快速成型制造工艺--III
- 格式:ppt
- 大小:1.63 MB
- 文档页数:21
第3章快速成型材料及设备3.1 快速成型材料快速成型材料一直是快速成型技术研究与开发的重要任务之一,每一种快速成型制造工艺的推出和成熟都与材料研究与开发密切相关。
一种新的快速成型材料的出现往往会使快速成型工艺及设备结构、成型件品质和成型效益发生巨大的进步。
快速成型材料根据原型建造原理、技术和方法的不同分为薄层材料、液态材料、粉状材料、丝材等。
不同的成型制造方法对应的成型材料的性状是不同的,不同的成型制造方法对成型材料性能的要求也是不同的。
在快速成型技术推出初期,一般都是快速成型设备的制造商在从事所需求的材料的研究。
但随着快速成型技术的发展和推广,许多材料专业公司也加入到快速成型材料的研发中,成型材料正向高性能、系列化的方向发展。
快速成型材料一般根据成型工艺方法来分类,分为光固化成型材料、粉末烧结材料、熔融沉积丝材及叠层实体薄层材料等。
根据目前较为常用的快速成型用的材料来看,一般根据材料的性状分类比较清晰,分为液态材料、薄层材料、粉末材料、丝状材料等。
常见的快速成型材料分类见表3-1。
快速成型材料及其性能不仅影响着所制作原型的性能及精度,而且也影响着与成型工艺相关联的建造过程。
快速成型工艺对成型材料性能的总体要求有如下几个方面:1)适应逐层累加方式的快速成型建造模式。
2)在各种快速成型建造方式下,能快速实现层内建造及层间连接。
3)制作的原型具有一定的尺寸精度和尺寸稳定性。
4)确保原型具有一定的力学性能及性能稳定性。
5)无毒无污染。
3.1.1光固化快速成型材料用于光固化快速成型的材料为液态光固化树脂,或称液态光敏树脂。
随着光固化成型技术的不断发展,具有独特性能的光固化树脂(如收缩率小甚至无收缩,变形小,不用二次固化,强度高等)也不断地被开发出来。
1.光固化成型材料分类光固化材料是一种既古老又崭新的材料,与一般固化材料比较,光固化材料具有下列优点。
1)固化快。
可在几秒钟内固化,可应用于要求立刻固化的场合。
快速成型与快速制模复习题1、快速成型制造工艺的全过程包括哪三个阶段?简述每个阶段的内容。
答:(1)前处理。
三维模型的构造、三维模型的近似处理、模型成形方向的选择和三维模型的切片处理。
(2)分层叠加成形。
截面轮廓的制作与截面轮廓的叠合(3)后处理。
工件的剥离、后固化、修补、打磨、抛光和表面强化。
2、光固化成型工艺过程原理图,请回答光固化成型工艺定义及过程答:定义:SLA以光敏树脂为原料,通过计算机控制紫外激光使其凝固成型。
原理:液槽中盛满液态光敏树脂,激光器发出的紫外激光束在控制系统的控制下按零件的各分层截面信息在光敏树脂表面进行逐点扫描,使被扫描区域的树脂薄层产生光聚合反应而固化,形成零件的一个薄层。
一层固化完毕后,工作台下移一个层厚的距离,在原先固化好的树脂表面再敷上一层新的液态树脂,刮板将粘度较大的树脂液面刮平,然后进行下一层的扫描加工,新固化的一层牢固地粘结在前一层上,重复直至整个零件制造完毕过程:前处理。
CAD三维造型,数据转换、摆放方位确定、施加支撑和切片分层原型制作。
光固化成型后处理。
剥离,去除废料和支撑结构4、选择性激光烧结过程原理图,请回答选择性激光烧结定义及过程定义:SLS利用粉末材料,在激光照射下烧结的原理,在计算机控制下层层堆积成形。
原理:铺粉辊将一层粉末材料平铺在已成形零件的上表面,并加热至恰好低于该粉末烧结点的某一温度。
控制系统控制激光束按照该层的截面轮廓在粉层上扫描,使粉末的温度升至熔化点,进行烧结并与下面已成形的部分实现粘接。
当一层截面烧结完后,工作台下降一个层的厚度,铺料辊又在上面铺上一层均匀密实的粉末,进行新一层截面的烧结,直至完成整个模型。
过程:前处理。
CAD造型,数据转换叠层加工。
粉层激光烧结叠加后处理。
渗蜡或渗树脂5、叠层实体制造过程原理图,请回答叠层实体制造定义及过程LOM原理:工作台上制作基底,工作台下降,送纸滚筒送进一个步距的纸材,工作台回升,热压滚筒滚压背面涂有热熔胶的纸材,将当前迭层与原来制作好的迭层或基底粘贴在一起,切片软件根据模型当前层面的轮廓控制激光器进行层面切割,逐层制作,当全部迭层制作完毕,再将多余废料去除。
3dp打印技术名词解释-回复
3D打印技术,全称为三维打印技术,是一种快速成型制造工艺。
它通过逐层叠加的方式,基于数字模型文件,使用粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体,最终形成三维实体物件。
这一过程类似于打印机在纸上打印二维图形,只不过3D打印是在三维空间中逐层“打印”出实物。
具体步骤包括:首先设计目标物的三维模型,然后将模型数据输入到3D打印机中,接着打印机根据模型分层信息,按照每一层的截面形状,依次堆叠薄层材料,每打印一层就固化一层,层层叠加,直至最终形成完整的三维实体。
3D打印技术具有高度的设计自由度,可以制造出传统工艺难以实现或成本过高的复杂结构,广泛应用于产品原型制作、个性化定制、医疗植入物制造、建筑工程模型制作等诸多领域。
1前言快速成型(Rapid Prototyping)是上世纪80年代末及90 年代初发展起来的高新制造技术,是由三维CAD模型直接驱动的快速制造任意复杂形状三维实体的总称。
它集成了CA D技术、数控技术、激光技术和材料技术等现代科技成果,是先进制造技术的重要组成部分。
由于它把复杂的三维制造转化为一系列二维制造的叠加,因而可以在不用模具和工具的条件下生成几乎任意复杂的零部件,极大地提高了生产效率和制造柔性。
与传统制造方法不同,快速成型从零件的CAD几何模型出发,通过软件分层离散和数控成型系统,用激光束或其他方法将材料堆积而形成实体零件。
通过与数控加工、铸造、金属冷喷涂、硅胶模等制造手段相结合,已成为现代模型、模具和零件制造的强有力手段,在航空航天、汽车摩托车、家电等领域得到了广泛应用。
2 快速成型的基本原理快速成型技术采用离散/堆积成型原理,根据三维CAD模型,对于不同的工艺要求,按一定厚度进行分层,将三维数字模型变成厚度很薄的二维平面模型。
再将数据进行一定的处理,加入加工参数,产生数控代码,在数控系统控制下以平面加工方式连续加工出每个薄层,并使之粘结而成形。
实际上就是基于“生长”或“添加”材料原理一层一层地离散叠加,从底至顶完成零件的制作过程。
快速成型有很多种工艺方法,但所有的快速成型工艺方法都是一层一层地制造零件,所不同的是每种方法所用的材料不同,制造每一层添加材料的方法不同。
快速成型的基本原理图快速成型的工艺过程原理如下:(1)三维模型的构造:在三维CAD设计软件中获得描述该零件的CAD文件。
一般快速成型支持的文件输出格式为STL模型,即对实体曲面做近似的所谓面型化(Tessellation)处理,是用平面三角形面片近似模型表面。
以简化CAD模型的数据格式。
便于后续的分层处理。
由于它在数据处理上较简单,而且与CAD系统无关,所以很快发展为快速成型制造领域中CAD系统与快速成型机之间数据交换的标准,每个三角面片用四个数据项表示。
RP技术简介快速原型制造技术,又叫快速成形技术,(简称RP技术);英文:RAPID PROTOTYPING(简称RP技术),或RAPID PROTOTYPING MANUFACTUREING,简称RPM。
快速成型(RP)技术是九十年代发展起来的一项先进制造技术,是为制造业企业新产品开发服务的一项关键共性技术, 对促进企业产品创新、缩短新产品开发周期、提高产品竞争力有积极的推动作用。
自该技术问世以来,已经在发达国家的制造业中得到了广泛应用,并由此产生一个新兴的技术领域。
RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。
不同种类的快速成型系统因所用成形材料不同,成形原理和系统特点也各有不同。
但是,其基本原理都是一样的,那就是"分层制造,逐层叠加",类似于数学上的积分过程。
形象地讲,快速成形系统就像是一台"立体打印机"。
RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。
RP技术的基本原理是:将计算机内的三维数据模型进行分层切片得到各层截面的轮廓数据,计算机据此信息控制激光器(或喷嘴)有选择性地烧结一层接一层的粉末材料(或固化一层又一层的液态光敏树脂,或切割一层又一层的片状材料,或喷射一层又一层的热熔材料或粘合剂)形成一系列具有一个微小厚度的的片状实体,再采用熔结、聚合、粘结等手段使其逐层堆积成一体,便可以制造出所设计的新产品样件、模型或模具。
快速成型机的工艺立体光刻成型sla层合实体制造lom熔融沉积快速成型fdm激光选区烧结法SLS多相喷射固化mjs多孔喷射成型mjm直接壳法产品铸造dspc激光工程净成型lens选域黏着及热压成型SAHP层铣工艺lmp分层实体制造som自美国3D公司1988年推出第一台商品SLA快速成形机以来,已经有十几种不同的成形系统,其中比较成熟的有SLA、SLS、LOM和FDM等方法。
快速成型技术快速成型技术简介快速成型技术(Rapid Prototyping Technology-RPT)属于先进制造技术范畴机械工程学科非传统加工工艺(或称为特种加工)是将CAD、CAM、、激光、精密伺服驱动和新材料等先进技术集成的一种全新制造技术。
它通过叠加成型方法可以自动而迅速地将设计的三维CAD模型转化为具有一定结构和功能的原型或直接制造零件。
与传统的制造方法相比,它具有生产周期短,成本低的优势,并且可以灵活地改变设计方案,实现柔性生产,在新产品的开发中具有广阔的应用前景。
目前世界上投入应用的快速成形的方法有十多种,主要包括立体印刷(SLA-StereoLithgraphy Apparatus)、分层实体制造(LOM-Laminated obxxxxject Manufacturing)、选择性激光烧结(SLS—Selective Laser Sintering)、熔化沉积制造(FDM-Fused Deposition Modeling)、固基光敏液相(SGC-Solid Ground Curing)等方法。
其中选择性激光烧结(SLS)技术具有成型材料选择范围宽、应用领域广的突出优点,得到了迅速发展,正受到越来越多的重视。
SLS方法具有以下的优点:由于粉末具有自支撑作用,不需另外支撑;材料广泛,不仅包括各种塑料材料、蜡和覆膜砂,还可以直接生产金属和陶瓷零件。
且材料可重复使用,利用率高。
快速成型技术工作原理使用CO2 激光器烧结粉末材料(如蜡粉、PS粉、ABS粉、尼龙粉、覆膜陶瓷和金属粉等)。
成型时先在工作台上铺上一层粉末材料激光束在计算机的控制下按照截面轮廓的信息对制件实心部分所在的粉末进行烧结。
一层完成后工作台下降一个层厚再进行下一层的铺粉烧结。
如此循环,最终形成三维产品。
快速成型技术应用选择性激光烧结快速成型(Selective Laser Sintering Rapid Prototyping) 技术(简称SLS技术)由于具有成型材料选择范围宽、应用领域广的突出优点,得到了迅速的发展,正受到越来越多的重视。
快速成型制造技术特种加工技术是先进制造技术的重要组成部分,是衡量一个国家制造技术水平和能力的重要标志,在我国的许多关键制造业中发挥着不可替代的作用。
采用特种加工技术可以加工特殊材料,且加工中无切削力,能够进行微细加工及复杂的空间曲面成形,所以能够解决航空航天、军工、汽车、模具、冶金、机械等工业中的关键技术难题,从而逐步形成新兴的特种加工行业。
特种加工技术主要包括电加工技术、高能束流加工技术、快速成型制造技术等,其中以快速成型制造技术对现代制造业的影响最为重大。
快速成型制造技术(Rapid Prototyping Manufac?turing,RPM),就是根据零件的三维模型数据,迅速而精确地制造出该零件。
它是在20世纪80年代后期发展起来的,被认为是最近20年来制造领域的一次重大突破,是目前先进制造领域研究的热点之一。
快速成型制造技术是集CAD技术、数控技术、激光加工、新材料科学、机械电子工程等多学科、多技术为一体的新技术。
传统的零件制造过程往往需要车、钳、铣、磨等多种机加工设备和各种夹具、刀具、模具,制造成本高,周期长,对于一个比较复杂的零件,其加工周期甚至以月计,很难适应低成本、高效率的加工要求。
快速成型制造技术能够适应这种要求,是现代制造技术的一次重大变革。
快速成型产品随着CAD建模和光、机、电一体化技术的发展,快速成型技术的工艺方法发展很快。
目前已有光固法(SLA)、层叠法(LOM)、激光选区烧结法(SLS)、熔融沉积法(FDM)、掩模固化法(SGC)、三维印刷法(TDP)、喷粒法(BPM)等10余种。
1、光固化立体造型(Stereolithography,SLA)该技术以光敏树脂为原料,将计算机控制下的紫外激光,以预定零件各分层截面的轮廓为轨迹,对液态树脂逐点扫描,由点到线到面,使被扫描区的树脂薄层产生聚合反应,从而形成零件的一个薄层截面。
当一层固化完毕,升降工作台移动一个层片厚度的距离,在原先固化好的树脂表面再覆盖一层新的液态脂以便进行新一层扫描固化。
1前言快速成型(Rapid Prototyping)是上世纪80年代末及90 年代初发展起来的高新制造技术,是由三维CAD模型直接驱动的快速制造任意复杂形状三维实体的总称。
它集成了CA D技术、数控技术、激光技术和材料技术等现代科技成果,是先进制造技术的重要组成部分。
由于它把复杂的三维制造转化为一系列二维制造的叠加,因而可以在不用模具和工具的条件下生成几乎任意复杂的零部件,极大地提高了生产效率和制造柔性。
与传统制造方法不同,快速成型从零件的CAD几何模型出发,通过软件分层离散和数控成型系统,用激光束或其他方法将材料堆积而形成实体零件。
通过与数控加工、铸造、金属冷喷涂、硅胶模等制造手段相结合,已成为现代模型、模具和零件制造的强有力手段,在航空航天、汽车摩托车、家电等领域得到了广泛应用。
2 快速成型的基本原理快速成型技术采用离散/堆积成型原理,根据三维CAD模型,对于不同的工艺要求,按一定厚度进行分层,将三维数字模型变成厚度很薄的二维平面模型。
再将数据进行一定的处理,加入加工参数,产生数控代码,在数控系统控制下以平面加工方式连续加工出每个薄层,并使之粘结而成形。
实际上就是基于“生长”或“添加”材料原理一层一层地离散叠加,从底至顶完成零件的制作过程。
快速成型有很多种工艺方法,但所有的快速成型工艺方法都是一层一层地制造零件,所不同的是每种方法所用的材料不同,制造每一层添加材料的方法不同。
快速成型的基本原理图快速成型的工艺过程原理如下:(1)三维模型的构造:在三维CAD设计软件中获得描述该零件的CAD文件。
一般快速成型支持的文件输出格式为STL模型,即对实体曲面做近似的所谓面型化(Tessellation)处理,是用平面三角形面片近似模型表面。
以简化CAD模型的数据格式。
便于后续的分层处理。
由于它在数据处理上较简单,而且与CAD系统无关,所以很快发展为快速成型制造领域中CAD系统与快速成型机之间数据交换的标准,每个三角面片用四个数据项表示。
快速成型工艺的基本流程快速成型工艺的基本流程快速成型(Rapid Prototyping,RP)是指通过计算机辅助设计、制造和快速成型技术,将CAD模型直接转换为实体模型的一种技术。
它是一种快速、准确、灵活的制造方法,能够大大缩短产品从设计到生产的周期。
下面将详细介绍快速成型工艺的基本流程。
一、CAD建模CAD(Computer Aided Design)是计算机辅助设计技术的简称,是利用计算机进行产品设计和制图的过程。
在进行快速成型之前,需要先进行CAD建模,即利用CAD软件进行产品三维建模。
通过CAD建模可以精确地描述产品的形状、尺寸和结构等信息,并可以对其进行修改和优化。
二、STL文件生成STL(Standard Triangulation Language)文件是三角形数据格式文件,由三角形组成一个个小面片来表示物体表面。
在CAD建模完成后,需要将其转换为STL格式的文件。
这个过程通常由专门的软件完成,如3D MAX等软件。
三、SLA光固化SLA(Stereolithography Apparatus)光固化是一种利用紫外线激光束逐层扫描液态光敏树脂,使其固化成固态模型的快速成型技术。
在进行SLA光固化之前,需要先将STL文件导入到SLA机器中,并设置好加工参数。
SLA机器会根据STL文件逐层扫描光敏树脂,使其逐渐固化成实体模型。
四、SLS激光烧结SLS(Selective Laser Sintering)激光烧结是一种利用激光束逐层扫描粉末材料,使其熔融并凝固成实体模型的快速成型技术。
在进行SLS激光烧结之前,需要先将STL文件导入到SLS机器中,并设置好加工参数。
SLS机器会根据STL文件逐层扫描粉末材料,使其逐渐熔融并凝固成实体模型。
五、FDM熔丝沉积FDM(Fused Deposition Modeling)熔丝沉积是一种利用塑料丝材料经过加热后从喷头中挤出,并在平台上依次堆叠形成实体模型的快速成型技术。