的结构参数,如下图:查看2D Layout:查看点列图:然后利用Hammer优化进行玻璃替代来决定玻璃材质。
Hammer优化后的LDE:此时,点列图为:查看波前差,可以看到在全视场内都在衍射极限之内。
2.目镜的设计首先输入系统特性参数,如下:在系统通用对话框中设置孔径。
在孔径类型中选择“Entrance Pupil Diameter”,并按设计要求输入“8.0”:3.在视场设定对话框中设置3个视场,要选择“Angle”,如下图:在波长设定对话框中,输入F.d.C三个波长,如下图:LDE的结构参数,如下图:查看2D Layout:查看点列图:3.显微物镜与目镜的续接先物镜进行翻转,可以使用“Reverse Element”工具来进行翻转。
首先,将孔径类型修改为“Float ByStop Size”。
然后,即使原本的系统没有光瞳像差,翻转后的新系统也可能有光瞳像差。
所以,我们需要打开近轴光线瞄准。
我们可以在光线瞄准 (Ray Aiming) 中选择近轴 (Paraxial) 实现这一步操作。
第三,为了防止翻转后系统尺寸发生改变,我们把每个面的半径值锁定住。
第四,根据原系统点列图上的数值来更改视场类型与数值。
ZEMAX光学设计软件操作说明详解介绍这一章对本手册的习惯用法和术语进行说明。
ZEMAX使用的大部分习惯用法和术语与光学行业都是一致的,但是还是有一些重要的不同点。
活动结构活动结构是指当前在镜头数据编辑器中显示的结构。
详见“多重结构”这一章。
角放大率像空间近轴主光线与物空间近轴主光线角度之比,角度的测量是以近轴入瞳和出瞳的位置为基准。
切迹切迹指系统入瞳处照明的均匀性。
默认情况下,入瞳处是照明均匀的。
然而,有时入瞳需要不均匀的照明。
为此,ZEMAX支持入瞳切迹,也就是入瞳振幅的变化。
有三种类型的切迹:均匀分布,高斯型分布和切线分布。
对每一种分布(均匀分布除外),切迹因素取决于入瞳处的振幅变化率。
在“系统菜单”这一章中有关于切迹类型和因子的讨论。
ZEMAX也支持用户定义切迹类型。
这可以用于任意表面。
表面的切迹不同于入瞳切迹,因为表面不需要放置在入瞳处。
对于表面切迹的更多信息,请参看“表面类型”这一章的“用户定义表面”这节。
后焦距ZEMAX对后焦距的定义是沿着Z轴的方向从最后一个玻璃面计算到与无限远物体共轭的近轴像面的距离。
如果没有玻璃面,后焦距就是从第一面到无限远物体共轭的近轴像面的距离。
基面基面(又称叫基点)指一些特殊的共轭位置,这些位置对应的物像平面具有特定的放大率。
基面包括主面,对应的物像面垂轴放大率为+1;负主面,垂轴放大率为-1;节平面,对应于角放大率为+1;负节平面,角放大率为-1;焦平面,象空间焦平面放大率为0,物空间焦平面放大率为无穷大。
除焦平面外,所有的基面都对应一对共轭面。
比如,像空间主面与物空间主面相共轭,等等。
如果透镜系统物空间和像空间介质的折射率相同,那么节面与主面重合。
ZEMAX列出了从象平面到不同象方位置的距离,同时也列出了从第一面到不同物方平面的距离。
主光线如果没有渐晕,也没有像差,主光线指以一定视场角入射的一束光线中,通过入瞳中央射到象平面的那一条。
注意,没有渐晕和像差时,任何穿过入瞳中央的光线也一定会通过光阑和出瞳的中心。
ZEMAX软件学习报告摘要:目前我对ZAMAX光学设计软件进行了初步入门学习,简单了解了ZEMAX 光学设计软件的实际运用的几个例子,以及对其步骤进行了详细理解。
对其分析和运用过程的问题进行阐述。
关键词:zemax 运用例子使用问题引言:ZEMAX是美国 Radiant Zemax 公司所发展出的光学设计软件,可做光学组件设计与照明系统的照度分析,也可建立反射,折射,绕射等光学模型,并结合优化,公差等分析功能,是套可以运算sequential(序列性)及Non-Sequential(非序列性)光学设计的软件。
ZEMAX光学设计程序是一个完整的光学设计软件,是将实际光学系统的设计概念,优化,分析,公差以及报表集成在一起的一套综合性的光学设计仿真软件。
包括光学设计需要的所有功能,可以在实践中对所有光学系统进行设计,优化,分析,并具有容差能力,所有这些强大的功能都直观的呈现于用户界面中。
ZEMAX功能强大,速度快,灵活方便,是一个很好的综合性程序。
ZEMAX能够模拟连续和非连续成像系统及非成像系统。
ZEMAX 能够在光学系统设计中实现建模、分析和其他的辅助功能。
ZEMAX 的界面简单易用,只需稍加练习,就能够实现互动设计。
ZEMAX 中有很多功能能够通过选择对话框和下拉菜单来实现。
同时,也提供快捷键以便快速使用菜单命令。
手册中对使 ZEMAX 时的一些惯用方法进行了解释,对设计过程和各种功能进行了描述。
ZEMAX目前已经是被光电子领域熟知的光学设计的首选软件。
该软件拥有两大特点,就是可以实现序列和非序列分析。
在全球范围内,这款软件已经被广大的应用在设计显示系统,照明,成像的使用系统,激光系统以及漫射光的设计应用方面。
一、ZEMAX光学设计软件运用实例:1、单透镜(a singlet):主要运用ZEMAX光学设计软件设计了一个F/4的镜片,焦距为100mm,在轴上可见光谱范围内,用BK7玻璃的单透镜。