高考数学:三角恒等变形公式大全
- 格式:doc
- 大小:14.50 KB
- 文档页数:3
三角恒等变换所有公式
三角恒等变换是一种重要的数学思想,它是一种重要的数学变换,它可以将函数或形式转换成另一种形式。
它具有良好的几何意义,包括积分,平方,幂和三角函数。
这种变换可以帮助我们理解数学概念,解决数学问题,更好地应用数学的思想。
三角恒等变换的公式有很多种,其中最受欢迎的是“反三角变换”,它的公式如下:
反三角变换:f(x) = sinx和 cosx反三角变换是
Acos(x)+Bsin(x)。
它的反三角变换表示式是:
Acos(x)+Bsin(x) = f(x)
利用反三角变换可以将函数 f(x)换成 Acos(x)+Bsin(x),其中A和B是任意实数。
也可以把它看成是三角函数的线性组合。
反射恒等变换:反射恒等变换是另一种常用的三角变换,它的公式是:
Csin(x)+Scos(x) = f(x)
反射恒等变换表示上式函数 f(x)以用 Csin(x)+Scos(x)表示,其中C和S是任意实数。
反射恒等变换也可以看成是三角函数的线性组合。
另外,三角恒等变换还有其他公式,例如求导公式:
f(x)=Acosx + Bsinx
反三角变换也可以应用于求积分,其求积分公式为:
F(x) = Asin(x)+Bcos(x)
F(x) =f (x) dx
上述就是三角恒等变换的所有公式,它们是数学的重要变换,有着无限的应用空间,被广泛应用在科学中和工程中。
他可以帮助我们更快地理解数学概念,解决数学问题,更好地运用数学思想。
三角函数cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α+β)=sinα·cosβ+cosα·sinβsin(α-β)=sinα·cosβ-cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)二倍角sin(2α)=2sinα·cosα=2tan(α)/[1-tan^2(α)]cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)=[1-tan^2(α)]/[1+tan^2(α)]tan(2α)=2tanα/[1-tan^2(α)]三倍角sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosαtan3α=(3tanα-tan^3(α))÷(1-3tan^2(α))sin3α=4sinα×sin(60-α)sin(60+α)cos3α=4cosα×cos(60-α)cos(60+α)tan3α=tanα×tan(60-α)tan(60+α)半角公式sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα半角变形sin^2(α/2)=(1-cosα)/2sin(a/2)=√[(1-cosα)/2] a/2在一、二象限=-√[(1-cosα)/2] a/2在三、四象限cos^2(α/2)=(1+cosα)/2cos(a/2)=√[(1+cosα)/2] a/2在一、四象限=-√[(1+cosα)/2] a/2在二、三象限tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα=√[(1-cosα)/(1+cosα)] a/2在一、三象限=-√[(1-cosα)/(1+cosα)] a/2在二、四象限恒等变形tan(a+π/4)=(tana+1)/(1-tana)tan(a-π/4)=(tana-1)/(1+tana)asinx+b cosx=[√(a^2+b^2)]{[a/√(a^2+b^2)]sinx+[b/√(a^2+b^2)]cosx}=[√(a^2+b^2)]sin(x+y)(辅助角公式)tan y=b/a万能代换半角的正弦、余弦和正切公式(降幂扩角公式)sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]积和化差sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ= -(1/2)[cos(α+β)-cos(α-β)](注:留意最前面是负号)和差化积sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]内角公式sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)cosA+cosB+cosC=1+4sin(A/2)sin(B/2)sin(C/2)tanA+tanB+tanC=tanAtanBtanCcot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)tan(A/2)tan(B/2)+tan(B/2)tan(C/2)+tan(C/2)tan(A/2)=1cotAcotB+cotBcotC+cotCcotA=1证明方法首先,在三角形ABC中,角A,B,C所对边分别为a,b,c若A,B均为锐角,则在三角形ABC中,过C作AB边垂线交AB于D 由CD=asinB=bsinA(做另两边的垂线,同理)可证明正弦定理:a/sinA=b/sinB=c/sinC于是有:AD+BD=cAD=bcosA,BD=acosB AD+BD=c代入正弦定理,可得sinC=sin(180-C)=sin(A+B)=sinAcosB+sinBcosA 即在A,B均为锐角的情况下,可证明正弦和的公式。
三角恒等变换高考数学中的关键知识点总结三角恒等变换是高考数学中的重要内容,涉及到三角函数的性质和等价关系。
在解决三角函数相关题目时,熟练掌握三角恒等变换可帮助我们简化计算和推导过程,提高解题效率。
本文将对三角恒等变换中的关键知识点进行总结。
一、基本恒等式1. 余弦、正弦和正切的平方和恒等式:$cos^2(x) + sin^2(x) = 1$$1 - tan^2(x) = sec^2(x)$$1 - cot^2(x) = csc^2(x)$这些恒等式是三角函数中最为基础的恒等式,也是其他恒等式的基础。
通过这些基本恒等式,我们可以推导出其他更复杂的恒等式。
2. 三角函数的互余关系:$sin(\frac{\pi}{2} - x) = cos(x)$$cos(\frac{\pi}{2} - x) = sin(x)$$tan(\frac{\pi}{2} - x) = \frac{1}{cot(x)}$$cot(\frac{\pi}{2} - x) = \frac{1}{tan(x)}$互余关系表明,角度x和其余角之间的三角函数之间存在特定的关系。
3. 三角函数的倒数关系:$sin(-x) = -sin(x)$$cos(-x) = cos(x)$$tan(-x) = -tan(x)$$cot(-x) = -cot(x)$三角函数的倒数关系表明,对于同一角度的正负,其正弦、余弦、正切和余切的值也是相反的。
二、和差恒等式和差恒等式是三角恒等变换中的重要内容,它们可用于将角度的和或差转化为其他三角函数表示,从而简化解题过程。
1. 正弦和差恒等式:$sin(x \pm y) = sin(x)cos(y) \pm cos(x)sin(y)$2. 余弦和差恒等式:$cos(x \pm y) = cos(x)cos(y) \mp sin(x)sin(y)$3. 正切和差恒等式:$tan(x \pm y) = \frac{tan(x) \pm tan(y)}{1 \mp tan(x)tan(y)}$这些和差恒等式在解决角度和为特定值时的三角函数计算中起到了重要的作用。
三角恒等变换公式大全1.正弦和余弦的平方和差关系:sin²x + cos²x = 1sin²x = 1 - cos²xcos²x = 1 - sin²x2.正弦和余弦的和差关系:sin(x + x) = sin x cos x + cos x sin xsin(x - x) = sin x cos x - cos x sin xcos(x + x) = cos x cos x - sin x sin xcos(x - x) = cos x cos x + sin x sin x3.正切和余切的和差关系:tan(x + x) = (tan x + tan x) / (1 - tan x tan x)tan(x - x) = (tan x - tan x) / (1 + tan x tan x)cot(x + x) = (cot x cot x - 1) / (cot x + cot x)cot(x - x) = (cot x cot x + 1) / (cot x - cot x)4.正弦和余弦的二倍角关系:sin(2x) = 2sin x cos xcos(2x) = cos²x - sin²x = 2cos²x - 1 = 1 - 2sin²x 5.正切和余切的二倍角关系:tan(2x) = (2tan x) / (1 - tan²x)cot(2x) = (cot²x - 1) / (2cot x)6.正弦和余弦的三倍角关系:sin(3x) = 3sin x - 4sin³xcos(3x) = 4cos³x - 3cos x7.正切和余切的三倍角关系:tan(3x) = (3tan x - tan³x) / (1 - 3tan²x)cot(3x) = (cot³x - 3cot x) / (3cot²x - 1)8.正弦和余弦的半角关系:sin(x/2) = ± √(1 - cos x) / 2cos(x/2) = ± √(1 + cosx) / 29.正切和余切的半角关系:tan(x/2) = (1 - cos x) / sin x = sin x / (1 + cos x) cot(x/2) = (1 + cos x) / sin x = sin x / (1 - cos x) 10.和差的三角函数关系:sin x + sin x = 2 sin((x + x)/2) cos((x - x)/2) sin x - sin x = 2 cos((x + x)/2) sin((x - x)/2) cos x + cos x = 2 cos((x + x)/2) cos((x - x)/2) cos x - cos x = -2 sin((x + x)/2) sin((x - x)/2)这些是一些常见的三角恒等变换公式,应用在不同的数学问题和物理公式的推导中。
三角恒等变换公式大全三角函数是数学中的重要分支,它在许多科学与工程领域中具有广泛的应用。
而三角恒等变换公式是三角函数的重要性质之一。
它们可以将一个三角函数表达式转换为其他三角函数表达式,从而提供了在解决问题时的灵活性和简化计算的便利性。
在本文中,我们将介绍一些常用的三角恒等变换公式,帮助读者更好地理解和应用三角函数。
1. 正弦、余弦和正切的平方和差公式:- 正弦的平方和差公式:sin²(A ± B) = sin²A*cos²B ±2*sinA*sinB*cosA*cosB- 余弦的平方和差公式:cos²(A ± B) = cos²A*cos²B -2*sinA*sinB*cosA*cosB- 正切的平方和差公式:tan²(A ± B) = (tan²A ± tan²B) / (1 ∓tanA*tanB)2. 正弦和余弦的倍角公式:- 正弦的倍角公式:sin2A = 2*sinA*cosA- 余弦的倍角公式:cos2A = cos²A - sin²A = 2*cos²A - 1 = 1 -2*sin²A3. 正切的倍角公式:- 正切的倍角公式:tan2A = (2*tanA) / (1 - tan²A)4. 正弦、余弦和正切的半角公式:- 正弦的半角公式:sin(A / 2) = ± √[(1 - cosA) / 2]- 余弦的半角公式:cos(A / 2) = ± √[(1 + cosA) / 2]- 正切的半角公式:tan(A / 2) = ± √[(1 - cosA) / (1 + cosA)]5. 正切的和差公式:- 正切的和公式:tan(A ± B) = (tanA ± tanB) / (1 ∓ tanA*tanB)6. 余弦的和差公式:- 余弦的和公式:cos(A ± B) = cosA*cosB ∓ sinA*sinB7. 三角函数的倒数公式:- sin(-A) = -sinA,cos(-A) = cosA,tan(-A) = -tanA8. 三角函数的互余关系:- sin(π/2 - A) = cosA,cos(π/2 - A) = sinA,tan(π/2 - A) = 1/tanA9. 三角函数的余角关系:- sin(π - A) = sinA,cos(π - A) = -cosA,tan(π - A) = -tanA10. 三角函数的化简公式:- sin(2π - A) = -sinA,cos(2π - A) = cosA,tan(2π - A) = tanA这些三角恒等变换公式为解决三角函数相关的数学问题提供了便利,读者在学习和应用时可根据具体情况选择合适的公式进行推导和计算。
常用的14个恒等变形公式作为数学中的基本工具之一,恒等变形在各种数学问题中都扮演着关键的角色。
本文将介绍14个常用的恒等变形公式,这些公式的掌握对于提高数学学习成绩和应对高考、数学竞赛等考试都有着重要的作用。
一、基本恒等变形1.加减同项式的恒等变形∵a+b+c+d+e+f=0∴a+b+c=-(d+e+f)2.去分母的恒等变形∵a/c=b/d∴ad=bc3.两边平方式的恒等变形∵a=c·d·e·f∴e·f=a/(c·d)4.拆分因式的恒等变形∵a²-b²=(a+b)(a-b)∴(a+b)(a-b)=a²-b²二、平方恒等变形5.一次二次(a+b)²=a²+2ab+b²(a-b)²=a²-2ab+b²6.和差二次cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb7.平方差a²-b²=(a+b)(a-b)8.完全平方a²+2ab+b²=(a+b)²a²-2ab+b²=(a-b)²三、三角函数恒等变形9.正弦cos²(a)+sin²(a)=1sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-cosasinb10.余弦sin²(a)+cos²(a)=1cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb11.正切tan(a+b)=(tana+tanb)/(1-tanatanb) tan(a-b)=(tana-tanb)/(1+tanatanb) 12.双角sin2a=2sina·cosacos2a=cos²(a)-sin²(a)=2cos²(a)-1=1-2sin²(a)13.半角sin(a/2)=√[(1-cos(a))/2]cos(a/2)=√[(1+cos(a))/2]tan(a/2)=sin(a)/(1+cos(a))14.万能公式sin(a±b)=(sinacosb±cosasinb)cos(a±b)=(cosacosb∓sinasinb)可以通过这些公式的使用,将复杂的数学运算转换成简单而直观的形式,使数学问题的解决变得更加容易和高效。
完整三角恒等式公式表在数学中,三角恒等式是指具有恒等关系的三角函数之间的等式。
下面是一份完整的三角恒等式公式表。
1. 正弦和余弦的恒等式:- $\sin^2(x) + \cos^2(x) = 1$- $\sin(x) = \cos\left(\frac{\pi}{2} - x\right)$- $\cos(x) = \sin\left(\frac{\pi}{2} - x\right)$- $\sin(2x) = 2\sin(x)\cos(x)$- $\cos(2x) = \cos^2(x) - \sin^2(x)$2. 正切的恒等式:- $\tan(x) = \frac{\sin(x)}{\cos(x)}$- $\tan(x) = \frac{1}{\cot(x)}$- $\tan(x) = \frac{\sin(2x)}{1 + \cos(2x)}$3. 和差角的恒等式:- $\sin(x \pm y) = \sin(x)\cos(y)\pm\cos(x)\sin(y)$- $\cos(x \pm y) = \cos(x)\cos(y)\mp\sin(x)\sin(y)$4. 双角的恒等式:- $\sin(2x) = 2\sin(x)\cos(x)$- $\cos(2x) = \cos^2(x) - \sin^2(x)$5. 万能公式:- $\sin(x + y) = \sin(x)\cos(y) + \cos(x)\sin(y)$- $\cos(x + y) = \cos(x)\cos(y) - \sin(x)\sin(y)$- $\tan(x + y) = \frac{\tan(x) + \tan(y)}{1 - \tan(x)\tan(y)}$以上是一些常见的三角恒等式。
它们在解题和证明中经常被使用,对于理解和应用三角函数非常重要。
通过掌握这些恒等式,你可以更好地处理与三角函数相关的数学问题。
高中数学中的三角恒等变换常用恒等变换公式总结与应用技巧在高中数学中,三角函数是一个重要的概念,而三角恒等变换则是在解决三角函数方程和简化三角函数式子时经常用到的重要工具。
本文将总结常用的三角恒等变换公式,并介绍其应用技巧。
一、基本恒等变换公式1. 余弦函数的基本恒等变换(1) 余弦函数的平方形式:cos²θ + sin²θ = 1(2) 二倍角公式:cos2θ = cos²θ - sin²θ(3) 余弦函数的和差角公式:cos(θ ± φ) = cosθcosφ - sinθsinφ2. 正弦函数的基本恒等变换(1) 正弦函数的平方形式:sin²θ + cos²θ = 1(2) 二倍角公式:sin2θ = 2sinθcosθ(3) 正弦函数的和差角公式:sin(θ ± φ) = sinθcosφ ± cosθsinφ3. 正切函数的基本恒等变换(1) 正切函数的平方形式:tan²θ + 1 = sec²θ1 + cot²θ = cosec²θ(2) 二倍角公式:tan2θ = (2tanθ)/(1 - tan²θ)二、常用恒等变换公式1. 互余公式:sin(π/2 - θ) = cosθcos(π/2 - θ) = sinθtan(π/2 - θ) = cotθ2. 余角公式:sin(π - θ) = sinθcos(π - θ) = -cosθtan(π - θ) = -tanθ3. 倍角公式:sin2θ = 2sinθcosθcos2θ = cos²θ - sin²θtan2θ = (2tanθ)/(1 - tan²θ)4. 积化和差公式:sinθsinφ = (1/2)[cos(θ - φ) - cos(θ + φ)]cosθcosφ = (1/2)[cos(θ - φ) + cos(θ + φ)]sinθcosφ = (1/2)[sin(θ + φ) + sin(θ - φ)]三、恒等变换的应用技巧1. 解三角函数方程:利用恒等变换可以将复杂的三角函数方程转化为简单的等式,从而更容易求解。
三角恒等变换所有公式及推论
三角恒等变换是一种可以将任意三角形变换成其他三角形的变换,它可以用来表示某一几
何图形变换为另一几何图形的变换性质,并提供一种明确的、可以用数学语言描述的基本变换方式。
它适用于三角形在由不同点i,j,k采分的空间和时间中的出现,即它可以使
三角形的空间或时间结构:T(i,j,k)变为T'(i',j',k')。
三角恒等变换的数学公式如下:
T'(i',j',k')=T(i,j,k)=M(i,j,k)
其中M(i,j,k)为矩阵公式,其包含有三个主要参数,分别为它的长边尺寸a,它的高δ,以及它的顶点坐标x, y, z。
在实际应用时,三角恒等变换可以用来比较两个不同形状或位置的三角形之间的变换关系。
该变换可以用来求解某一复杂形状的旋转平移问题,或者利用该变换操作,可以更加有效地实现几何图形之间的转换。
三角恒等变换还可以用于把三个一般性三角形变换为具有更高几何结构性质的三角形,可
以实现几何图形的对称变换,也可以实现几个三角形按照一定的排布方式发生平移或旋转变换。
总而言之,三角恒等变换可以方便地使任意三角形变换到其他三角形,可以实现几何图形之间的变换,可以实现三角形的对称变换,以及三角形的平移和旋转变换,因此,具有重
要的应用价值。
三角形恒等变形的所有公式三角形恒等变形指的是三角形边长或内角大小不变,而位置发生变化的一类变形过程。
下面是三角形恒等变形的公式:一、相似变形:1. 三角形的相似变形可用下列公式来表示:$$\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}$$ 其中,$a_1$,$a_2$,$b_1$,$b_2$, $c_1$,$c_2$分别代表变形前后三角形三条边长。
2. 三角形的相似变形可用下列公式来表示:$$\frac{A_1}{A_2}=\frac{B_1}{B_2}=\frac{C_1}{C_2}=\frac{a_1}{a_2}$$ 其中,$A_1$,$A_2$,$B_1$,$B_2$,$C_1$,$C_2$分别代表变形前后相应顶角的度数,$a_1$,$a_2$分别代表变形前后三角形公共边长。
二、平行移动变形:1. 平行移动变形:把三角形沿着对角线对称的方向平移一定距离后,形成新的三角形,这就是平行移动变形。
2. 按照平行移动变形,可以用一组新的坐标来表示新三角形:$$\left(x-x_0,y-y_0)\right)(x+x_0,y+y_0)(2x,2y)$$ 其中,$x_0$,$y_0$是平行移动的距离,$\left(x,y\right)$是变形前三角形的顶点坐标。
三、旋转变形:1. 旋转变形:把三角形绕着某一点旋转一定角度,形成新的三角形,这就是旋转变形。
2. 按照旋转变形,可以用一组新的坐标来表示新三角形:$$\left(x^{\prime},y^{\prime}\right)(x^{\prime\prime},y^{\prime\prime})(x^{\prime\pri me\prime},y^{\prime\prime\prime})$$ 其中,$\left(x,y\right)$是变形前三角形的顶点坐标,$\theta$是旋转的角度,$\left(x^{\prime},y^{\prime}\right),\left(x^{\prime\prime},y^{\prime\prime}\right),\left(x^{\prime\prime\prime},y^{\prime\prime\prime}\right)$分别为变形后三角形的顶点坐标,可以用下列公式来表示:$$\begin{array}{l}{x^{\prime}=x \cos \theta-y \sin \theta} \\ {y^{\prime}=x \sin\theta+y \cos \theta} \\ {x^{\prime \prime}=x \cos \theta+y \sin \theta} \\ {y^{\prime\prime}=-x \sin \theta+y \cos \theta} \\ {x^{\prime \prime \prime}=-x \cos \theta+y \sin\theta} \\ {y^{\prime \prime \prime}=-x \sin \theta-y \cos \theta}\end{array}$$四、对称变形:1. 对称变形是一种以一条边为轴线,将三角形的各个顶点绕轴线映射的一种变形。
高考数学热点:简单的三角恒等变换【考点梳理】1、两角和与差的三角函数公式sin()sin cos cos sin αβαβαβ+=+sin()sin cos cos sin αβαβαβ−=−cos()cos cos sin sin αβαβαβ+=−cos()cos cos sin sin αβαβαβ−=+tan tan tan()1tan tan αβαβαβ−−=+ tan tan tan()1tan tan αβαβαβ++=− 2、二倍角公式sin 22sin cos ααα= 22cos2cos sin ααα=− 2cos22cos 1αα=−2cos212sin αα=− 22tan tan 21tan ααα=−3、辅助角公式sin cos )a x b x x ϕ±=±(其中tan b aϕ=) 4、降幂公式21cos2cos 2αα+=21cos2sin 2αα−=【典型题型讲解】 考点一:两角和与差公式【典例例题】例1.(2022·广东汕头·高三期末)已知πsin (,π)2αα=∈,则cos()6πα−=( )A .-1B .0C .12D【答案】B 【详解】∵πsin (,π)22αα=∈,∴2π3α=,故ππcos()cos 0.62α−== 故选:B例2.(2022·广东湛江·一模)已知4cos 5α=,02πα<<,则sin 4πα⎛⎫+= ⎪⎝⎭( )ABC.D.【答案】B 【详解】由4cos 5α=,02πα<<,得3sin 5α=,所以34sin 422252510πααα⎛⎫+=+=⨯+= ⎪⎝⎭,故选:B.例3.(2022·广东汕头·一模)已知0,2πθ⎛⎫∈ ⎪⎝⎭,2tan tan 43πθθ⎛⎫+=− ⎪⎝⎭,则sin cos2sin cos θθθθ=+( ) A .12−B .35C .3D .53−【答案】B【详解】由(0,)2πθ∈,得tan 0θ>,又2tan()tan 43πθθ+=−,得tan tan24tan 31tan tan 4πθθπθ+=−−⋅,即tan 12tan 1tan 3θθθ+=−−, 整理,得tan 3θ=或1tan 2θ=−(舍去),所以sin 3cos θθ=,又22sin cos 1θθ+=,(0,)2πθ∈,解得sin cos θθ=, 故22sin cos 2sin (cos sin )sin (sin cos )(cos sin )sin cos sin cos sin cos θθθθθθθθθθθθθθθθ−+−==+++3sin (cos sin )5θθθ=−==−. 故选:B【方法技巧与总结】1.三角函数式化简的方法:化简三角函数式常见方法有弦切互化,异名化同名,异角化同角,降幂与升幂等.2.给值求值:解题的关键在于“变角”,把待求三角函数值的角用含已知角的式子表示出来,求解时要注意对角的范围的讨论. 【变式训练】 1.已知5π1tan()45−=α,则tan =α__________. 【答案】32【解析】本题主要考查三角恒等变换,考查考生的运算求解能力.5πtan tan5πtan 114tan 5π41tan 51tan tan 4ααααα−−⎛⎫−=== ⎪+⎝⎭+⋅,解方程得3tan 2=α.故答案为32. 2.(2022·广东韶关·一模)若()()1sin 0,,tan 22ππαααβ⎛⎫−=∈+= ⎪⎝⎭,则tan β=__________. 【答案】17【详解】因为()sin 0,2ππαα⎛⎫−=∈ ⎪⎝⎭,所以sin α=,所以cos α=,所以sin 1tan cos 3ααα==. ()()()11tan tan 123tan tan .111tan tan 7123αβαβαβααβα−+−=+−===⎡⎤⎣⎦+++⨯又 故答案为:173.(2022·全国·高考真题)若sin()cos()sin 4παβαβαβ⎛⎫+++=+ ⎪⎝⎭,则( )A .()tan 1αβ−=B .()tan 1αβ+=C .()tan 1αβ−=−D .()tan 1αβ+=−【答案】C 【详解】由已知得:()sin cos cos sin cos cos sin sin 2cos sin sin αβαβαβαβααβ++−=−, 即:sin cos cos sin cos cos sin sin 0αβαβαβαβ−++=, 即:()()sin cos 0αβαβ−+−=, 所以()tan 1αβ−=−, 故选:C 4.已知sin α=()cos αβ−=304πα<<,304πβ<<,则sin β=( )A.35BC.35D.35【答案】A 【解析】易知()()sin sin βααβ=−−,利用角的范围和同角三角函数关系可求得cos α和()sin αβ−,分别在()sin 5αβ−=和5−两种情况下,利用两角和差正弦公式求得sin β,结合β的范围可确定最终结果. 【详解】2sin 72α=<且304πα<<,04πα∴<<,5cos 7α∴==.又304πβ<<,344ππαβ∴−<−<,()sin 5αβ∴−=±.当()sin 5αβ−=时,()()()()sin sin sin cos cos sin βααβααβααβ=−−=−−−57==304πβ<<,sin 0β∴>,sin β∴=当()sin αβ−=sin β.综上所述:sin β= 故选:A .5.已知sin 15tan 2102α⎛⎫︒−=︒ ⎪⎝⎭,则()sin 60α︒+的值为( )A .13B .13−C .23D .23−【答案】A 【解析】根据题意得到sin 152α⎛⎫︒−= ⎪⎝⎭进而得到26cos 1529α⎛⎫︒−= ⎪⎝⎭,()1cos 303α︒−=,从而有()()()sin 60sin 9030cos 30ααα⎡⎤︒+=︒−︒−=︒−⎣⎦.【详解】∵sin 15tan 2102α⎛⎫︒−=︒ ⎪⎝⎭,∴()sin 15tan 210tan 18030tan302α⎛⎫︒−=︒=︒+︒=︒= ⎪⎝⎭,则226cos 151sin 15229αα⎛⎫⎛⎫︒−=−︒−= ⎪ ⎪⎝⎭⎝⎭,()221cos 30cos 15sin 15223ααα⎛⎫⎛⎫︒−=︒−−︒−= ⎪ ⎪⎝⎭⎝⎭,∴()()sin 60sin 9030αα⎡⎤︒+=︒−︒−⎣⎦ ()1cos 303α=︒−=,故选A.考点二:二倍角公式【典例例题】例1.(2022·广东中山·高三期末)若2sin 3α=,则cos2α=___________. 【答案】19【分析】根据余弦的二倍角公式即可计算.【详解】2221cos212sin 1239αα⎛⎫=−=−⨯= ⎪⎝⎭.故答案为:19.例2.(2022·广东清远·高三期末)已知tan 2α=,则sin cos 44sin 2⎛⎫⎛⎫−+ ⎪ ⎪⎝⎭⎝⎭=ππααα________. 答案】18−【详解】1sin cos (sin cos )(cos sin )442sin 22sin cos ⎛⎫⎛⎫−+−− ⎪ ⎪⎝⎭⎝⎭=ππααααααααα222sin cos 2sin cos tan 12tan 14sin cos 4tan 8−−+−−+===−ααααααααα.故答案为:18−例3.若cos 0,,tan 222sin παααα⎛⎫∈= ⎪−⎝⎭,则tan α=( )ABCD【答案】A 【详解】cos tan 22sin ααα=−2sin 22sin cos cos tan 2cos 212sin 2sin αααααααα∴===−−,0,2πα⎛⎫∈ ⎪⎝⎭,cos 0α∴≠,22sin 112sin 2sin ααα∴=−−,解得1sin 4α=, cos 4α∴=sin tan cos 15ααα∴==. 故选:A.【方法技巧与总结】三角恒等变换的基本思路:找差异,化同角(名),化简求值.三角恒等变换的关键在于观察各个角之间的联系,发现题目所给条件与恒等变换公式的联系. 【变式训练】1.(2022·广东汕头·一模)已知0,2πθ⎛⎫∈ ⎪⎝⎭,2tan tan 43πθθ⎛⎫+=− ⎪⎝⎭,则sin cos2sin cos θθθθ=+( ) A .12−B .35C .3D .53−【答案】.B【详解】由(0,)2πθ∈,得tan 0θ>,又2tan()tan 43πθθ+=−,得tan tan24tan 31tan tan 4πθθπθ+=−−⋅,即tan 12tan 1tan 3θθθ+=−−,整理,得tan 3θ=或1tan 2θ=−(舍去),所以sin 3cos θθ=,又22sin cos 1θθ+=,(0,)2πθ∈,解得sin cos θθ=, 故22sin cos 2sin (cos sin )sin (sin cos )(cos sin )sin cos sin cos sin cos θθθθθθθθθθθθθθθθ−+−==+++3sin (cos sin )5θθθ=−==−. 故选:B2.(2022·广东韶关·二模)已知 1sin cos 5αα+=,则()2tan 12sin sin 2πααα++=+( )A .17524−B .17524C .2524−D .2524【答案】.C【详解】由题知1sin cos 5αα+=,有242sin cos 25αα=−,所以()2tan 12sin sin 2πααα+++()tan 12sin sin cos αααα+=+()sin cos 1cos 2sin sin cos αααααα+=⨯+1252sin cos 24αα==−, 故选:C .3.(2022·广东佛山·二模)已知sin πα43⎛⎫−= ⎪⎝⎭,则sin 2α=___________.【答案】59【详解】sin sin 443ππαα⎛⎫⎛⎫−=−−=⎪ ⎪⎝⎭⎝⎭所以sin 4πα⎛⎫−= ⎪⎝⎭所以225sin 2cos 2cos 212sin 122449πππαααα⎛⎡⎤⎛⎫⎛⎫⎛⎫=−=−=−−=−⨯= ⎪ ⎪ ⎪⎢⎥ ⎝⎭⎝⎭⎝⎭⎣⎦⎝⎭ 故答案为:594.(2022·广东肇庆·二模)若sin cos 5θθ+=−,则sin 2θ=______. 【答案】45【详解】∵sin cos θθ+= ∴()29sin cos 12sin cos 5θθθθ+=+=, 所以4sin 22sin cos 5θθθ==. 故答案为:45.5.(2022·广东深圳·二模)已知tan 3α=,则cos 2=α__________. 【答案】45−【详解】解:由题意可知:2214cos 22cos 121tan 15ααα=−=⨯−=−+ .6.若3sin 5α=−,且3ππ,2α⎛⎫∈ ⎪⎝⎭,则1tan21tan2αα−=+( )A .12B .12−C .2D .−2【答案】D 【详解】3sin 2sincos225ααα==−,故2222sincos2tan32225sin cos tan 1222αααααα==−++, 可解得1tan23α=−或tan 32α=−,又3ππ,2α⎛⎫∈ ⎪⎝⎭,故tan 32α=−,故1tan 221tan2αα−=−+, 故选:D7.已知1sin 64x π⎛⎫−= ⎪⎝⎭,则cos 23x π⎛⎫−= ⎪⎝⎭( )A .78−B .78C.4−D.4【答案】B 【详解】因为sin sin 66x x ππ⎛⎫⎛⎫−=−− ⎪ ⎪⎝⎭⎝⎭,所以1sin 64x π⎛⎫−=− ⎪⎝⎭,2217cos 2cos 212sin 1236648x x x πππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫−=−=−−=−−= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦.故选:B.8.已知,22ππα⎛⎫∈− ⎪⎝⎭,且1cos 42πα⎛⎫−= ⎪⎝⎭,则cos2α=( )A. B. C .12D【答案】D 【详解】 因为22ππα−<<,所以3444πππα−<−< 又1cos 42πα⎛⎫−= ⎪⎝⎭,所以43ππα−=−,所以12πα=−所以cos 2cos cos 66ππα⎛⎫=−==⎪⎝⎭故选:D9.已知1sin 35πα⎛⎫+= ⎪⎝⎭,则cos 23πα⎛⎫−= ⎪⎝⎭( )A .2325B .2325−C D .5−【答案】B 【详解】因为1sin cos cos 3665πππααα⎛⎫⎛⎫⎛⎫+=−=−= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以22123cos 2cos22cos 121366525πππααα⎛⎫⎛⎫⎛⎫⎛⎫−=−=−−=⨯−=− ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选:B .10.已知()3sin 455α︒+=,45135α︒<<︒,则cos 2=α( )A .2425B .2425−C .725D .725−【答案】B 【详解】解:因为45135α︒<<︒,所以9045180α︒<+︒<︒,又()3sin 455α︒+=,所以()4cos 455α︒+==−,所以()()()3424sin 2452sin 45cos 4525525ααα⎛⎫︒+=︒+︒+=⨯⨯−=− ⎪⎝⎭。
三角恒等变换的所有公式及其推导公式三角恒等变换是指对于任意角度x,存在一系列等价的三角函数表达式。
这些等价的表达式可以通过一些特定的关系来推导出来。
下面将介绍一些常见的三角恒等变换公式及其推导过程。
1. 倍角公式:sin(2x) = 2sin(x)cos(x)cos(2x) = cos^2(x) - sin^2(x) = 2cos^2(x) - 1 = 1 - 2sin^2(x)tan(2x) = 2tan(x) / (1 - tan^2(x))推导过程:对于sin(2x),可以利用三角函数的加法公式sin(A+B)=sinAcosB+cosAsinB,将A=B=x代入得到:sin(2x) = sin(x+x) = sin(x)cos(x) + cos(x)sin(x) = 2sin(x)cos(x)对于cos(2x),可以利用cos(2x)=cos^2(x) - sin^2(x)得到:cos(2x) = cos^2(x) - sin^2(x) = 2cos^2(x) - 1 = 1 - 2sin^2(x)对于tan(2x),可以利用tan(2x) = sin(2x) / cos(2x)得到:tan(2x) = 2sin(x)cos(x) / (1 - 2sin^2(x)) = 2tan(x) / (1 - tan^2(x))2. 和差公式:sin(A+B) = sinAcosB + cosAsinBsin(A-B) = sinAcosB - cosAsinBcos(A+B) = cosAcosB - sinAsinBcos(A-B) = cosAcosB + sinAsinB推导过程:对于sin(A+B),可以利用sin(A+B)=sinAcosB+cosAsinB得到:sin(A+B) = sinAcosB + cosAsinB对于sin(A-B),可以利用sin(A-B)=sinAcosB-cosAsinB得到:sin(A-B) = sinAcosB - cosAsinB对于cos(A+B),可以利用cos(A+B)=cosAcosB-sinAsinB得到:cos(A+B) = cosAcosB - sinAsinB对于cos(A-B),可以利用cos(A-B)=cosAcosB+sinAsinB得到:cos(A-B) = cosAcosB + sinAsinB3. 万能公式:sin^2(x) + cos^2(x) = 11 + tan^2(x) = sec^2(x)1 + cot^2(x) = csc^2(x)推导过程:对于sin^2(x) + cos^2(x),可以利用三角函数的平方和公式sin^2(x) + cos^2(x) = 1得到:sin^2(x) + cos^2(x) = 1对于1 + tan^2(x),可以利用tan^2(x) + 1 = sec^2(x)得到:1 + tan^2(x) = sec^2(x)对于1 + cot^2(x),可以利用cot^2(x) + 1 = csc^2(x)得到:1 + cot^2(x) = csc^2(x)通过以上的公式及其推导过程,我们可以在三角函数的计算中灵活运用,简化计算过程,提高计算的准确性和效率。
三角恒等变换所有公式1.余弦的平方公式:cos^2θ + sin^2θ = 1这是最为基本的三角恒等变换,它表示余弦函数平方加正弦函数平方等于12.余弦的二倍角公式:cos(2θ) = cos^2θ - sin^2θ这个公式表示一个角的余弦的二倍等于该角的余弦平方减去正弦平方。
3.正弦的二倍角公式:sin(2θ) = 2sinθcosθ这个公式表示一个角的正弦的二倍等于两倍该角的正弦函数和余弦函数的乘积。
4.余弦的和差公式:cos(θ ± φ) = cosθcosφ - sinθsinφ这个公式用于求两个角的和或差的余弦。
5.正弦的和差公式:sin(θ ± φ) = sinθcosφ ± cosθsinφ这个公式用于求两个角的和或差的正弦。
6.正切的和差公式:tan(θ ± φ) = (tanθ ± tanφ) / (1 ∓ tanθtanφ)这个公式用于求两个角的和或差的正切。
7.余弦的和公式:cos(θ + φ) = cosθcosφ - sinθsinφ这个公式表示两个角的和的余弦等于两个角的余弦乘积减去两个角的正弦乘积。
8.余弦的差公式:co s(θ - φ) = cosθcosφ + sinθsinφ这个公式表示两个角的差的余弦等于两个角的余弦乘积加上两个角的正弦乘积。
9.正弦的和公式:sin(θ + φ) = sinθcosφ + cosθsinφ这个公式表示两个角的和的正弦等于两个角的正弦乘积加上两个角的余弦乘积。
10.正弦的差公式:sin(θ - φ) = sinθcosφ - cosθsinφ这个公式表示两个角的差的正弦等于两个角的正弦乘积减去两个角的余弦乘积。
11.三角函数的平方公式:sin^2θ = (1 - cos2θ) / 2cos^2θ = (1 + cos2θ) / 2这些公式表示正弦函数和余弦函数的平方可以用角的余弦的二倍来表示。
一、三角函数公式:辅助角公式的重要作用:合一变形⇒把形如x b x a co s s i n +的函数转化为)s i n (ϕ+=x A y 的函数,即:两个三角函数的和或差化为“一个三角函数,一个角,一次方”的 B x A y ++=)sin(ϕϖ形式tan tan tan 2212ααααβ=-=←−−相除以上是三角函数公式的关系图二、三角恒等变换:一角二名三结构,对角、函数名、式子结构===化异为同三角函数的化简、计算、证明的恒等变形的基本思路是:一角二名三结构。
即首先观察角与角之间的关系,注意角的一些常用变式,角的变换是三角函数变换的核心!第二看函数名称之间的关系,通常“切化弦”;第三观察代数式的结构特点。
常用的数学思想方法技巧如下:(1)角的变换:在三角化简,求值,证明中,表达式中往往出现较多的相异角,可根据角与角之间的和差,倍半,互补,互余的关系,运用角的变换,沟通条件与结论中角的差异,使问题获解,对角的变形如:(2余弦是基础,通常化切、割为弦,变异名为同名。
(3)常数代换:在三角函数运算,求值,证明中,有时需要将常数转化为三角函数值,(4)幂的变换:降幂是三角变换时常用方法,对次数较高的三角函数式,一般采用降幂处理的方法。
降幂并非绝对,有时需要升幂,如对无理式αcos 1+常用升幂化为有理式 (5)公式变形:三角公式是变换的依据,应熟练掌握三角公式的顺用,逆用及变形应用。
三、三角函数式的化简运算通常从:“角、名、形、幂”四方面入手;基本规则是:切割化弦,异角化同角,复角化单角,异名化同名,高次化低次,无理化有理,和积互化,特殊值与特殊角的三角函数互化。
化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少;④尽量 使分母不含三角函数;⑤尽量使被开方数不含三角函数。
四、三角函数的求值类型有三类(1)给角求值:一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变换消去非特殊角,转化为求特殊角的三角函数值问题;(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如2(),()()ααββααβαβ=+-=++-等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论;(3)给值求角:实质上转化为“给值求值”问题,由所得的所求角的函数值结合所求角的范围及函数的单调性求得角。
三角恒等变换公式总结以下是一些常见的三角恒等变换公式:1.积化和差公式:sin(A ± B) = sinA * cosB ± cosA * sinBcos(A ± B) = cosA * cosB ∓ sinA * sinBtan(A ± B) = (tanA ± tanB) / (1 ∓ tanA * tanB)2.和差化积公式:sinA + sinB = 2 * sin((A + B) / 2) * cos((A - B) / 2)sinA - sinB = 2 * cos((A + B) / 2) * sin((A - B) / 2)cosA + cosB = 2 * cos((A + B) / 2) * cos((A - B) / 2)cosA - cosB = -2 * sin((A + B) / 2) * sin((A - B) / 2)3.二倍角公式:sin2A = 2 * sinA * cosAcos2A = cos^2 A - sin^2 A = 2 * cos^2 A - 1 = 1 - 2 * sin^2 Atan2A = (2 * tan A) / (1 - tan^2 A)4.半角公式:sin(A / 2) = ±√[(1 - cosA) / 2]cos(A / 2) = ±√[(1 + cosA) / 2]tan(A / 2) = ±√[(1 - cosA) / (1 + cosA)]5.和差化积公式的倒数形式:sinA * sinB = (cos(A - B) - cos(A + B)) / 2cosA * cosB = (cos(A - B) + cos(A + B)) / 2sinA * cosB = (sin(A + B) + sin(A - B)) / 2cosA * sinB = (sin(A + B) - sin(A - B)) / 26.和差化积公式的平方形式:sin^2 A + sin^2 B = 2 * sin^2((A + B) / 2) * cos^2((A - B) / 2)cos^2 A + cos^2 B = 2 * cos^2((A + B) / 2) * cos^2((A - B) / 2)sin^2 A − sin^2 B = sin^2((A + B) / 2) − sin^2((A - B) / 2) cos^2 A − cos^2 B = −sin^2((A + B) / 2) + sin^2((A - B) / 2)7.三角函数的和差化积公式:sinA + sinB = 2 * sin[(A + B) / 2] * cos[(A - B) / 2]sinA - sinB = 2 * cos[(A + B) / 2] * sin[(A - B) / 2]cosA + cosB = 2 * cos[(A + B) / 2] * cos[(A - B) / 2]cosA - cosB = -2 * sin[(A + B) / 2] * sin[(A - B) / 2]8.三角函数的平方化和差公式:sin^2 A = (1 - cos2A) / 2cos^2 A = (1 + cos2A) / 2tan^2 A = (1 - cos2A) / (1 + cos2A)9.和差化积公式的高阶形式:sinA + sinB = 2 * sin[(A + B) / 2] * cos[(A - B) / 2]sinA + sinB + sinC = 4 * sin[(A + B) / 2] * sin[(B + C) / 2] * sin[(C + A) / 2]sinA + sinB + sinC + sinD = 8 * sin[(A + C) / 4] * sin[(A +D) / 4] * sin[(B + C) / 4] * sin[(B + D) / 4]10.三角函数的多项式展开:sin(A + B + C) = sinA * cosB * cosC + cosA * sinB * cosC + cosA * cosB * sinC − sinA * sinB * sinCcos(A + B + C) = cosA * cosB * cosC − sinA * sinB * cosC −sinA * cosB * sinC − cosA * sinB * sinC这些恒等变换公式是解决复杂三角函数问题的有力工具。
三角恒等变形公式大全修订版IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】和角差角:cos(α±β)=cosαcosβ干sinαsinβsin(α±β)=sinαcosβ±cosαsinβtan(α±β)=(tanα±tanβ)/(1干tanαtanβ)二倍角公式:sin(2α)=2sinαcosα=2tan^2(α)/[1+tan^2(α)]cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)=(1-tan^2(α))/(1+tan^2(α))tan(2α)=2tanα/[1-tan^2(α)]半角公式:sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα三倍角公式:sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosαtan3α=(3tanα-tan^3(α))÷(1-3tan^2(α))sin3α=4sinα×sin(60-α)sin(60+α)cos3α=4cosα×cos(60-α)cos(60+α)tan3α=4tanα×tan(60-α)tan(60+α)万能代换公式:半角的正弦、余弦和正切公式(降幂扩角公式)sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]和角差角:cos(α±β)=cosαcosβ干sinαsinβsin(α±β)=sinαcosβ±cosαsinβtan(α±β)=(tanα±tanβ)/(1干tanαtanβ)二倍角公式:sin(2α)=2sinαcosα=2tan^2(α)/[1+tan^2(α)]cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)=(1-tan^2(α))/(1+tan^2(α))tan(2α)=2tanα/[1-tan^2(α)]半角公式:sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα三倍角公式:sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosαtan3α=(3tanα-tan^3(α))÷(1-3tan^2(α))sin3α=4sinα×sin(60-α)sin(60+α) cos3α=4cosα×cos(60-α)cos(60+α) tan3α=4tanα×tan(60-α)tan(60+α)万能代换公式:半角的正弦、余弦和正切公式(降幂扩角公式)sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]和角差角:cos(α±β)=cosαcosβ干sinαsinβsin(α±β)=sinαcosβ±cosαsinβtan(α±β)=(tanα±tanβ)/(1干tanαtanβ)二倍角公式:sin(2α)=2sinαcosα=2tan^2(α)/[1+tan^2(α)]cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)=(1-tan^2(α))/(1+tan^2(α))tan(2α)=2tanα/[1-tan^2(α)]半角公式:sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα三倍角公式:sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosαtan3α=(3tanα-tan^3(α))÷(1-3tan^2(α))sin3α=4sinα×sin(60-α)sin(60+α)cos3α=4cosα×cos(60-α)cos(60+α)tan3α=4tanα×tan(60-α)tan(60+α)万能代换公式:半角的正弦、余弦和正切公式(降幂扩角公式)sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]和角差角:cos(α±β)=cosαcosβ干sinαsinβsin(α±β)=sinαcosβ±cosαsinβtan(α±β)=(tanα±tanβ)/(1干tanαtanβ)二倍角公式:sin(2α)=2sinαcosα=2tan^2(α)/[1+tan^2(α)]cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)=(1-tan^2(α))/(1+tan^2(α))tan(2α)=2tanα/[1-tan^2(α)]半角公式:sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cos α)/sinα。
三角恒等变换所有公式三角恒等变换是指三角函数之间相互转化的一系列公式,利用这些公式可以简化三角函数的计算与证明。
下面是一些常用的三角恒等变换公式(完整版):1.倍角公式:- $\sin(2\theta) = 2\sin\theta\cos\theta$- $\cos(2\theta) = \cos^2\theta - \sin^2\theta =2\cos^2\theta - 1 = 1 - 2\sin^2\theta$- $\tan(2\theta) = \frac{2\tan\theta}{1-\tan^2\theta}$2.半角公式:- $\sin\left(\frac{\theta}{2}\right) = \pm\sqrt{\frac{1-\cos\theta}{2}}$- $\cos\left(\frac{\theta}{2}\right) =\pm\sqrt{\frac{1+\cos\theta}{2}}$- $\tan\left(\frac{\theta}{2}\right) = \pm\sqrt{\frac{1-\cos\theta}{1+\cos\theta}}$3.和差公式:- $\sin(\alpha \pm \beta) = \sin\alpha\cos\beta \pm\cos\alpha\sin\beta$- $\cos(\alpha \pm \beta) = \cos\alpha\cos\beta \mp\sin\alpha\sin\beta$- $\tan(\alpha \pm \beta) = \frac{\tan\alpha \pm\tan\beta}{1 \mp \tan\alpha\tan\beta}$4.二倍角公式:- $\sin(2\alpha) = 2\sin\alpha\cos\alpha$- $\cos(2\alpha) = \cos^2\alpha - \sin^2\alpha$- $\tan(2\alpha) = \frac{2\tan\alpha}{1-\tan^2\alpha}$5.和差化积公式:- $\sin\alpha\sin\beta = \frac{1}{2}(\cos(\alpha-\beta)-\cos(\alpha+\beta))$- $\cos\alpha\cos\beta = \frac{1}{2}(\cos(\alpha-\beta)+\cos(\alpha+\beta))$- $\sin\alpha\cos\beta =\frac{1}{2}(\sin(\alpha+\beta)+\sin(\alpha-\beta))$6.积化和差公式:- $\sin\alpha+\sin\beta =2\sin\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$- $\sin\alpha-\sin\beta = 2\sin\left(\frac{\alpha-\beta}{2}\right)\cos\left(\frac{\alpha+\beta}{2}\right)$- $\cos\alpha+\cos\beta =2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$- $\cos\alpha-\cos\beta = -2\sin\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)$7.和差化积与积化和差的关系:- $\sin\alpha\pm\sin\beta =2\sin\left(\frac{\alpha\pm\beta}{2}\right)\cos\left(\frac{\alpha \mp\beta}{2}\right)$- $\cos\alpha+\cos\beta =2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$- $\cos\alpha-\cos\beta = -2\sin\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)$8.和差化积的平方形式:- $\sin^2\alpha+\sin^2\beta = 1 -\cos(\alpha+\beta)\cos(\alpha-\beta)$- $\cos^2\alpha+\cos^2\beta = 1 +\cos(\alpha+\beta)\cos(\alpha-\beta)$这些公式在解三角方程、化简三角函数表达式、证明三角恒等式等方面有重要应用。
数学三角恒等变换公式三角恒等变换公式是指将三角函数中的一个表达式变换成另一个等价的表达式。
在解题和推导过程中经常会用到,因此掌握三角恒等变换公式对于数学学习来说非常重要。
下面将详细介绍三角恒等变换公式。
一、基本三角恒等变换公式1. 正弦定理在任意三角形中,有:$ a^2=b^2+c^2-2bc\cos A $$ b^2=a^2+c^2-2ac\cos B $$ c^2=a^2+b^2-2ab\cos C $其中 a、b、c 为三角形的三边,A、B、C 为三角形的三个角度。
2. 余弦定理在任意三角形中,有:$ \cos a=\frac{b^2+c^2-a^2}{2bc} $$ \cos b=\frac{a^2+c^2-b^2}{2ac} $$\cos c=\frac{a^2+b^2-c^2}{2ab}$其中 a、b、c 为三角形的三边,A、B、C 为三角形的三个角度。
3. 正弦倍角公式$ \sin2\theta=2\sin\theta\cos\theta $4. 余弦倍角公式$ \cos2\theta=\cos^2\theta-\sin^2\theta $$ \cos2\theta=2\cos^2\theta-1 $$ \cos2\theta=1-2\sin^2\theta $其中 $\theta$ 为任意角度。
5. 正切倍角公式$ \tan2\theta=\frac{2\tan\theta}{1-\tan^2\theta} $6. 任意角度的正弦、余弦、正切值$ \sin(-\theta)=-\sin\theta $$ \cos(-\theta)=\cos\theta $$ \tan(-\theta)=-\tan\theta $其中 $\theta$ 为任意角度。
7. 倍角、半角正弦、余弦公式$ \sin\frac{\theta}{2}=\pm\sqrt{\frac{1-\cos\theta}{2}} $ 当 $0\leq\theta\leq\pi$ 时,取正号当 $\pi\leq\theta\leq2\pi$ 时,取负号$ \cos\frac{\theta}{2}=\pm\sqrt{\frac{1+\cos\theta}{2}} $ 当 $0\leq\theta\leq\pi$ 时,取正号当 $\pi\leq\theta\leq2\pi$ 时,取负号$ \sin2\theta=2\sin\theta\cos\theta $$ \cos2\theta=\cos^2\theta-\sin^2\theta $其中 $\theta$ 为任意角度。