周期信号的傅里叶级数
- 格式:ppt
- 大小:1.15 MB
- 文档页数:3
第三章 傅里叶变换3.1周期信号的傅里叶级数分析(一) 三角函数形式的傅里叶级数满足狄利赫里条件的周期函数()f t 可由三角函数的线性组合来表示,若()f t 的周期为1T ,角频率112T πω=,频率111f T =,傅里叶级数展开表达式为()()()0111cos sin n n n f t a a n t b n t ωω∞==++⎡⎤⎣⎦∑各谐波成分的幅度值按下式计算()0101t T t a f t dt T +=⎰()()0112cos t T n t a f t n t dt T ω+=⎰()()01012sin t T n t b f t n t dt T ω+=⎰其中1,2,n =⋅⋅⋅狄利赫里条件:(1) 在一个周期内,如果有间断点存在,则间断点的数目应是有限个;(2) 在一个周期内,极大值和极小值的数目应是有限个; (3) 在一个周期内,信号是绝对可积的,即()00t T t f t dt +⎰等于有限值。
(二) 指数形式的傅里叶级数周期信号的傅里叶级数展开也可以表示为指数形式,即()()11jn tnn f t F n eωω∞=-∞=∑其中()011011t T jn tn t F f t e dt T ω+-=⎰ 其中n 为从-∞到+∞的整数。
(三) 函数的对称性与傅里叶系数的关系(1) 偶函数由于()f t 为偶函数,所以()()1sin f t n t ω为奇函数,则()()01112sin 0t T n t b f t n t dt T ω+==⎰所以,在偶函数的傅里叶级数中不会含有正弦项,只可能含有直流项和余弦项。
(2) 奇函数由于()f t 为奇函数,所以()()1cos f t n t ω为奇函数,则()0100110t T t a f t dt T +==⎰()()010112cos 0t T n t a f t n t dt T ω+==⎰ 所以,在奇函数的傅里叶级数中不会含有直流项和余弦项,只可能包含正弦项(3) 奇谐函数(()12T f t f t ⎛⎫=-+ ⎪⎝⎭)半波对称周期函数的傅里叶级数中,只会含有基波和奇次谐波的正、余弦项,而不会含有偶次谐波项,这也是奇谐函数名称的由来。
周期信号的傅里叶级数展开:1. 三角形式: 周期信号()f t ,周期T ,基波频率12w Tπ=,所构成的完备正交函数集:三角函数集{}11cos ,sin nwt nwt ; ()0111()cos sin n n n f t a a nw t b nw t ∞==++∑其中:2021()TT a f t dt T -=⎰2122()cos TT n a f t nw tdt T -=⎰2122()sin TT n b f t nw tdt T -=⎰ 注意: (1) 展开条件:狄利赫利条件 (2) 另外一种形式:011()cos()nn n f t c cnw t ϕ∞==++∑其中:00c a =n c =nn nb tg a φ=-(3)物理意义: (4)幅度谱和相位谱2. 指数形式: 完备正交函数集 :复指数函数集{}1jnw t e1()jnw tnn f t F e∞=-∞=∑其中1221()Tjnw t T n F f t e dt T --=⎰注意:(1)幅度谱和相位谱nj n n F F e φ= :偶谱和奇谱与三角形式间的关系(2)两种级数间的关系 3. 函数()f t 满足对称性的级数展开: (1) 偶函数:011()cos n n f t a a nw t ∞==+∑0n b =或011()cos()n n n f t c c nw t ϕ∞==++∑,00c a =||n n c a =0,0,0n n n a a ϕπ>⎧=⎨<⎩(2)奇函数:11()sin n n f t b nw t ∞==∑00n a a ==或011()cos()n n n f t c c nw t ϕ∞==++∑,00c =||n n c b =,02,02nn nb b πϕπ⎧->⎪⎪=⎨⎪<⎪⎩(3)奇谐函数:()()2T f t f t =-±其傅里叶级数展开式中仅含奇次谐波分量,即: 0240a a a ====2460b b b ====4. 典型周期矩形脉冲的傅里叶级数信号()f t ,周期为T ,脉宽为τ,脉幅为E(1)三角形式011()cos nn f t a anw t ∞==+∑0n b =其中:2202211()T T E a f t dt Edt T T Tτττ--===⎰⎰211222cos 2n E a E nw tdt Sa nw T T ττττ-⎛⎫== ⎪⎝⎭⎰ 谐波形式:011()cos()n n n f t c c nw t φ∞==++∑其中:00c a =n nc a =, {0,0,0n n n a a ϕπ>=<(2)指数形式:1()jnw t n n f t F e ∞=-∞=∑其中:11222211()T jnw tjnw t T n F f t e dt Ee dt T T ττ---==⎰⎰112E Sa nw T ττ⎛⎫=⎪⎝⎭(3)幅度谱和相位谱的特点 谱线间隔和频谱宽度二.傅里叶变换 ()()jwt F w f t e dt ∞--∞=⎰1()()2jwt f t F w e dw π∞-∞=⎰特点:(1)()()()j w F w F w e ϕ=幅频函数和相频函数(2)变换条件:|()|f t dt ∞-∞<∞⎰ (3)()f t 也是由许多频率分量构成三.常见信号的傅里叶变换对 单边指数衰减信号,0()0,0t e t f t t α-⎧>=⎨<⎩,0α> ↔1()F w jw α=+ 双边指数衰减信号||,0(),0t t te tf t ee t ααα--⎧>==⎨<⎩ ↔222()F w w αα=+矩形脉冲(),2f t E tτ=<↔ ()()2F w E Sa w ττ=符号函数()sgn()f t t = ↔2()F w jw=冲击函数()()f t t δ= ↔ ()1F w = ()()f t t δ'=↔ ()F w jw =()()()n f t t δ=↔ ()()nF w jw = 直流信号()1f t = ↔ ()()2F w w πδ=()f t jt =-↔ ()()2F w w πδ'=()()nf t jt =-↔()()()2n F w w πδ=阶跃信号()()f t u t = ↔()1()F w w jwπδ=+四.傅里叶变换的性质 1.线性性2.奇偶虚实性:()f t 为实函数()()()cos ()sin jwtF w f t edt f t wtdt j f t wtdt ∞∞∞--∞-∞-∞==-⎰⎰⎰(1)()f t 为实偶函数,虚部()()sin 0X w f t wtdt ∞-∞==⎰ (2)()f t 为实奇函数,实部()()cos 0R w f t wtdt ∞-∞==⎰3. 对称性4.时移性5. 尺度变换:时域压缩,频谱扩张 时域扩张,频谱压缩 时域反褶,频谱反褶6.频移性:00()()jw tF f t e F w w ⎡⎤=-⎣⎦[][]001()cos ()()2F f t wt F w w F w w =-++[][]001()sin ()()2F f t wt F w w F w w j=--+ 7.时域微分:[]()()F f t jwF w '=()()()()n nF f t jw F w ⎡⎤=⎣⎦8.频域微分:[]()()F jtf t F w '-=()()()()n n F jt f t F w ⎡⎤-=⎣⎦9.时域卷积:()()()1212()F f t f t F w F w *=⎡⎤⎣⎦ 10.频域卷积:五.周期信号的傅里叶变换:(1) 周期信号的傅里叶级数展开式:1()jnw tnn f t F e ∞=-∞=∑(2) 周期信号的傅里叶变换:1()2()nn F w F w nw πδ∞=-∞=-∑特点:(ⅰ)频谱为冲击谱 (ⅱ)强度为2n F π(ⅲ)谱线位于谐波处(1nw )(ⅳ)()1120211()|Tjnw t jwt T n w nw F f t e dt f t e dt T T∞--=-∞-==⎰⎰()101|w nw F w T==其中:0()f t 为周期信号的第一个脉冲, ()0F w 为0()f t 的傅里叶变换。