计算方法第五章 解线性方程组的直接方法
- 格式:ppt
- 大小:1.23 MB
- 文档页数:141
解线性方程组的直接方法一、高斯消元法高斯消元法是解线性方程组最常用的方法之一、它通过一系列的消元操作,将线性方程组转化为阶梯型方程组,从而求解未知数的值。
1.确定线性方程组的阶数和未知数的个数。
设线性方程组中有n个未知数。
2.将线性方程组写成增广矩阵的形式。
增广矩阵是一个n行n+1列的矩阵,其中前n列是线性方程组的系数矩阵,第n+1列是等号右边的常数。
3.通过初等行变换(交换行、数乘行、行加行)将增广矩阵化为阶梯型矩阵。
具体步骤如下:a.首先,找到第一个非零元素所在的列,将它所在的行视为第一行。
b.将第一行的第一个非零元素(主元)变成1,称为主元素。
c.将主元所在列的其他元素(次元素)变为0,使得主元所在列的其他元素只有主元素是非零的。
d.再找到第一个非零元素所在的列,将它所在的行视为第二行,并重复上述步骤,直到将增广矩阵化为阶梯型矩阵。
4.根据阶梯型矩阵求解未知数的值。
具体步骤如下:a.从最后一行开始,依次求解每个未知数。
首先,将最后一行中非零元素所在的列作为含有该未知数的方程,将该未知数的系数设为1b.将含有该未知数的方程中其他未知数的系数设为0,并对其他方程进行相应的变换,使得该未知数所在列的其他元素都为0。
c.重复上述步骤,直到求解出所有未知数的值。
高斯消元法的优点是简单易懂、容易实现,但当线性方程组的系数矩阵接近奇异矩阵时,计算精度可能会降低。
二、矩阵求逆法矩阵求逆法是解线性方程组的另一种直接方法。
它通过对系数矩阵求逆,然后与常数矩阵相乘,得到未知数的值。
1.确定线性方程组的阶数和未知数的个数。
设线性方程组中有n个未知数。
2.将线性方程组写成矩阵方程的形式,即Ax=b,其中A是一个n阶方阵,x和b分别是n维列向量。
3.求系数矩阵A的逆矩阵A^-1a. 首先,计算系数矩阵A的行列式det(A)。
b. 判断det(A)是否为0,如果det(A)=0,则该线性方程组无解或有无穷多解;如果det(A)≠0,则系数矩阵A可逆。
第五章解线性方程组的直接法§1 Gauss消去法§2 矩阵分解及其在解方程组中的应用§3 矩阵的条件数和方程组的性态西北工业大学理学院欧阳洁1求解线性方程组的Gram法则理论上非常完美,但其计算工作量大的惊人,失去实用价值。
二直接法与迭代法1 直接法:只包含有限次四则运算,若在计算过程中不发生舍入误差的假定下,计算结果就是原方程组的精确解。
2迭代法:将方程组的解看作是某极限过程的极限值,且计算这一极限值的每一步是利用前一步所得结果施行相同的演算步骤而进行。
西北工业大学理学院欧阳洁3西北工业大学理学院欧阳洁4设线性方程组为⎪⎪⎩⎪⎪⎨⎧=+++=+++=++++++1,22111,222221211,11212111n n n nn n n n n n n n n a x a x a x a a x a x a x a a x a x a x a L L L L L L ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n x x x M 21x 或写为矩阵形式,其中A 为非奇异矩阵,且b Ax =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn n n n n a a a a a a a a a L M M M L L 212222111211A ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=+++1,1,21,1n n n n a a a M b §1 Gauss 消去法西北工业大学理学院欧阳洁14例(第一章):在四位计算机上求解⎩⎨⎧=+=+2321200001.02121x x x x 精确解LL 499998749.025*******.021==x x 05.0*1*2==x x ;直接消元近似解为⎪⎩⎪⎨⎧×−=×−×=×+×−2000.0104000.0101000.0102000.0101000.01062612114x x x 若变形⎪⎩⎪⎨⎧×=×+××=×+×−1000.0102000.0101000.0102000.0103000.0102000.0101211412111x x x x 并消元,有近似解为25.05.0*1*2==x x ;⎪⎩⎪⎨⎧×=××=×+×1000.0102000.0102000.0103000.0102000.01012112111x x x西北工业大学理学院欧阳洁18以后每一步都类似地在右下角方阵中的第一列中选主元。
第5章(改)解线性方程组的直接法(演示)数值分析第五章线性代数方程组的数值解法线性方程求解问题是科学研究和工程计算中最常见的问题。
如电学中的网络问题、工程力学中求解连续力学体(微分方程)问题的差分方法、有限元法、边界元法及函数的样条插值、最小二乘拟合等,都包含了解线性方程组问题。
因此,线性方程组的解法在数值计算中占有极其重要的地位。
对于n 阶线性方程组=A x b ,若det()0≠A ,则方程组有惟一解。
由克莱姆(Cramer )法则,其解为d e t ()(1,2,,)d e t ()i i A x i n A == ,其中i A 为用向量b 代替A 中第i 列向量所得矩阵。
每个n 阶行列式共有!n 项,每项都有n 个因子,所以计算一个n 阶行列式需做(1)!n n -?次乘法,我们共需要计算1n +个行列式,要计算出i x ,还要做n 次除法,因此用Cramer 法则求解要做2(1)!n n n -?+次乘除法(不计加减法),计算量十分惊人。
如30n =时,就需作约352.3810?次乘法。
可见Cramer 法则在理论上是绝对正确的,但当n 较大时,在实际计算中却是不可行的。
因此寻求有效的数值计算方法就成为非常必要的课题。
线性方程组的类型很多,若按其系数矩阵阶数的高低和含零元素多少,大致可分为两类:一类是低阶稠密线性方程组,即系数矩阵阶数不高,含零元素很少。
另一类是高阶稀疏线性方程组,即系数矩阵阶数高,零元素占绝对优势(比如占70%以上)。
线性方程组的数值解法也可分为两大类:直接法和迭代法。
直接法是在没有舍入误差的情况下,通过有限步运算可以得到方程组精确解的方法。
但是,在实际计算时,由于初始数据变为机器数而产生的误差以及计算过程中所产生的舍入误差等都要对解的精确度产生影响,因此直接法实际上也只能算出方程真解的近似值。
常用的有效算法是Gauss 消去法和矩阵的三角分解法。
迭代法是用某种极限过程去逼近准确解的方法。
数值分析第五章解线性方程组的直接法解线性方程组是数值分析中的一个重要问题,对于大规模的线性方程组来说,直接法是一种常用的求解方法。
本文将介绍解线性方程组的直接法,包括高斯消元法和LU分解法,并对其稳定性和计算复杂度进行讨论。
高斯消元法是一种常用的直接法,用于求解非奇异线性方程组。
其基本思想是通过初等行变换将线性方程组转化为上三角方程组,然后通过回代求解得到方程的解。
高斯消元法的步骤如下:1.将线性方程组表示为增广矩阵[A,b],其中A是系数矩阵,b是常数向量。
2.从第一行开始,选择一个非零元素作为主元,通过行变换将主元下方的元素全部消为零。
3.重复第2步,直到矩阵变为上三角矩阵。
4.通过回代求解上三角矩阵,得到方程组的解。
高斯消元法的主要优点是简单直接,容易实现,但存在一些问题。
首先,如果系数矩阵A是奇异矩阵,即行列式为零,那么高斯消元法无法得到方程组的解。
其次,如果系数矩阵A的其中一行或几行接近于线性相关,那么在消元过程中会引入大量的舍入误差,导致计算结果不准确。
这也说明了高斯消元法的稳定性较差。
为了提高稳定性,可以使用LU分解法来解线性方程组。
LU分解法将系数矩阵A分解为两个矩阵L和U的乘积,其中L是下三角矩阵,U是上三角矩阵。
这样,原始的线性方程组可以表示为LUx=b,进而可以通过两个步骤来求解方程组:1.进行LU分解,将系数矩阵A分解为L和U。
2.分别用前代和回代的方法求解方程组Ly=b和Ux=y。
LU分解法相对于高斯消元法的优点是,可以在求解多个右端向量时,避免重复计算LU分解,从而提高计算效率。
同时,LU分解法的稳定性也较高,对于多个右端向量求解时,舍入误差的累积相对较小。
然而,LU分解法也存在一些问题。
首先,LU分解法的计算复杂度较高,需要进行两次矩阵乘法和一次矩阵向量乘法,而且LU分解过程中需要对系数矩阵A进行大量的行变换,增加了计算量。
其次,当系数矩阵A的一些元素非常小或非常大时,LU分解法容易出现数值不稳定的情况,即舍入误差的累积较大,导致计算结果不准确。
解线性方程组的直接方法一、高斯消元法高斯消元法是解线性方程组的一种常用且直接的方法。
它的基本思想是通过一系列的代数运算,将方程组化为一个三角方程组,然后从最后一行开始,逐步回代求解未知数。
下面以一个二元一次方程组为例,说明高斯消元法的具体步骤:例如,给定方程组:a₁₁x₁+a₁₂x₂=b₁a₂₁x₁+a₂₂x₂=b₂其中,a₁₁,a₁₂,a₂₁,a₂₂,b₁,b₂为已知系数。
1.检查a₁₁的值是否为0,若为0则交换第一行与非零行。
2.将第一行的每个元素除以a₁₁,使a₁₁成为13.将第一行乘以(-a₂₁)并加到第二行上,使第二行的第一个元素变为0。
4.引入一个新的未知数y₂=a₂₁x₁+a₂₂x₂,并代入第二行,化简方程组。
5.使用回代法求解方程组。
高斯消元法的优势在于其直接的解题思路和较高的计算精度,但是其缺点是计算复杂度较高,对于大规模的方程组不太适用。
二、逆矩阵法逆矩阵法是解线性方程组的另一种直接方法,它通过求解方程组的系数矩阵的逆矩阵,并将其与方程组的常数向量相乘,得到方程组的解向量。
下面以一个三元一次方程组为例,说明逆矩阵法的具体步骤:例如,给定方程组:a₁₁x₁+a₁₂x₂+a₁₃x₃=b₁a₂₁x₁+a₂₂x₂+a₂₃x₃=b₂a₃₁x₁+a₃₂x₂+a₃₃x₃=b₃其中,a₁₁,a₁₂,a₁₃,a₂₁,a₂₂,a₂₃,a₃₁,a₃₂,a₃₃,b₁,b₂,b₃为已知系数。
1.计算系数矩阵A的行列式D=,A。
2. 求解系数矩阵A的伴随矩阵Adj(A)。
3. 计算逆矩阵A⁻¹=Adj(A)/D。
4.将常数向量b用列向量表示。
5.计算解向量x=A⁻¹b。
逆矩阵法的优势在于其求解过程相对简单,计算量较小,并且不需要对系数矩阵进行消元操作。
但是逆矩阵法的限制在于当系数矩阵不可逆时无法使用。
三、克莱姆法则克莱姆法则是解线性方程组的另一种直接方法,它通过定义克莱姆行列式和克莱姆向量,利用行列式的性质求解方程组的解向量。