三角恒等变换公式
- 格式:doc
- 大小:95.00 KB
- 文档页数:2
三角恒等变换常见公式1. 两角和与差的正弦、余弦、正切公式:(1)βαβαβαsin cos cos sin )sin(+=+ βαβαβαsin co cos sin )sin(s -=-(2)βαβαβαsin sin cos cos )cos(-=+βαβαβαsin sin cos cos )cos(+=-(3)βαβαβαtan tan 1tan tan )tan(-+=+ ⇒()()tan tan tan 1tan tan αβαβαβ+=+- (4)βαβαβαtan tan 1tan tan )tan(+-=- ⇒()()tan tan tan 1tan tan αβαβαβ-=-+ (5))4tan(tan 1tan 1θπθθ+=-+ )4tan(tan 1tan 1θπθθ-=+- 2. 二倍角公式(1)(2)(3) (4)3. 降幂公式:(1) (2)a a a cos sin 22sin =1cos 2sin 21sin cos 2cos 2222-=-=-=a a a a a a a a 2tan 1tan 22tan -=22cos 1cos 2aa +=22cos 1sin 2aa -=4. 升幂公式(1)2cos 2cos 12αα=+ (2)2sin 2cos 12αα=- (3)2)2cos 2(sin sin 1ααα±=± (4)αα22cos sin 1+= (5)2cos 2sin 2sin ααα=5. 半角公式(符号的选择由2θ所在的象限确定) (1), (2), (3)6.辅助角公式(合成公式) (7)sin cos a b αα+=)αϕ+(其中,辅助角ϕ所在象限由点(,)a b 所在的象限决定,sin tan b aϕϕϕ=== ,该法也叫合一变形),比如:x x y cos 3sin += )cos )3(13sin )3(11()3(1222222x x ++++=)cos 23sin 21(2x x += )3sin cos 3cos (sin 2ππx x +=)3sin(2π+=x8.积化和差公式:sin α·cos β=(1/2)[sin(α+β)+sin(α-β)]cos α·sin β=(1/2)[sin(α+β)-sin(α-β)]2cos 12sin a a -±=2cos 12cos a a +±=a a a a a a a sin cos 1cos 1sin cos 1cos 12tan -=+=+-±=cos α·cos β=(1/2)[cos(α+β)+cos(α-β)]sin α·sin β=-(1/2)[cos(α+β)-cos(α-β)]9.和差化积公式:sin α+sin β=2sin[(α+β)/2]cos[(α-β)/2] sin α-sin β=2cos[(α+β)/2]sin[(α-β)/2] cos α+cos β=2cos[(α+β)/2]cos[(α-β)/2] cos α-cos β=-2sin[(α+β)/2]sin[(α-β)/2]10.常见数据: , 3215tan -=︒, 3275tan +=︒,10. 解题技巧:(1)三角函数式的化简方法:1.化简原则(a)一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角合理地拆分,从而正确运用公式;(b)二看“函数名称”,看函数名称之间的差异,从而确定要使用的公式; (c)三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,常见的有“遇到分式要通分”“遇到根式一般要升幂”等.2.化简要求6262sin15cos75,sin75cos1544-+︒=︒=︒=︒=(a)使三角函数式的项数最少、次数最低、角与函数名称的种类最少;(b)尽量使分母不含三角函数;(c)尽量使被开方数不含三角函数等.3.化简方法(a)直接应用公式进行降次、消项;(b)切化弦、异角化同角、异次化同次、异名化同名;(c)三角公式的逆用等.本质:三个统一(a).角度统一(化同角)(b).名称统一(化同名)(c).次幂统一(升幂降幂)(2)三角函数式的求值方法1.“给角求值”:一般所给出的角都是非特殊角,从表面上看是很难的,但非特殊角与特殊角总有一定关系,解题时,要利用这种关系,结合公式,转化为特殊角的三角函数并且消掉非特殊角的三角函数而得解.2.“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数式的值,解题关键在于“变角”,使角相同或具有某种关系.3.“给值求角”:实质是转化为“给值求值”,先求角的某一三角函数值,再求角的范围,确定角.。
三角函数cos (a+ B)=CoS a'-cos B - sin a - sin Bcos (a-B)=cos a-cos B+ sin a - sin Bsin (a+ B)=S in a'-cos B cos a - sin Bsin (a-B)=sin a-cos B - cos ,a・sin Btan (a+ B)=(ta n a+ta n B)/ (1-tan a - tan B)tan (a-B)=(ta n a-ta n B)/ (1+ta n a - tan B)二倍角sin (2a) =2sin a - cos a =2tan (a) /[1-ta门(a)]cos (2 a) =cosA2 (a) -si 门八2 (a) =2cosA2 (a)-1=1-2si nA2 (a)=[1-ta 门八(a)]/[1+tanA2 (a)]tan (2a) =2tan a /[1 -ta门八2 (a)]三倍角sin3 a =3sin a -4sinW (a)C0S3 a =4COS A3 (a) - 3C0S atan3 a = (3tan a -ta门八3 (a))*( 1-3ta门八2 (a))sin3 a =4sin aX sin ( 60- a) sin (60+a)C0S3 a =4cos aX COS ( 60- a) C0s ( 60+a)tan3 a =tan aX tan ( 60- a) tan (60+a)半角公式sin A2 (a /2 )= (1-cos a) /2cosA2 (a /2 )= (1+cos a) /2tan A2 (a /2 )= (1-CoS a) / ( 1+cos a)tan ( a /2 ) =sin a / ( 1+cos a) = ( 1- CoS a) /si n a半角变形sinA2 (a /2 ) = (1-cos a) /2sin(a/2 ) =V[ (1-cos a) /2] a/2 在一、二象限=-V[ (1-cos a) /2] a/2 在三、四象限C0SA2 (a /2 ) = (1+cos a) /2cos(a/2 ) =V[ (1+cos a) /2] a/2 在一、四象限=-V[ (1+cos a) /2] a/2 在二、三象限tan A2 (a 12 ) = ( 1-COS a) / ( 1+COS a)tan (a /2 ) =S in a / ( 1+COS a) =( 1- COS a) /si n a =V[ ( 1-COS a) / ( 1+COS a)] a/2在一、三象限=-V [ ( 1- COS a) / ( 1+COS a) ] a/2 在二、四象限恒等变形tan(a+ n /4 ) =(tana+1 ) / (1-tana) tan (a- n /4 ) =(tana-1 ) / (1+tana)asinx+bcosx=[ V( aA2+bA2) ]{[a/ V( aA2+bA2) ]sinx+[b/ V (aA2+bA2) ]COSX }=[ V( aA2+bA2) ]sin(x+y)(辅助角公式) tan y=b/a 万能代换半角的正弦、余弦和正切公式(降幕扩角公式) sin a =2ta n (a /2 ) /[1+ta 门八2 (a /2 )]COSa =[1 -tan (a /2 ) ]/[1+ta 门八2 (a /2 )] tan a =2ta n (a /2 ) /[1-ta 门八2 (a /2 )]积和化差sin a ・ cos B : =(1/2 ) [sin (a +B ) +si n (a -B)]cos a ・ sin B = :(1/2 ) [sin (a +B ) -sin (a -B)] COS a ・ COS B = :(1/2 ) [cos (a +B ) +COS (a -B)]sin a ・ sin B = :-(1/2 ) [COS (a + B ) -COS ( a - B )](注:留意最前面是负 号)和差化积sin a +sin B =2sin[ (a + B ) /2]cos[ (a - B ) /2]sin a - sin B =2cos[ (a + B ) /2]s in[ (a - B ) /2] COS a +COS B =2COS[(a + B ) /2]cos[ (a - B ) /2] cos a - cos B=-2sin[ (a + B )/2]si n[(a -B) /2]内角公式sinA+sinB+sinC=4cos (A/2) COS ( B/2) COS (C/2) cosA+cosB+cosC=1+4sin (A/2) sin (B/2) sin (C/2 ) tan A+ta nB+ta nC=ta nAta nBta nC cot (A/2) +cot (B/2) +cot (C/2) =cot (A/2) cot ( B/2) cot (C/2) tan( A/2)ta n(B/2)+ta n(B/2)ta n(C/2)+ta n(C/2)ta n(A/2)=1 cotAcotB+cotBcotC+cotCcotA=1 证明方法首先,在三角形ABC 中,角A,B,C 所对边分别为a,b,c 若A,B 均为锐角,贝恠三 角形ABC 中,过C 作AB 边垂线交AB 于D 由CD=asinB=bsinA (做另两边的垂线,同理)可证明正弦定理:a/sinA=b/sinB=c/sinC 于是有:AD+BD=cAD=bcosA,BD=acosB AD+BD=代入正弦定理,可得sinC=sin(180-C)=sin(A+B)=sinAcosB+sinBcosA 即在A,B均为锐角的情况下,可证明正弦和的公式。
三角函数cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α+β)=sinα·cosβ+cosα·sinβsin(α-β)=sinα·cosβ-cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)二倍角sin(2α)=2sinα·cosα=2tan(α)/[1-tan^2(α)]cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)=[1-tan^2(α)]/[1+tan^2(α)]tan(2α)=2tanα/[1-tan^2(α)]三倍角sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosαtan3α=(3tanα-tan^3(α))÷(1-3tan^2(α))sin3α=4sinα×sin(60-α)sin(60+α)cos3α=4cosα×cos(60-α)cos(60+α)tan3α=tanα×tan(60-α)tan(60+α)半角公式sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα半角变形sin^2(α/2)=(1-cosα)/2sin(a/2)=√[(1-cosα)/2] a/2在一、二象限=-√[(1-cosα)/2] a/2在三、四象限cos^2(α/2)=(1+cosα)/2cos(a/2)=√[(1+cosα)/2] a/2在一、四象限=-√[(1+cosα)/2] a/2在二、三象限tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα=√[(1-cosα)/(1+cosα)] a/2在一、三象限=-√[(1-cosα)/(1+cosα)] a/2在二、四象限恒等变形tan(a+π/4)=(tana+1)/(1-tana)tan(a-π/4)=(tana-1)/(1+tana)asinx+b cosx=[√(a^2+b^2)]{[a/√(a^2+b^2)]sinx+[b/√(a^2+b^2)]cosx}=[√(a^2+b^2)]sin(x+y)(辅助角公式)tan y=b/a万能代换半角的正弦、余弦和正切公式(降幂扩角公式)sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]积和化差sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ= -(1/2)[cos(α+β)-cos(α-β)](注:留意最前面是负号)和差化积sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]内角公式sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)cosA+cosB+cosC=1+4sin(A/2)sin(B/2)sin(C/2)tanA+tanB+tanC=tanAtanBtanCcot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)tan(A/2)tan(B/2)+tan(B/2)tan(C/2)+tan(C/2)tan(A/2)=1cotAcotB+cotBcotC+cotCcotA=1证明方法首先,在三角形ABC中,角A,B,C所对边分别为a,b,c若A,B均为锐角,则在三角形ABC中,过C作AB边垂线交AB于D 由CD=asinB=bsinA(做另两边的垂线,同理)可证明正弦定理:a/sinA=b/sinB=c/sinC于是有:AD+BD=cAD=bcosA,BD=acosB AD+BD=c代入正弦定理,可得sinC=sin(180-C)=sin(A+B)=sinAcosB+sinBcosA 即在A,B均为锐角的情况下,可证明正弦和的公式。
三角恒等变换三角恒等变换是数学中的一个重要概念,它可以帮助我们简化三角函数的复杂表达式,以及解决与三角函数相关的问题。
本文将介绍三角恒等变换的定义、常见的三角恒等变换公式,以及使用恒等变换解决问题的实例。
一、定义三角恒等变换是指通过等式变换将一个三角函数变换为具有相同函数值的其他三角函数的过程。
这种变换可以帮助我们简化三角函数的表达式,使其更易于计算和处理。
二、常见的三角恒等变换公式在三角恒等变换中,常见的公式包括以下几种:1. 余弦函数恒等变换:a) $\cos^2(x)+\sin^2(x)=1$ :这是最基本的三角恒等变换公式,称为余弦函数的平方与正弦函数的平方之和等于1。
b) $\cos(-x)=\cos(x)$ :余弦函数具有对称性质,关于y轴对称。
c) $\cos\left(\frac{\pi}{2}-x\right)=\sin(x)$ :余弦函数与正弦函数的关系,通过将自变量进行变换,可以转化为正弦函数。
2. 正弦函数恒等变换:a) $\sin(-x)=-\sin(x)$ :正弦函数具有奇函数的性质,关于原点对称。
b) $\sin\left(\frac{\pi}{2}-x\right)=\cos(x)$ :正弦函数与余弦函数的关系,通过将自变量进行变换,可以转化为余弦函数。
3. 三角函数的和差化积:a) $\sin(x \pm y)=\sin(x)\cos(y) \pm \cos(x)\sin(y)$ :正弦函数的和差化积公式。
b) $\cos(x \pm y)=\cos(x)\cos(y) \mp \sin(x)\sin(y)$ :余弦函数的和差化积公式。
4. 二倍角公式:a) $\sin(2x)=2\sin(x)\cos(x)$ :正弦函数的二倍角公式。
b) $\cos(2x)=\cos^2(x)-\sin^2(x)=2\cos^2(x)-1=1-2\sin^2(x)$ :余弦函数的二倍角公式。
三角恒等变换什么是三角恒等变换三角恒等变换,又称三角恒等式,是指一类三角函数之间的等式关系。
它们可以将一个三角函数表达式变换为另一个等价的三角函数表达式,从而简化计算和证明过程。
常见的三角恒等变换包括正弦、余弦和正切函数之间的关系。
常见的三角恒等变换公式下面是一些常见的三角恒等变换公式:1. 正弦函数的恒等变换•正弦函数的平方和差恒等式:$$\\sin^2 (A) = \\frac{1 - \\cos (2A)}{2}$$$$\\sin^2 (A) = \\frac{1 - \\cos (2A)}{2}$$•正弦函数的倍角恒等式:$$\\sin (2A) = 2\\sin (A)\\cos (A)$$2. 余弦函数的恒等变换•余弦函数的平方和差恒等式:$$\\cos^2 (A) = \\frac{1 + \\cos (2A)}{2}$$$$\\cos^2 (A) = \\frac{1 + \\cos (2A)}{2}$$•余弦函数的倍角恒等式:$$\\cos (2A) = \\cos^2 (A) - \\sin^2 (A)$$3. 正切函数的恒等变换•正切函数的平方恒等式:$$\\tan^2 (A) = \\sec^2 (A) - 1$$$$\\tan^2 (A) = \\csc^2 (A) - 1$$•正切函数的相反数恒等式:$$\\tan (-A) = -\\tan (A)$$三角恒等变换的应用三角恒等变换在数学和物理学中有广泛应用。
它们可以用于简化三角函数的计算,证明数学关系,以及解决实际问题。
1. 例题:求解三角方程假设我们需要求解方程 $\\sin (2A) = \\cos (2A)$ 的解集。
利用三角恒等变换公式,我们可以将方程转化为 $\\tan (2A)= 1$。
再进一步,我们可以使用反正切函数来求解 $2A =\\tan^{-1}(1)$,所以 $A = \\frac{\\pi}{4} + k\\frac{\\pi}{2}$,其中k为整数。
三角恒等变换---完整版三角函数 —— 三角恒等变换公式:升幂公式- 21+cos = 2 cos —21-cos =2 sin 221 ± sin =( sin—22cos — )22 21=sin + cossin =2 sincos22降幂公式.21 cos 2cos 21 cos 2sin 22+ cos=1sin221 .sin cos = —sin 22考点分析:(1)基本识别公式,能结合诱导公式中两个常用的小结论快速进行逻辑判断。
“互补两角正弦相等,余弦互为相反数。
互余两角的正余弦相等。
”(2) 二倍角公式的灵活应用,特别是降幕、和升幕公式的两角和与差的三角函数关系sin( 1 )=sin cos cos sincos()=cos cos sin sin■丄 .、 tantantan( )’1 tan tan倍角公式sin2 =2sin cos 22cos2 =cos-sin=2cos 2 -1=1-2sin 2tan 22ta n 1 tan 2sin — 2 i1 cos1 cos\ 2 ,c °s2 : 2tan — 21 cos _ 1 cos sin \ 1 cos sin 1 cos:cosGi HJ"I"UffTI!! I I ! I ■— —«■应用。
(3)结合同角三角函数,化为二次函数求最值一求二(7)辅助角公式逆向应用 (4)角的整体代换(5)弦切互化 (6 )知半角公式平方关系2 2sin + cos =1 ,商数关糸sin -------- =ta n(1)熟悉公式特征:能结合诱导公式中两个常用的小结论“互补两角正弦相等,余弦互为相反数。
互余两 角的正余弦相等。
”快速进行逻辑判断。
注意构造两角和差因子9、(构造两角和差因子 +两边平方)【2015高考四川,理12】sin15 10、(逆向套用公式)tan 23 ° + tan 37 °+ ■. 3tan 23 °an 37。
三角恒等变换讲解三角恒等变换是指在三角函数之间相互变换的一系列等式关系,常用于简化和证明三角函数的性质以及求解三角方程。
下面介绍一些常见的三角恒等变换:1. 基本恒等变换:-正弦与余弦的关系:sin²θ+ cos²θ= 1-正切与余切的关系:tanθ= sinθ/ cosθ,cotθ= cosθ/ sinθ-余割与正割的关系:cscθ= 1 / sinθ,secθ= 1 / cosθ2. 倍角恒等变换:-正弦的倍角公式:sin(2θ) = 2sinθcosθ-余弦的倍角公式:cos(2θ) = cos²θ- sin²θ= 2cos²θ- 1 = 1 - 2sin²θ-正切的倍角公式:tan(2θ) = (2tanθ) / (1 - tan²θ)3. 和差恒等变换:-正弦的和差公式:sin(A ±B) = sinAcosB ±cosAsinB-余弦的和差公式:cos(A ±B) = cosAcosB ∓sinAsinB-正切的和差公式:tan(A ±B) = (tanA ±tanB) / (1 ∓tanAtanB)4. 反函数恒等变换:-正弦的反函数:sin⁻¹(x) = θ,其中sinθ= x,-π/2 ≤θ≤π/2-余弦的反函数:cos⁻¹(x) = θ,其中cosθ= x,0 ≤θ≤π-正切的反函数:tan⁻¹(x) = θ,其中tanθ= x,-π/2 < θ< π/2注意,上述恒等变换只是一部分常见的例子,实际上还有许多其他的三角恒等变换。
在解题或证明过程中,根据需要,可以根据题目的要求和三角函数的关系,使用适当的三角恒等变换来简化计算或推导出所需的结果。
9种常用三角恒等变换技巧总结三角恒等变换是数学中常用的一种技巧,在解决三角函数相关问题时非常有用。
下面总结了九种常见的三角恒等变换技巧。
1.倍角公式:sin2θ = 2sinθcosθcos2θ = cos²θ - sin²θtan2θ = 2tanθ / (1 - tan²θ)这些公式可以用于将一个三角函数中的角度变为它的倍角,从而简化计算。
2.半角公式:sin(θ/2) = ±√((1 - cosθ) / 2)cos(θ/2) = ±√((1 + cosθ) / 2)tan(θ/2) = ±√((1 - cosθ) / (1 + cosθ))这些公式可以用于将一个三角函数中的角度变为它的半角,从而简化计算。
3.和差公式:sin(A ± B) = sinAcosB ± cosAsinBcos(A ± B) = cosAcosB ∓ sinAsinBtan(A ± B) = (tanA ± tanB) / (1 ∓ tanAtanB)这些公式可以用于将两个角度的三角函数变成一个角度的三角函数,从而简化计算。
4.和差化积公式:sinA + sinB = 2sin((A+B)/2)cos((A-B)/2)sinA - sinB = 2cos((A+B)/2)sin((A-B)/2)cosA + cosB = 2cos((A+B)/2)cos((A-B)/2)cosA - cosB = -2sin((A+B)/2)sin((A-B)/2)这些公式可以用于将和或差的三角函数转化为乘积的三角函数,从而简化计算。
5.积化和差公式:sinAcosB = 1/2(sin(A+B) + sin(A-B))cosAsinB = 1/2(sin(A+B) - sin(A-B))cosAcosB = 1/2(cos(A+B) + cos(A-B))sinAsinB = -1/2(cos(A+B) - cos(A-B))这些公式可以用于将乘积的三角函数转化为和或差的三角函数,从而简化计算。
完整三角恒等式公式表在数学中,三角恒等式是指具有恒等关系的三角函数之间的等式。
下面是一份完整的三角恒等式公式表。
1. 正弦和余弦的恒等式:- $\sin^2(x) + \cos^2(x) = 1$- $\sin(x) = \cos\left(\frac{\pi}{2} - x\right)$- $\cos(x) = \sin\left(\frac{\pi}{2} - x\right)$- $\sin(2x) = 2\sin(x)\cos(x)$- $\cos(2x) = \cos^2(x) - \sin^2(x)$2. 正切的恒等式:- $\tan(x) = \frac{\sin(x)}{\cos(x)}$- $\tan(x) = \frac{1}{\cot(x)}$- $\tan(x) = \frac{\sin(2x)}{1 + \cos(2x)}$3. 和差角的恒等式:- $\sin(x \pm y) = \sin(x)\cos(y)\pm\cos(x)\sin(y)$- $\cos(x \pm y) = \cos(x)\cos(y)\mp\sin(x)\sin(y)$4. 双角的恒等式:- $\sin(2x) = 2\sin(x)\cos(x)$- $\cos(2x) = \cos^2(x) - \sin^2(x)$5. 万能公式:- $\sin(x + y) = \sin(x)\cos(y) + \cos(x)\sin(y)$- $\cos(x + y) = \cos(x)\cos(y) - \sin(x)\sin(y)$- $\tan(x + y) = \frac{\tan(x) + \tan(y)}{1 - \tan(x)\tan(y)}$以上是一些常见的三角恒等式。
它们在解题和证明中经常被使用,对于理解和应用三角函数非常重要。
通过掌握这些恒等式,你可以更好地处理与三角函数相关的数学问题。
三角恒等变换所有公式及推论
三角恒等变换是一种可以将任意三角形变换成其他三角形的变换,它可以用来表示某一几
何图形变换为另一几何图形的变换性质,并提供一种明确的、可以用数学语言描述的基本变换方式。
它适用于三角形在由不同点i,j,k采分的空间和时间中的出现,即它可以使
三角形的空间或时间结构:T(i,j,k)变为T'(i',j',k')。
三角恒等变换的数学公式如下:
T'(i',j',k')=T(i,j,k)=M(i,j,k)
其中M(i,j,k)为矩阵公式,其包含有三个主要参数,分别为它的长边尺寸a,它的高δ,以及它的顶点坐标x, y, z。
在实际应用时,三角恒等变换可以用来比较两个不同形状或位置的三角形之间的变换关系。
该变换可以用来求解某一复杂形状的旋转平移问题,或者利用该变换操作,可以更加有效地实现几何图形之间的转换。
三角恒等变换还可以用于把三个一般性三角形变换为具有更高几何结构性质的三角形,可
以实现几何图形的对称变换,也可以实现几个三角形按照一定的排布方式发生平移或旋转变换。
总而言之,三角恒等变换可以方便地使任意三角形变换到其他三角形,可以实现几何图形之间的变换,可以实现三角形的对称变换,以及三角形的平移和旋转变换,因此,具有重
要的应用价值。
三角恒等变换所有公式三角恒等变换,又称三角恒等式,是指数学中关于三角函数的一类等式。
它们具有很重要的作用,可以用来化简、证明以及推导其他数学公式。
本文将从基本的三角恒等变换开始,逐步展开,总结了一些常用的三角恒等变换公式。
1.余弦函数的基本恒等变换:(1)余弦函数的定义:cosθ = x / r(2)余弦函数的平方:cos^2θ + sin^2θ = 1(3)余弦函数的倒数:1 + tan^2θ = sec^2θ(4)余弦函数的和差化积:cos(α + β) = cosα cosβ - sinα sinβcos(α - β) = cosα cosβ + sinα sinβ(5)余弦函数的倍角化积:cos2θ = 2cos^2θ - 1cos2θ = 1 - 2sin^2θ(6)余弦函数的半角化和:cos(θ/2) = ±√[(1 + cosθ) / 2]2.正弦函数的基本恒等变换:(1)正弦函数的定义:sinθ = y / r(2)正弦函数的平方:sin^2θ + cos^2θ = 1(3)正弦函数的倒数:1 + cot^2θ = csc^2θ(4)正弦函数的和差化积:sin(α + β) = sinα cosβ + cosα sinβsin(α - β) = sinα cosβ - cosα sinβ(5)正弦函数的倍角化积:sin2θ = 2sinθ cosθ(6)正弦函数的半角化和:sin(θ/2) = ±√[(1 - cosθ) / 2]3.正切函数的基本恒等变换:(1)正切函数的定义:tanθ = sinθ / cosθ(2)正切函数的平方:tan^2θ + 1 = sec^2θ(3)正切函数的倒数:1 + tan^2θ = csc^2θ(4)正切函数的和差化积:tan(α + β) = (tanα + tanβ) / (1 - tanα tanβ) tan(α - β) = (tanα - tanβ) / (1 + tanα tanβ)(5)正切函数的倍角化积:tan2θ = (2tanθ) / (1 - tan^2θ)(6)正切函数的半角化和:tan(θ/2) = ±√[(1 - cosθ) / (1 + cosθ)]4.余割、正割和余切函数的基本恒等变换:(1)余割函数的定义:cscθ = 1 / sinθ(2)倍角化积:csc2θ = cscθ cotθcsc2θ = 1 + 2 cot^2θ(3)非倍角化积:csc^2θ - cot^2θ = 1(4)正割函数的定义:secθ = 1 / cosθ(5)倍角化积:sec2θ = secθ tanθsec2θ = 1 + 2 tan^2θ(6)非倍角化积:sec^2θ - tan^2θ = 1(7)余切函数的定义:cotθ = 1 / tanθ(8)正割与余切的乘积:cotθ = 1 / tanθcotθ = cosθ / sinθ这些三角恒等变换公式是数学中非常基础且常用的,掌握它们可以更加灵活地运用三角函数进行计算操作。
三角恒等变换三角恒等变换是指一系列等效的三角函数表达式之间的变换关系。
这些变换关系对于解决三角函数的各种问题非常有用。
本文将介绍三角恒等变换的基本概念、常见的恒等变换公式以及应用案例。
一、三角恒等变换的基本概念三角恒等变换是指将一个三角函数的表达式通过等效变换转化为另一个等价的表达式的过程。
三角函数包括正弦函数、余弦函数、正切函数、余切函数等。
恒等变换意味着两个表达式在任何实数取值范围内都成立,即两个表达式所代表的函数图像完全一致。
二、常见的三角恒等变换公式1. 余弦函数的恒等变换:- 余弦函数的平方与正弦函数平方的关系:cos^2θ + sin^2θ = 1。
- 余弦函数的两倍角公式:cos(2θ) = cos^2θ - sin^2θ。
- 余弦函数的和差公式:cos(α ± β) = cosαcosβ - sinαsinβ。
2. 正弦函数的恒等变换:- 正弦函数的平方与余弦函数平方的关系:sin^2θ + cos^2θ = 1。
- 正弦函数的两倍角公式:sin(2θ) = 2sinθcosθ。
- 正弦函数的和差公式:sin(α ± β) = sinαcosβ ± cosαsinβ。
3. 正切函数的恒等变换:- 正切函数的平方与余切函数平方的关系:tan^2θ + 1 = sec^2θ。
- 正切函数的两倍角公式:tan(2θ) = 2tanθ / (1 - tan^2θ)。
- 正切函数的和差公式:tan(α ± β) = (tanα ± tanβ) / (1 ∓ tanαtanβ)。
4. 余切函数的恒等变换:- 余切函数的平方与正切函数平方的关系:cot^2θ + 1 = cosec^2θ。
- 余切函数的两倍角公式:c ot(2θ) = (cot^2θ - 1) / 2cotθ。
- 余切函数的和差公式:cot(α ± β) = (cotαcotβ ± 1) / (cotβ ± cotα)。
【最新整理,下载后即可编辑】三角函数cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α+β)=sinα·cosβ+cosα·sinβsin(α-β)=sinα·cosβ-cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)二倍角sin(2α)=2sinα·cosα=2tan(α)/[1-tan^2(α)]cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)=[1-tan^2(α)]/[1+tan^2(α)]tan(2α)=2tanα/[1-tan^2(α)]三倍角sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosαtan3α=(3tanα-tan^3(α))÷(1-3tan^2(α))sin3α=4sinα×sin(60-α)sin(60+α)cos3α=4cosα×cos(60-α)cos(60+α)tan3α=tanα×tan(60-α)tan(60+α)半角公式sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα半角变形sin^2(α/2)=(1-cosα)/2sin(a/2)=√[(1-cosα)/2] a/2在一、二象限=-√[(1-cosα)/2] a/2在三、四象限cos^2(α/2)=(1+cosα)/2cos(a/2)=√[(1+cosα)/2] a/2在一、四象限=-√[(1+cosα)/2] a/2在二、三象限tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα=√[(1-cosα)/(1+cosα)] a/2在一、三象限=-√[(1-cosα)/(1+cosα)] a/2在二、四象限恒等变形tan(a+π/4)=(tana+1)/(1-tana)tan(a-π/4)=(tana-1)/(1+tana)asin x+bcosx=[√(a^2+b^2)]{[a/√(a^2+b^2)]sinx+[b/√(a^2+b^2)]cosx}=[√(a^2+b^2)]sin(x+y)(辅助角公式)tan y=b/a万能代换半角的正弦、余弦和正切公式(降幂扩角公式)sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]积和化差sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ= -(1/2)[cos(α+β)-cos(α-β)](注:留意最前面是负号)和差化积sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]内角公式sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)cosA+cosB+cosC=1+4sin(A/2)sin(B/2)sin(C/2)tanA+tanB+tanC=tanAtanBtanCcot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot (C/2)tan(A/2)tan(B/2)+tan(B/2)tan(C/2)+tan(C/2)tan(A/2)=1 cotAcotB+cotBcotC+cotCcotA=1证明方法首先,在三角形ABC中,角A,B,C所对边分别为a,b,c若A,B均为锐角,则在三角形ABC中,过C作AB边垂线交AB于D 由CD=asinB=bsinA(做另两边的垂线,同理)可证明正弦定理:a/sinA=b/sinB=c/sinC于是有:AD+BD=c AD=bcosA,BD=acosB AD+BD=c代入正弦定理,可得sinC=sin(180-C)=sin(A+B)=sinAcosB+sinBcosA 即在A,B均为锐角的情况下,可证明正弦和的公式。
三角恒等变换的所有公式及其推导公式三角恒等变换是指对于任意角度x,存在一系列等价的三角函数表达式。
这些等价的表达式可以通过一些特定的关系来推导出来。
下面将介绍一些常见的三角恒等变换公式及其推导过程。
1. 倍角公式:sin(2x) = 2sin(x)cos(x)cos(2x) = cos^2(x) - sin^2(x) = 2cos^2(x) - 1 = 1 - 2sin^2(x)tan(2x) = 2tan(x) / (1 - tan^2(x))推导过程:对于sin(2x),可以利用三角函数的加法公式sin(A+B)=sinAcosB+cosAsinB,将A=B=x代入得到:sin(2x) = sin(x+x) = sin(x)cos(x) + cos(x)sin(x) = 2sin(x)cos(x)对于cos(2x),可以利用cos(2x)=cos^2(x) - sin^2(x)得到:cos(2x) = cos^2(x) - sin^2(x) = 2cos^2(x) - 1 = 1 - 2sin^2(x)对于tan(2x),可以利用tan(2x) = sin(2x) / cos(2x)得到:tan(2x) = 2sin(x)cos(x) / (1 - 2sin^2(x)) = 2tan(x) / (1 - tan^2(x))2. 和差公式:sin(A+B) = sinAcosB + cosAsinBsin(A-B) = sinAcosB - cosAsinBcos(A+B) = cosAcosB - sinAsinBcos(A-B) = cosAcosB + sinAsinB推导过程:对于sin(A+B),可以利用sin(A+B)=sinAcosB+cosAsinB得到:sin(A+B) = sinAcosB + cosAsinB对于sin(A-B),可以利用sin(A-B)=sinAcosB-cosAsinB得到:sin(A-B) = sinAcosB - cosAsinB对于cos(A+B),可以利用cos(A+B)=cosAcosB-sinAsinB得到:cos(A+B) = cosAcosB - sinAsinB对于cos(A-B),可以利用cos(A-B)=cosAcosB+sinAsinB得到:cos(A-B) = cosAcosB + sinAsinB3. 万能公式:sin^2(x) + cos^2(x) = 11 + tan^2(x) = sec^2(x)1 + cot^2(x) = csc^2(x)推导过程:对于sin^2(x) + cos^2(x),可以利用三角函数的平方和公式sin^2(x) + cos^2(x) = 1得到:sin^2(x) + cos^2(x) = 1对于1 + tan^2(x),可以利用tan^2(x) + 1 = sec^2(x)得到:1 + tan^2(x) = sec^2(x)对于1 + cot^2(x),可以利用cot^2(x) + 1 = csc^2(x)得到:1 + cot^2(x) = csc^2(x)通过以上的公式及其推导过程,我们可以在三角函数的计算中灵活运用,简化计算过程,提高计算的准确性和效率。
三角恒等变换公式
1.两角和与差的三角函数
和(差)角公式:
sin(α±β)=sinαcosβ±cosαsinβ
cos(α±β)=cosαcosβsinαsinβ
tan(α±β)=tantan1tantan
倍角公式:
sin 2 =2sincos
cos2=cos2-sin2=2cos2-1=1 - sin2
tan2=2tan1tan2
2.和差化积与积化和差公式
积化和差公式:
2sincos=sin(+)+sin(-)
2cossin= sin(+)-sin(-)
2coscos= cos(+)+cos(-)
-2sinsin=cos(+)-cos(-)
和差化积公式:
sin+ sin=2sin2cos2
sin- sin=2cos2sin2
cos+ cos=2cos2cos2
cos- cos=-2sin2sin2
3.万能公式与半角公式
万能公式:
sin=2tan12tan22
cos=2tan12tan122
tan=2tan12tan22
半角公式:
sin2cos12
cos2cos12
tancos1cos12=sincos1=cos1sin
其他:
cos22cos12
sin22cos12
1+cos2=2cos2
1-cos2=2sin2