第九章 联立方程模型
- 格式:ppt
- 大小:1.27 MB
- 文档页数:69
计量经济学之联立方程模型引言联立方程模型(Simultaneous Equation Model,简称SEM)是计量经济学中的一个重要分析工具,用于研究多个经济变量之间的相互关系。
通过建立一组方程,可以理解变量之间的联动效应,并进行预测和政策分析。
本文将介绍联立方程模型的基本概念、建模步骤和常见的估计方法等内容。
基本概念联立方程模型的定义联立方程模型是指由多个方程组成的一种数学模型,用于描述多个经济变量之间的关系。
每个方程都包含一个因变量和若干个解释变量,以及一个误差项。
联立方程模型的核心思想是通过解方程组,得到各个变量的估计值,进而分析它们之间的关系。
基本假设在建立联立方程模型时,需要对变量之间的关系进行假设。
常见的基本假设有:1.线性关系假设:方程中的变量之间的关系是线性的。
2.独立性假设:各个方程中的误差项是独立的,即它们之间不存在相关性。
3.零条件均值假设:解释变量的条件均值为零,即解释变量的期望与误差项无关。
4.同方差假设:各个方程中的误差项方差相等。
建模步骤建立联立方程模型的步骤如下:步骤一:确定变量根据研究主题和数据可获得的变量,确定需要建立模型的变量集合。
步骤二:构建方程根据经济理论和实际问题,构建联立方程模型的方程形式。
每个方程包含一个因变量和若干个解释变量。
步骤三:参数估计通过收集数据,对联立方程模型进行参数估计。
常用的估计方法有最小二乘估计(Ordinary Least Squares,简称OLS)和广义矩估计(Generalized Method of Moments,简称GMM)等。
步骤四:模型诊断对估计得到的模型进行诊断,检验模型的拟合优度、参数显著性和误差项的假设等。
常见的诊断方法有虚拟变量检验、异方差性检验和序列相关性检验等。
步骤五:模型解释与政策分析根据估计得到的模型结果,解释各个变量之间的关系,并进行政策分析。
可以利用模型进行预测和模拟,评估不同政策对经济变量的影响。
单一方程模型一般描述的是单向因果关系,即解释变量引起被解释变量变化。
当两个变量之间存在双向因果关系时,用单一方程模型就不能完整的描述这两个变量之间的关系。
另外,对于一个比较复杂的经济系统而言,只用单一方程模型进行描述显然是不全面的。
例如,为某一地区的经济运行状况建立计量经济模型,要涉及工业、农业生产,基本建设投资,失业率,商品销售,居民生活等各个方面。
这时应该用多个方程的组合形式来描述整个经济系统。
从而引出联立方程模型的概念。
本章包括以下几小节:联立方程模型的概念联立方程模型的分类联立方程模型的识别联立方程模型的估计方法联立方程模型举例第一节联立方程模型的概念1 联立方程模型的概念联立方程模型就是描述经济变量间联立依存性的方程体系。
一个经济变量在某个方程中可能是被解释变量,而在另一个方程中却是解释变量。
在介绍联立方程模型之前,首先给出如下定义。
(1)内生变量:由模型内变量所决定的变量称作内生变量。
(2)外生变量:由模型外变量所决定的变量称作外生变量。
(3)前定变量:外生变量、外生滞后变量、内生滞后变量统称为前定变量。
注意,联立方程模型必须是完整的。
所谓完整即是指联立方程模型内的方程个数应该大于或等于内生变量个数。
否则联立方程模型无法估计。
下面介绍联立方程模型的分类。
第二节联立方程模型的分类联立方程模型可以分为三种类型,即结构模型,简化型模型和递归模型。
下面分别给予介绍。
1 结构模型把内生变量表达为其他内生变量、前定变量与随机误差项的联立方程模型称作结构模型。
例如有如下简单的凯恩斯模型C t = α0 +α1 Y t + u1t(9.1)I t = β0 + β1 Y t + β2 Y t-1 + u2t(9.2)Y t = C t + I t+ G t(9.3)其中,C t为宏观消费;Y t为国民收入;I t为投资;G t表示政府支出。
(9.1)式是消费函数。
(9.2) 式是投资函数。
(9.3) 式是国民收入恒等式。
联立方程模型
(1) 什么是联立方程模型
联立方程模型是指以方程组的方式来描述经济现象的一种经济模型。
一般来说,联立方程模型其实就是一个方程组,这个方程组中包含了多个方程,每个方程内部都有若干变量。
在联立方程模型中,每个变量被视为不同方程中的自变量或者因变量。
这种模型用线性公式和非线性公式来描述经济现象或统计变量间的关系,用以识别并推测经济变量对行为和经济状况发生变化的程度等。
(2) 联立方程模型的用途
(1)研究不可观测的经济问题:联立方程模型可以用来研究一些不可观测到的经济问题,比如投资机会成本,经济均衡和无形资产等经济问题;
(2)描述经济数据的特点:联立方程模型也可以用来描述经济数据的特点,比如消费者的收入水平与消费额的关系,全球投资机会成本的变化,股票市场价格和利润水平的变化等;
(3)研究并预测经济变量:联立方程模型也可以用来研究和预测经济变量的变化,比如全球投资和消费水平的变化,全球利率变化等;
(4)预测市场异动:联立方程模型还可以用来预测股票市场或其他金融市场的异动,以提前发现投资机会或避免不利的投资。
(3) 联立方程模型的特点
(1)多元关系:联立方程模型涉及多元关系,能够从多个变量之间的线性和非线性关系中,发现变量对行为和经济状况发生变化的程度;
(2)解析能力:联立方程模型具有很强的解析能力,可以发现经济现象的隐藏机制;
(3)可预测性:联立方程模型具有很强的可预测性,可以进行经济预测,进而制定更好的未来经济政策;
(4)抽象性:联立方程模型抽象性强,其结果可以以精确的数学表达式反映出来,且结果易于理解;
(5)自变量独立性:联立方程模型中,不同方程之间的自变量是相互独立的,可以直接用来比较不同变量之间的关系。
实验九联立方程模型9.1 实验目的了解联立方程模型的识别和估计的原理,掌握常用的估计、检验方法,以及相关的EViews软件操作方法。
9.2 实验原理联立方程模型的估计方法y1 = β11x1+ … + β1 k x k + u1y2 = β21x1+ … + β2 k x k + α21 y1 + u2y3 = β31x1+ … + β3 k x k + α31 y1 + α32 y2 + u3…..递归模型的估计方法是OLS法。
解释如下。
首先看第一个方程。
由于等号右边只含有外生变量和随机项,外生变量和随机项不相关,符合假定条件,所以可用OLS法估计参数。
对于第二个方程,由于等号右边只含有一个内生变量y1,以及外生变量和随机项。
根据假定u1和u2不相关,所以y1和u2不相关。
对于y2来说,y1是一个前定变量。
因此可以用OLS法估计第2个方程。
以此类推可以用OLS法估计递归模型中的每一个方程。
参数估计量具有无偏性和一致性。
简化型模型可用OLS法估计参数。
由于简化型模型一般是由结构模型对应而来,每个方程只含有一个内生变量且为被解释变量。
它是前定变量和随机项的唯一函数。
方程中解释变量都是前定变量,自然与随机项无关。
所以用OLS法得到的参数估计量为一致估计量。
对于结构模型有两种估计方法。
一种为单一方程估计法,即有限信息估计法;另一种为方程组估计法,系统估计法,即完全信息估计法。
前者只考虑被估计方程的参数约束问题,而不过多地考虑方程组中其他方程所施加的参数约束,因此称为有限信息估计方法。
后者在估计模型中的所有方程的同时,要考虑由于略去或缺少某些变量而对每个方程所施加的参数约束。
因此称为完全信息估计法。
显然对于联立方程模型,理想的估计方法应当是完全信息估计法,例如完全信息极大似然法(FIML)。
然而这种方法并不常用。
因为①这种方法计算工作量太大,②将导致在高度非线性的情况下确定问题的解,这常常是很困难的,③若模型中某个方程存在设定误差,这种误差将传播到其他方程中去。