FREE RADICAL CHEMISTRY 自由基化学讲义
- 格式:pptx
- 大小:983.56 KB
- 文档页数:33
第五章自由基反应5.1 自由基自由基是含有一个或多个未成对电子的物种,它是缺电子物种,但通常不带电,因此它们的化学性质与偶电子的缺电子物种——例如碳正离子和卡宾——很不相同。
“基”(radical)这个词来自拉丁语“根”。
“基”的概念最初用于代表贯穿于一系列反应始终保持不带电的分子碎片,而“自由基”(free radical)的概念最近才被创造出来,代表一个不与任何其他部分成键的分子碎片。
时至今日,“基”和“自由基”可以混用,但“基”在特定文献中依然保留了它的原意(例如,有机结构中的R基)。
5.1.1 稳定性本章讨论的大多数化学问题都涉及烷基自由基(·CR3)。
它是一个七电子、缺电子的物种,其几何构型可以看做一个较钝的三角锥,杂化类型兼有sp2和sp3成分,三角锥发生翻转所需能量很小。
实际操作中,你可以把烷基自由基看做sp2杂化的。
烷基自由基和碳正离子都是缺电子物种,能稳定碳正离子的结构因素同样能稳定烷基自由基。
烷基自由基可以被相邻的带孤对电子的杂原子或π键所稳定——正如它们稳定碳正离子时那样——且稳定性顺序为3°>2°>1°。
但是,在碳正离子和烷基自由基的能量趋势之间依然存在两个主要的区别:1.最外层含7个电子的C原子不如只含6个电子的C原子缺电子,因此烷基自由基不如相应的碳正离子能量高。
因此,极不稳定的芳基和1°烷基碳正离子从未观察到,但芳基和1°烷基自由基则相当常见。
2.对碳自由基而言,相邻的孤对、π键或σ键带来的额外稳定性不如碳正离子那么显著。
原因是:一个充满的AO或MO与一个碳正离子全空的AO之间的相互作用会将两个电子放置在一个能量降低的MO中,而一个充满的AO或MO与一个碳自由基半充满的AO之间的相互作用会将两个电子放置在一个能量降低的MO中,一个电子放置在一个能量升高的MO中。
尽管相邻的孤对、π键或σ键对碳自由基的稳定效果不如碳正离子,但若干个这些基团对自由基的稳定作用累积起来依然相当可观。
自由基与肿瘤的关系肿瘤是严重危害人类健康的常见疾病,而且近年来发病率呈逐渐上升趋势。
目前肿瘤的临床治疗主要是采用手术、化疗、放疗等疗法,但是这些方法除了能够对肿瘤肿瘤组织起到根除抑制作用外,还会造成人体正常细胞、乃至机体免疫功能的损伤。
肿瘤的发生机制非常复杂,很多因素尚未明了。
除了和基因、遗传、环境、感染等因素相关外,某些自由基的生成是肿瘤发生的重要机制之一。
自由基是在机器体缺血缺氧等因素作用下产生超氧阴离子,如过氧化氢H2O2等。
一、自由基的基本介绍1.自由基概念:自由基(free radicals),化学上又称游离基(radicals),特征是原子团或基团的外层轨道具有不成对的电子,这导致其性质活泼,极易与其他物质发生反应。
2.自由基性质与反应:自由基反应中最重要的是连锁反应,一般分为引发(iniation)、增殖(propagation)、终止(termination)3个阶段。
反应起始时引发阶段占主要地位,体系中新生自由基成为链式反应的开端;进行到一定阶段后反应物浓度降低,自由基头碰头几率增大,进入终止阶段。
因此在其中加入自由基清除剂,即可使反应受到抑制或者减慢速率,即为利用清除剂治疗自由基类疾病的理论基础。
3.生物体内的自由基:体内多种物质均能够产生自由基,因此自由基的种类很多。
其中作用最为广泛、受人研究最多的是活性氧ROS,其无论在人体的正常生理代谢还是在病理变化中均极为重要。
它们包括:超氧阴离子自由基、羟自由基、过氧化氢、氢过氧基、烷氧基、烷过氧基、氢过氧化物和单线态氧等。
二、自由基与肿瘤1.化学致癌物亲电子理论1)化学致癌物本身大部分无毒,只有代谢后才会成为具有致癌化学活性的产物。
2)具有致癌化学活性的中间产物是亲电子物。
3)亲电子的活性代谢产物与细胞大分子的负电荷亲核部位仅应启动致癌过程。
2.自由基诱发肿瘤与癌变的机理随着科学的进步,1929年Boveri提出的肿瘤细胞由体细胞突变的假说早已得到证实。
高等有机化学教案之自由基(Radical)第一章:自由基概述1.1 自由基的定义与特性1.2 自由基的产生与检测1.3 自由基的重要反应及应用第二章:自由基的产生与衰变2.1 热引发的自由基反应2.2 光引发的自由基反应2.3 自由基的衰变过程第三章:自由基的加成反应3.1 自由基加成反应的机理3.2 自由基加成反应的类型及特点3.3 自由基加成反应在有机合成中的应用第四章:自由基的消除反应4.1 自由基消除反应的机理4.2 自由基消除反应的类型及特点4.3 自由基消除反应在有机合成中的应用第五章:自由基的聚合反应5.1 自由基聚合反应的机理5.2 自由基聚合反应的类型及特点5.3 自由基聚合反应在材料科学中的应用第六章:自由基反应的调控与应用6.1 自由基反应的调控策略6.2 自由基反应在有机合成中的应用6.3 自由基反应在材料科学中的应用第七章:自由基反应的机理研究7.1 自由基反应的实验研究方法7.2 自由基反应的计算化学研究方法7.3 自由基反应机理的案例分析第八章:自由基反应的动力学8.1 自由基反应的动力学方程8.2 自由基反应速率常数的测定8.3 自由基反应动力学在有机合成中的应用第九章:自由基反应的生物化学应用9.1 自由基在生物体内的与清除9.2 自由基在生物体内的作用及机制9.3 自由基反应在药物设计与生物制药中的应用第十章:自由基反应的环境影响与应用10.1 自由基反应在大气化学中的应用10.2 自由基反应在水处理中的应用10.3 自由基反应在其他环境领域中的应用重点和难点解析重点一:自由基的定义与特性自由基是化学反应中非常重要的一类中间体,具有未成对的电子,具有高度的反应活性。
在有机化学反应中,自由基的、反应及终止过程是理解和掌握有机化学反应机理的关键。
重点二:自由基的产生与检测自由基的产生途径有热引发、光引发等,检测方法包括电子自旋共振(ESR)光谱、气相色谱(GC)等。
前言§1.1 自由基概论自由基学说是英国学者Harman[1-4]于1956年最早提出的,该学说认为自由基攻击生物大分子造成组织损伤,是引起机体衰老的主要原因,也是诱发肿瘤等恶性疾病的重要原因。
自由基(free radical)具有高度的化学反应活性,是人体生命活动中多种生化反应的中间代谢产物。
在正常情况下,人体内自由基处于不断产生和消除的动态平衡中。
适量自由基的存在对机体正常代谢的维持是必不可少的,其主要作用如下:[5]1.增强白细胞的吞噬作用,提高杀菌效果;2.参与肝脏的解毒作用;3.参与多种物质的合成,如前列腺素,凝血酶原等;4.参与核糖核苷的还原。
但在自由基产生过多或消除过慢时就造成自由基在体内的积累,它通过攻击大分子物质及各种细胞器,从而造成机体在分子水平、细胞水平及组织器官水平的各种损伤,加速机体衰老进程并诱发各种疾病。
§1.1.1自由基的产生细胞在正常的代谢过程(如细胞内酶的催化活动、电子的传递过程、细胞成分的自动氧化以及杀死微生物的吞噬作用)中,或者受到高能辐射,以及由于高压氧、药物(抗癌药、抗菌素、杀虫剂和麻醉剂等)、香烟烟雾和光化学空气污染物等作用,都会刺激机体产生活性氧自由基,表1概括了机体内活性氧自由基的产生途径[5]。
表1 自由基产生途径物理因素 A. X-ray→水解裂→H·+OH→+O2→O2· -B. 光电离→R·→+O2→O2· - +H+→+O2→O2· -+RC光激发→+O2→O2·化学因素 A. 无机的:M+ +O2→M2++O2· -B. 有机的:RH +O2→R·+O2· - +H+→+O2· -+R生化因素 A. 酶催化(正铁血红蛋白Fe2+) +O2→(正铁血红蛋白Fe3+) +O2· -B. 酶催化(1)膜酶:线粒体,微粒体和脂膜(2)可溶酶:胞外酶(如血浆铜蓝蛋白酶)胞内酶(如黄嘌呤氧化酶、过氧化物酶等)机体内自由基的产生以酶催化反应最为重要。
高等有机化学教案——自由基(Radical)一、教学目标1. 理解自由基的定义和特点2. 掌握自由基的、检测和反应3. 了解自由基在有机合成中的应用4. 能够分析和设计自由基反应的合成路径二、教学内容1. 自由基的定义和特点自由基的概念自由基的电子构型和稳定性自由基的命名和分类2. 自由基的热引发的自由基光引发的自由基辐射引发的自由基自由基的动力学3. 自由基的检测和反应自由基的检测方法自由基的反应类型自由基的反应机理4. 自由基在有机合成中的应用自由基聚合反应自由基取代反应自由基加成反应自由基还原反应5. 自由基反应的合成路径设计合成路径的设计原则自由基反应的串联和并联自由基反应的高效性和选择性三、教学方法1. 讲授法:讲解自由基的基本概念、、检测和反应,以及自由基在有机合成中的应用。
2. 案例分析法:分析具体实例,阐述自由基反应的机理和合成路径设计。
3. 互动教学法:引导学生提问、讨论和思考,提高学生的参与度和积极性。
四、教学准备1. 教案、PPT和相关文献2. 实验室设备和材料(如需进行实验演示或练习)3. 教学课件和讲义五、教学评价1. 课堂参与度:学生提问、讨论和思考的情况2. 作业和练习:学生完成作业和练习的情况3. 实验报告:学生进行实验的操作技能和分析能力4. 期末考试:学生对自由基知识的掌握和应用能力六、教学活动1. 引入:通过化学新闻或实际案例,引出自由基的概念,激发学生的兴趣。
2. 课堂讲授:详细讲解自由基的定义、电子构型和稳定性,以及自由基的命名和分类。
3. 小组讨论:学生分组讨论自由基的方式,分享各自的发现和理解。
4. 实验演示:进行自由基的实验演示,让学生直观地观察自由基的过程。
5. 案例分析:分析实际案例,引导学生理解自由基在有机合成中的应用。
七、教学重点与难点1. 教学重点:自由基的定义、方式、检测方法以及自由基在有机合成中的应用。
2. 教学难点:自由基反应机理的理解,以及自由基反应合成路径的设计。
高等有机化学教案——自由基(radical)教案概述:本教案旨在让学生理解自由基的概念、特性以及其在有机化学反应中的应用。
通过学习,学生将能够识别不同类型的自由基,掌握自由基反应的基本原理,并能够分析自由基反应机理。
教学目标:1. 理解自由基的概念及其特性。
2. 识别不同类型的自由基。
3. 掌握自由基反应的基本原理。
4. 分析自由基反应机理。
5. 能够应用自由基理论解释实际有机化学反应。
教学内容:第一章:自由基概述1.1 自由基的定义1.2 自由基的特性1.3 自由基的表示方法第二章:自由基的与检测2.1 自由基的途径2.2 自由基的检测方法2.3 自由基的实验观察第三章:自由基反应的基本原理3.1 自由基反应的类型3.2 自由基反应的机理3.3 自由基反应的条件第四章:不同类型的自由基反应4.1 氢自由基反应4.2 卤素自由基反应4.3 碳自由基反应第五章:自由基反应在有机合成中的应用5.1 自由基聚合反应5.2 自由基加成反应5.3 自由基取代反应教学方法:1. 讲授:讲解自由基的基本概念、特性和反应原理。
2. 实验演示:通过实验观察自由基的和反应。
3. 案例分析:分析具体自由基反应的机理和应用。
4. 讨论与提问:鼓励学生提问和参与讨论,加深对自由基反应的理解。
教学评估:1. 课堂参与度:评估学生提问和参与讨论的情况。
2. 练习题:布置相关的练习题,检验学生对自由基反应的理解。
3. 实验报告:评估学生在实验中的观察和分析能力。
教学资源:1. 教材:高等有机化学教材相关章节。
2. 实验材料:用于自由基反应实验的化学品和仪器。
3. 课件:用于辅助讲解和展示自由基反应的相关内容。
教学时间安排:1. 每章内容讲解时间:约45分钟。
2. 实验演示时间:约1小时。
3. 课堂讨论与提问时间:约15分钟。
4. 练习题和实验报告评估时间:课后自行完成。
第六章:自由基反应机理的深入分析6.1 自由基反应的链式过程6.2 自由基反应的链终止反应6.3 自由基反应的调控因素第七章:自由基反应动力学7.1 自由基反应速率定律7.2 自由基浓度的影响7.3 温度对自由基反应的影响第八章:自由基反应的立体化学8.1 自由基反应的立体选择性8.2 自由基反应的立体动力学8.3 自由基反应的立体化学控制第九章:自由基反应在生物体内的应用9.1 自由基反应与生物体内氧化应激9.2 自由基反应在生物体内的防御机制9.3 自由基反应在药物化学中的应用第十章:自由基反应的实际应用10.1 自由基聚合反应在材料科学中的应用10.2 自由基反应在有机合成中的应用案例分析10.3 自由基反应在其他领域的应用教案编辑专员提示:在编写教案时,应确保每个章节的教学目标和内容相互关联,形成一个完整的知识体系。
自由基自由基(free radical),化学上也称为“游离基”,是含有一个不成对电子的原子团。
化学性质极为活泼,易于失去电子(氧化)或获得电子(还原),特别是其氧化作用强,故具有强烈的引发脂质过氧化的作用。
病理情况下,由于活性氧生成过多或机体抗氧化能力不足,则可引发链式脂质过氧化反应损伤细胞膜,进而使细胞死亡。
自由基- 概述自由基(freeradical)是含有一个不成对电子的原子团,化学性质极为活泼,易于失去电子(氧化)或获得电子(还原),特别是其氧化作用强,故具有强烈的引发脂质过氧化的作用。
生理情况下,细胞内存在的抗氧化物质可以及时清除自由基,使自由基的生成与降解处于动态平衡;对机体并无有害影响。
病理情况下,由于活性氧生成过多或机体抗氧化能力不足,则可引发链式脂质过氧化反应损伤细胞膜,进而使细胞死亡。
其种类很多,主要包括:1.氧自由基2.脂性自由基3.其它[1]有机化合物(Organic compounds)发生化学反应时,总是伴随着一部分共价键(covalent bond)的断裂和新的共价键的生成。
共价键的断裂可以有两种方式:均裂(homolytic bon d cleavage)和异裂(heterolytic cleavage)。
键的断裂方式是两个成键电子在两个参与源自或碎片间平均分配的过程称为键的均裂。
两个成键电子的分离可以表示为从键出发的两个单箭头。
所形成的碎片有一对未成对电子,如H•,CH•,Cl•等。
若是由一个以上的原子组成时,称为自由基(Radicals)。
因为它有未成对电子,自由基和自由原子非常的活泼,通常无法分离得到。
不过在许多反应中,自由基和自由原子以中间体的形式存在,尽管浓度很低,存留时间很短。
这样的反应称为自由基反应(radical reactions)。
当一个稳定的原子的原有结构被外力打破,而导致这个缺少了一个电子时,该原子就成为自由基。
自由基性质活泼,很容易与其他物质发生化学反应。