快速成型的原理及应用

  • 格式:doc
  • 大小:46.50 KB
  • 文档页数:8

下载文档原格式

  / 10
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题目:1、快速成型原理是什么?其技术有何特点?

2、按制造工艺原理分,快速成型工艺主要分成哪几类?

3、简述快速成型技术有哪些应用?

4、典型的快速成型工艺有哪几种?试分析成型工艺的特点。

5、反求工程的基本含义是什么?应用在那几个方面?

6、结合课程知识点,谈谈快速成型技术对新产品设计的作用。

1、快速成型原理是什么?其技术有何特点?

快速成型原理

RP系统可以根据零件的形状,每次制做一个具有一定微小厚度和特定形状的截面,然后再把它们逐层粘结起来,就得到了所需制造的立体的零件。当然,整个过程是在计算机的控制下,由快速成形系统自动完成的。不同公司制造的RP系统所用的成形材料不同,系统的工作原理也有所不同,但其基本原理都是一样的,那就是"分层制造、逐层叠加"。这种工艺可以形象地叫做"增长法"或"加法"。

每个截面数据相当于医学上的一张CT像片;整个制造过程可以比喻为一个"积分"的过程。

RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。RP技术的基本原理是:将计算机内的三维数据模型进行分层切片得到各层截面的轮廓数据,计算机据此信息控制激光器(或喷嘴)有选择性地烧结一层接一层的粉末材料(或固化一层又一层的液态光敏树脂,或切割一层又一层的片状材料,或喷射一层又一层的热熔材料或粘合剂)形成一系列具有一个微小厚度的的片状实体,再采用熔结、聚合、粘结等手段使其逐层堆积成一体,便可以制造出所设计的新产品样件、模型或模具。自美国3D公司1988年推出第一台商品SLA快速成形机以来,已经有十几种不同的成形系统,其中比较成熟的有SLA、SLS、LOM和FDM等方法。其成形原理分别介绍如下:

(1)SLA快速成形系统的成形原理:

成形材料:液态光敏树脂;

制件性能:相当于工程塑料或蜡模;

主要用途:高精度塑料件、铸造用蜡模、样件或模型。

(2)SLS快速成形系统的成形原理:

成形材料:工程塑料粉末;

制件性能:相当于工程塑料、蜡模、砂型;

主要用途:塑料件、铸造用蜡模、样件或模型。

(3)LOM快速成形系统的成形原理:

成形材料:涂敷有热敏胶的纤维纸;

制件性能:相当于高级木材;

主要用途:快速制造新产品样件、模型或铸造用木模。

(4)FDM快速成形系统的成形原理:

成形材料:固体丝状工程塑料;

制件性能:相当于工程塑料或蜡模;

主要用途:塑料件、铸造用蜡模、样件或模型。

快速原形技术的特点:

(1)、自由成型制造:自由成型制造也是快速成型技术的另外一个用语。作为快速成型技术的特点之一的自由成型制造的含义有两个方面:一是指无需要使用工模具而制作原型或零件,由此可以大大缩短新产品的试制周期,并节省工

模具费用;二是指不受形状复杂程度的限制,能够制作任何形状与结构、不同材料复合的原形或零件。

(2)、制造效率快:从CAD数模或实体反求获得的数据到制成原形,一般仅需要数小时或十几小时,速度比传统成型加工方法快的多。该项目技术在新产品开发中改善了设计过程的人机交流,缩短了产品设计与开发周期。以快速成型机为母模的快速模具技术,能够在几天内制作出所需材料的实际产品,而通过传统的钢质模具制作产品,至少需要几个月的时间。该项技术的应用,大大降低了新产品的开发成本和企业研制新产品的风险。

(3)、由CAD模型直接驱动:无论哪种RP制造工艺,其材料都是通过逐点、逐层以添加的方式累积成型的。无论哪种快速成型制造工艺,也都是通过CAD数字模型直接或者间接地驱动快速成型设备系统进行制造的。这种通过材料添加来制造原形的加工方式是快速成型技术区别传统的机械加工方式的显著特征。这种由CAD数字模型直接或者间接地驱动快速成型设备系统的原形制作过程也决定了快速成型的制造快速和自由成型的特征。

(4)、技术高度集成:当落后的计算机辅助工艺规划(Computer Aided Process Planning,CAPP)一直无法实现CAD与CAM一体化的时候,快速成型技术的出现较好的填补了CAD与CAM之间的缝隙。新材料、激光应用技术、精密伺候驱动技术、计算机技术以及数控技术等的高度集成,共同支撑了快速成型技术的实现。

(5)、经济效益高:快速成型技术制造原型或零件,无须工模具,也与成型或零件的复杂程度无关,与传统的机械加工方法相比,其原型或零件本身制作过程的成本显著降低。此外,由于快速成型在设计可视化、外观评估、装配及功能检验以及快速模具母模的功用,能够显著缩短产品的开发试制周期,也带来了显著的时间效益。也正是因为快速成型技术具有突出的经济效益,才使得该项技术一经出现,便得到了制造业的高度重视和迅速而广泛的应用。

(6)、精度不如传统加工;数据模型分层处理时不可避免的一些数据丢失外加分层制造必然产生台阶误差,堆积成形的相变和凝固过程产生的内应力也会引起翘曲变形,这从根本上决定了RP造型的精度极限。

2、按制造工艺原理分,快速成型工艺主要分成哪几类?

快速成型工艺主要分成:

(1)光固化立体造型工艺:该技术以光敏树脂为原料,计算机控制下的紫外激光按预定零件各分层截面的轮廓为轨迹逐点扫描,使被扫描区的树脂薄层产生光聚合反应,从而形成零件的一个薄层截面。当一层固化完毕,移动工作台,在原先固化子的树脂表面再敖上一层新新的液态树脂以便进行下层扫描固化。新固化的一层牢固地粘合地层上,如此重复至整个零件原型制造完毕。

(2)分层物件制造工艺:LOM 工艺将单面涂有热溶胶的纸片通过加热辊加热粘接在一起。位于上方的激光器按照CAD 分层模型所获数据,用激光束将纸切割成所制零件的内外轮廓,然后新的一层纸再叠加在上面通过热压装置和下面已切割层粘合在一起,激光束再次切割,这样反复逐层切割、粘合、切割…,直至整个零件模型制作完成。

(3)选择性激光烧结工艺:在工作台上均匀铺上一层很薄(100μ-200μ)的粉末在计算机控制下按照零件分层轮廓有选择性地进行烧结,一层完成后再进行下一层烧结。全部烧结后去掉多余的粉末,再进行打磨、烘干等处理便获得零件。目前成熟的工艺材料为蜡粉及塑料粉,用金属粉或陶瓷粉进行粘结或烧结的工艺还正在实验阶段。

(4)熔融沉积造型工艺:FDM 喷头受CAD 分层数据控制使半流动状态的材料中挤压出来,凝固形成轮廓形状的薄层每层厚度范围在0.025~0.762mm,一层叠一层最后形成整个零件模型。

3、简述快速成型技术有哪些应用?

快速成型技术的应用:除了制造原型外,该项技术也特别适合于新产品的开发、单件及小批量零件制造、不规则或复杂形状零件制造、模具设计与制造、产品设计的外观评估和装配检验、快速反求与复制,也适合于难加工材料的制造等。这项技术不仅在制造业具有广泛的应用,而且在材料科学与工程、医学、文化艺术以及建筑工程等领域也有广阔的应用前景。

4、典型的快速成型工艺有哪几种?试分析成型工艺的特点。

⑴典型的快速成型工艺:有光固化成型工艺、叠层实体加型工艺、选择性激光烧结成型工艺、熔融沉积成型工艺。

⑵特点:①光固化成型工艺特点:a、成型过程自动化程度高。b、尺寸精