半导体物理第五章答辩
- 格式:ppt
- 大小:391.00 KB
- 文档页数:45
第一篇习题半导体中的电子状态1-1、什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说明之。
1-2、试定性说明Ge、Si的禁带宽度具有负温度系数的原因。
1-3、试指出空穴的主要特征。
1-4、简述Ge、Si和GaAS的能带结构的主要特征。
1-5、某一维晶体的电子能带为E(k) = E Q[1—O.lcos(如)—0.3sin(*a)]其中E0=3eV,晶格常数a=5xl0-11mo求:Cl)能带宽度;C2)能带底和能带顶的有效质量。
第一篇题解半导体中的电子状态1-1、解:在一定温度下,价带电子获得足够的能量(3Eg)被激发到导带成为导电电子的过程就是本征激发。
其结果是在半导体中出现成对的电子-空穴对。
如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中。
1-2、解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带。
温度升高,则电子的共有化运动加剧,导致允带进一步分裂、变宽;允带变宽,则导致允带与允带之间的禁带相对变窄。
反之,温度降低,将导致禁带变宽。
因此,Ge、Si的禁带宽度具有负温度系数。
1-3、解:空穴是未被电子占据的空量子态,被用来描述半满带中的大量电子的集体运动状态,是准粒子。
主要特征如下:A、荷正电:+q;B、空穴浓度表示为p (电子浓度表示为n);C、Ep=-E nD、mp*=-m n*o1-4、解:(1) Ge、Si:a)Eg (Si: 0K)= 1.21eV; Eg (Ge: OK) = 1.170eV;b)间接能隙结构C)禁带宽度Eg随温度增加而减小;(2) GaAs :a) E g (300K) = 1.428eV, Eg (OK) = 1.522eV ;b) 直接能隙结构;c) Eg 负温度系数特性:dE g /dT = -3.95XlO-4eV/K ; 1-5、解:(1) 由题意得:dE ——=O.lofijsiii (如)-3cos (知)] dk= 0.1a 2E 0[cos(^a) + 3sin(A;a)]dF i令—=0,得tg (ka)=— dk 3k x a = 18.4349°,灼。
第一章习题1.设晶格常数为a的一维晶格,导带极小值附近能量Ec(k和价带极大值附近能量EV(k分别为:Ec=(1)禁带宽度;(2)导带底电子有效质量;(3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化解:(1)2. 晶格常数为0.25nm的一维晶格,当外加102V/m,107 V/m的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:得补充题1分别计算Si(100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si在(100),(110)和(111)面上的原子分布如图1所示:(a)(100晶面(b)(110晶面(c)(111晶面补充题2一维晶体的电子能带可写为,式中a为晶格常数,试求(1)布里渊区边界;(2)能带宽度;(3)电子在波矢k状态时的速度;(4)能带底部电子的有效质量;(5)能带顶部空穴的有效质量解:(1)由得(n=0,1,2…)进一步分析,E(k)有极大值,时,E(k)有极小值所以布里渊区边界为(2能带宽度为(3)电子在波矢k状态的速度(4)电子的有效质量能带底部所以(5能带顶部,且,所以能带顶部空穴的有效质量半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
(2)理想半导体是纯净不含杂质的,实际半导体含有若干杂质。
(3)理想半导体的晶格结构是完整的,实际半导体中存在点缺陷,线缺陷和面缺陷等。
2. 以As掺入Ge中为例,说明什么是施主杂质、施主杂质电离过程和n型半导体。
As有5个价电子,其中的四个价电子与周围的四个Ge原子形成共价键,还剩余一个电子,同时As原子所在处也多余一个正电荷,称为正离子中心,所以,一个As 原子取代一个Ge原子,其效果是形成一个正电中心和一个多余的电子.多余的电子束缚在正电中心,但这种束缚很弱,很小的能量就可使电子摆脱束缚,成为在晶格中导电的自由电子,而As原子形成一个不能移动的正电中心。
半导体物理 SEMICONDUCTOR PHYSICS 编写:刘诺独立制作:刘诺电子科技大学微电子与固体电子学院微电子科学与工程系刘诺第五篇非平衡载流子 §5.1 非平衡载流子的注入与复合一、非平衡载流子及其产生非平衡态:系统对平衡态的偏离。
相应的:n=n0+ ⊿n p=p0+ ⊿p 且⊿n= ⊿p 非平衡载流子:⊿n 和⊿p(过剩载流子)刘诺当非平衡载流子的浓度△n和△p《多子浓度时,这就是小注入条件。
结论⇒小注入条件下非平衡少子∆p对平衡少子p0的影响大非平衡载流子⇐非平衡少子刘诺二、产生过剩载流子的方法光注入电注入高能粒子辐照… 刘诺注入的结果产生附加光电导σ = nq µ n + pq µ p = (n0 qµn + p0 qµ p + (∆nqµn + ∆pqµ p = (n0 + ∆n qµn + ( p0 + ∆p qµ p = σ 0 + ∆σ 故附加光电导∆σ 0 = ∆nqµ n +∆pqµ p = ∆nq (µ n + µ p 刘诺三、非平衡载流子的复合光照停止,即停止注入,系统从非平衡态回到平衡态,电子空穴对逐渐消失的过程。
即:△n=△p 0 刘诺§5.2 非平衡载流子的寿命 1、非平衡载流子的寿命寿命τ ⇐非平衡载流子的平均生存时间1 τ ⇐单位时间内非平衡载流子的复合几率⎧1 ⎯→ ⎪τ ⎯单位时间内非平衡电子的复合几率⎪ n ⎨ 1 ⎪⎯单位时间内非平衡空穴的复合几率⎯→⎪τ p 刘诺⎩例如d [∆p (t ] 则在单位时间内非平衡载流子的减少数= − dt ∆p 而在单位时间内复合的非平衡载流子数= τp 如果在t = 0时刻撤除光照在小注入条件下,τ为常数.解方程(1得到则d [∆p (t ] ∆p − = ⎯ (1 ⎯→ dt τp − t ∆p(t = ∆p(0e − t τp ⎯ (2 ⎯→ 同理也有∆n(t = ∆n(0 e 刘诺τn ⎯ (3 ⎯→对 (2 式求导 2、寿命的意义∆p (t d [∆ p (t ] = − τp ∞ dt ⇒衰减过程中从 t到 t + dt 内复合掉的过剩空穴因此⇐(∆p 0 个过剩载流子的平均可生存时间为∫ td [∆p(t ]= τ t= ∫ d [∆p(t ] − 0 ∞ 0 p ⎯ (3 同理⎯→∫ td [∆n(t ] = τ t= ∫ d [∆n(t ] ∞ − 0 ∞ 0 n ⎯ (4 ⎯→τ − ⎧ 1 τ ⎯→ ⎪ ∆ p (τ = (∆ p 0 e = (∆ p 0 ⎯ (5 ⎪ e 可见⎨τ − ⎪ ∆ n (τ = (∆ n e τ = 1 (∆ n ⎯ (6 0 0 ⎯→ ⎪ e ⎩ 1 ⇒ τ就是∆p (t 衰减到(∆p 0的所需的时间刘诺 e§5.3 准费米能级非平衡态的电子与空穴各自处于热平衡态准平衡态,但具有相同的晶格温度: 1 ⎧⎯⎯→ (1 E−E ⎪ f n (E = ⎪⎪ 1 + e k 0T ⎨ 1 ⎪ f p (E = ⎯⎯→(2 p EF −E ⎪⎪ 1 + e k 0T ⎩ n EF ⎯电子准费米能级⎯→ p 刘诺 EF ⎯空穴准费米能级⎯→ n F刘诺§5.4 复合理论(2)间接复合 Ec 1、载流子的复合形式:(1)直接复合刘诺 Ev复合率 R=rnp 2、带间直接复合:(1)其中,r是电子空穴的复合几率,与n 和p无关。
第七篇题解-半导体表面与MIS结构刘诺编7-1、解:又因为7-3、解:(1)表面积累:当金属表面所加的电压使得半导体表面出现多子积累时,这就是表面积累,其能带图和电荷分布如图所示:(2)表面耗尽:当金属表面所加的电压使得半导体表面载流子浓度几乎为零时,这就是表面耗尽,其能带图和电荷分布如图所示:(3)当金属表面所加的电压使得半导体表面的少子浓度比多子浓度多时,这就是表面反型,其能带图和电荷分布如图所示:7-3、解:理想MIS结构的高频、低频电容-电压特性曲线如图所示;其中AB段对应表面积累,C到D段为表面耗尽,GH和EF对应表面反型。
7-4、解:使半导体表面达到强反型时加在金属电极上的栅电压就是开启电压。
这时半导体的表面势7-5、答:当MIS结构的半导体能带平直时,在金属表面上所加的电压就叫平带电容。
平带电压是度量实际MIS结构与理想MIS结构之间的偏离程度的物理量,据此可以获得材料功函数、界面电荷及分布等材料特性参数。
7-6、解:影响MIS结构平带电压的因素分为两种:(1)金属与半导体功函数差。
例如,当W m s 时,将导致 C-V 特性向负栅压方向移动。
如图(1)恢复平带在金属上所加的电压就是(2)界面电荷。
假设在SiO2中距离金属- SiO2界面x处有一层正电荷,将导致C-V特性向负栅压方向移动。
如图(2)恢复平带在金属上所加的电压就是在实际半导体中,这两种因素都同时存在时,所以实际MIS结构的平带电压为第六篇习题-金属和半导体接触刘诺编6-1、什么是功函数?哪些因数影响了半导体的功函数?什么是接触势差?6-2、什么是Schottky势垒?影响其势垒高度的因数有哪些?6-3、什么是欧姆接触?形成欧姆接触的方法有几种?试根据能带图分别加以分析。
6-4、什么是镜像力?什么是隧道效应?它们对接触势垒的影响怎样的?6-5、施主浓度为7.0×1016cm-3的n型Si与Al形成金属与半导体接触,Al的功函数为4.20eV,Si的电子亲和能为4.05eV,试画出理想情况下金属-半导体接触的能带图并标明半导体表面势的数值。
第5章 非平衡载流子1. 一个n 型半导体样品的额外空穴密度为1013cm -3,已知空穴寿命为100μs ,计算空穴的复合率。
解:复合率为单位时间单位体积内因复合而消失的电子-空穴对数,因此1317306101010010U cm s ρτ--===⋅⨯ 2. 用强光照射n 型样品,假定光被均匀吸收,产生额外载流子,产生率为g p ,空穴寿命为τ,请①写出光照开始阶段额外载流子密度随时间变化所满足的方程; ②求出光照下达到稳定状态时的额外载流子密度。
解:⑴光照下,额外载流子密度∆n =∆p ,其值在光照的开始阶段随时间的变化决定于产生和复合两种过程,因此,额外载流子密度随时间变化所满足的方程由产生率g p 和复合率U 的代数和构成,即()p d p pg dt τ=-⑵稳定时额外载流子密度不再随时间变化,即()0d p dt=,于是由上式得0p p p p g τ∆=-=3. 有一块n 型硅样品,额外载流子寿命是1μs ,无光照时的电阻率是10Ω⋅cm 。
今用光照射该样品,光被半导体均匀吸收,电子-空穴对的产生率是1022/cm 3⋅s ,试计算光照下样品的电阻率,并求电导中少数载流子的贡献占多大比例?解:光照被均匀吸收后产生的稳定额外载流子密度226163101010 cm p p n g τ-∆=∆==⨯=-取21350/()n cm V s μ=⋅,2500/()p cm V s μ=⋅,则额外载流子对电导率的贡献1619()10 1.610(1350500) 2.96 s/cm n p pq σμμ-=∆+=⨯⨯⨯+=无光照时0010.1/s cm σρ==,因而光照下的电导率0 2.960.1 3.06/s cm σσσ=+=+=相应的电阻率 110.333.06cm ρσ===Ω⋅少数载流子对电导的贡献为:p p p p q p pq pq g σμμτμ=≈=代入数据:16190()10 1.6105000.8/p p p p p q pq s cm σμμ-=+∆≈∆=⨯⨯⨯=∴00.80.26263.06p σσσ===+﹪ 即光电导中少数载流子的贡献为26﹪4.一块半导体样品的额外载流子寿命τ =10μs ,今用光照在其中产生非平衡载流子,问光照突然停止后的20μs 时刻其额外载流子密度衰减到原来的百分之几?解:已知光照停止后额外载流子密度的衰减规律为0()tP t p e τ-=因此光照停止后任意时刻额外载流子密度与光照停止时的初始密度之比即为()t P t e P τ-= 当520210t s s μ-==⨯时202100(20)0.13513.5P e e P --====﹪ 5. 光照在掺杂浓度为1016cm -3的n 型硅中产生的额外载流子密度为∆n=∆p= 1016cm -3。
1半导体中的电子状态1.2半导体中电子状态和能带1.3半导体中电子的运动有效质量1半导体中E与K的关系2半导体中电子的平均速度3半导体中电子的加速度1.4半导体的导电机构空穴1硅和锗的导带结构对于硅,由公式讨论后可得:I.磁感应沿【1 1 1】方向,当改变B(磁感应强度)时,只能观察到一个吸收峰II.磁感应沿【1 1 0】方向,有两个吸收峰III.磁感应沿【1 0 0】方向,有两个吸收峰IV磁感应沿任意方向时,有三个吸收峰2硅和锗的价带结构重空穴比轻空穴有较强的各向异性。
2半导体中杂质和缺陷能级缺陷分为点缺陷,线缺陷,面缺陷(层错等1.替位式杂质间隙式杂质2.施主杂质:能级为E(D,被施主杂质束缚的电子的能量状态比导带底E(C低ΔE(D,施主能级位于离导带底近的禁带中。
3. 受主杂质:能级为E(A,被受主杂质束缚的电子的能量状态比价带E(V高ΔE(A,受主能级位于离价带顶近的禁带中。
4.杂质的补偿作用5.深能级杂质:⑴非3,5族杂质在硅,锗的禁带中产生的施主能级距离导带底较远,离价带顶也较远,称为深能级。
⑵这些深能级杂质能产生多次电离。
6.点缺陷:弗仑克耳缺陷:间隙原子和空位成对出现。
肖特基缺陷:只在晶体内部形成空位而无间隙原子。
空位表现出受主作用,间隙原子表现出施主作用。
3半导体中载流子的分布统计电子从价带跃迁到导带,称为本征激发。
一、状态密度状态密度g(E是在能带中能量E附近每单位间隔内的量子态数。
首先要知道量子态,每个量子态智能容纳一个电子。
导带底附近单位能量间隔内的量子态数目,随电子的能量按抛物线关系增大,即电子能量越高,状态密度越大。
二、费米能级和载流子的统计分布在T=0K时,费米能级E(f可看作是量子态是否被电子占据的一个界限。
附图:随着温度的升高,电子占据能量小于费米能级的量子态的概率下降,占据高于费米能级的量子态的概率上升。
2波尔兹曼分布函数在E-E(f>>K(0T时,服从波尔兹曼分布(是费米能级的一种简化形式)。
半导体物理 SEMICONDUCTOR PHYSICS 编写:刘诺独立制作:刘诺电子科技大学微电子与固体电子学院微电子科学与工程系刘诺第五篇非平衡载流子 §5.1 非平衡载流子的注入与复合一、非平衡载流子及其产生非平衡态:系统对平衡态的偏离。
相应的:n=n0+ ⊿n p=p0+ ⊿p 且⊿n= ⊿p 非平衡载流子:⊿n 和⊿p(过剩载流子)刘诺当非平衡载流子的浓度△n和△p《多子浓度时,这就是小注入条件。
结论⇒小注入条件下非平衡少子∆p对平衡少子p0的影响大非平衡载流子⇐非平衡少子刘诺二、产生过剩载流子的方法光注入电注入高能粒子辐照… 刘诺注入的结果产生附加光电导σ = nq µ n + pq µ p = (n0 qµn + p0 qµ p + (∆nqµn + ∆pqµ p = (n0 + ∆n qµn + ( p0 + ∆p qµ p = σ 0 + ∆σ 故附加光电导∆σ 0 = ∆nqµ n +∆pqµ p = ∆nq (µ n + µ p 刘诺三、非平衡载流子的复合光照停止,即停止注入,系统从非平衡态回到平衡态,电子空穴对逐渐消失的过程。
即:△n=△p 0 刘诺§5.2 非平衡载流子的寿命 1、非平衡载流子的寿命寿命τ ⇐非平衡载流子的平均生存时间1 τ ⇐单位时间内非平衡载流子的复合几率⎧1 ⎯→ ⎪τ ⎯单位时间内非平衡电子的复合几率⎪ n ⎨ 1 ⎪⎯单位时间内非平衡空穴的复合几率⎯→⎪τ p 刘诺⎩例如d [∆p (t ] 则在单位时间内非平衡载流子的减少数= − dt ∆p 而在单位时间内复合的非平衡载流子数= τp 如果在t = 0时刻撤除光照在小注入条件下,τ为常数.解方程(1得到则d [∆p (t ] ∆p − = ⎯ (1 ⎯→ dt τp − t ∆p(t = ∆p(0e − t τp ⎯ (2 ⎯→ 同理也有∆n(t = ∆n(0 e 刘诺τn ⎯ (3 ⎯→对 (2 式求导 2、寿命的意义∆p (t d [∆ p (t ] = − τp ∞ dt ⇒衰减过程中从 t到 t + dt 内复合掉的过剩空穴因此⇐(∆p 0 个过剩载流子的平均可生存时间为∫ td [∆p(t ]= τ t= ∫ d [∆p(t ] − 0 ∞ 0 p ⎯ (3 同理⎯→∫ td [∆n(t ] = τ t= ∫ d [∆n(t ] ∞ − 0 ∞ 0 n ⎯ (4 ⎯→τ − ⎧ 1 τ ⎯→ ⎪ ∆ p (τ = (∆ p 0 e = (∆ p 0 ⎯ (5 ⎪ e 可见⎨τ − ⎪ ∆ n (τ = (∆ n e τ = 1 (∆ n ⎯ (6 0 0 ⎯→ ⎪ e ⎩ 1 ⇒ τ就是∆p (t 衰减到(∆p 0的所需的时间刘诺 e§5.3 准费米能级非平衡态的电子与空穴各自处于热平衡态准平衡态,但具有相同的晶格温度: 1 ⎧⎯⎯→ (1 E−E ⎪ f n (E = ⎪⎪ 1 + e k 0T ⎨ 1 ⎪ f p (E = ⎯⎯→(2 p EF −E ⎪⎪ 1 + e k 0T ⎩ n EF ⎯电子准费米能级⎯→ p 刘诺 EF ⎯空穴准费米能级⎯→ n F刘诺§5.4 复合理论(2)间接复合 Ec 1、载流子的复合形式:(1)直接复合刘诺 Ev复合率 R=rnp 2、带间直接复合:(1)其中,r是电子空穴的复合几率,与n 和p无关。