(数值分析)第五章 解线性方程组的直接法
- 格式:ppt
- 大小:1.99 MB
- 文档页数:83
数值分析知识点总结数值分析知识点总结:本文提供了数值分析中的一些重要知识点和例题,但更多的例题可以参考老师布置的作业题和课件相关例题。
第1章数值分析与科学计算引论:绝对误差和相对误差是衡量近似值精度的指标,有效数字则是描述近似值精度的一种方式。
其中,相对误差限是绝对误差的上界。
有效数字的计算方法为:如果近似值x的误差限是某一位的半个单位,该位到x的第一位非零数字共有n位,就说x*共有n位有效数字。
一个比较好用的公式是f(x)的误差限:f(x)f'(x)(x)。
第2章插值法:插值多项式的余项表达式可以用来估计截断误差。
三次样条插值与三次分段埃尔米特插值有所不同,但哪一个更优越需要根据实际情况而定。
确定n+1个节点的三次样条插值函数需要多少个参数?为确定这些参数,需加上什么条件?三弯矩法可以用来求解三次样条表达式。
第3章函数逼近与快速傅里叶变换:带权(x)的正交多项式是在特定区间上满足一定条件的多项式,其中[-1,1]上的勒让德多项式具有重要性质。
切比雪夫多项式也有其独特的性质。
用切比雪夫多项式零点做插值点得到的插值多项式与拉格朗日插值有所不同。
最小二乘拟合的法方程可以用来拟合曲线,但当次数n较大时,不直接求解法方程。
第4章数值积分与数值微分:XXX让德求积公式和XXX-XXX求积公式是数值积分中的两种方法,其中高斯求积公式可以用来计算定积分。
勒让德多项式的零点就是高斯点,这种形式的高斯公式被称为XXX让德求积公式。
中点方法是一种数值积分方法,其公式如下:插值型的求导公式有两点公式和三点公式。
第5章介绍了解线性方程组的直接方法,其中包括LU矩阵的推导过程。
相关例题可以在教材第4章作业题和课件中找到。
第6章介绍了解线性方程组的迭代法,判断迭代法是否收敛的条件如下:第7章介绍了非线性方程与方程组的数值解法,其中牛顿法是一种常见的方法。
对于单根且光滑的f(x)=0,牛顿法是局部二阶收敛的。
简化牛顿法和牛顿下山法都是非线性方程组的求解方法。
实验报告
一、实验目的
1.了解LU 分解法的优点
二、实验题目
1.给定矩阵A 和向量b:
.1000,123121⎪⎪⎪⎪⎪
⎪⎭
⎫ ⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--= b n n n n n n A (1)求A 的LU 分解,n 的值自己确定;
(2)利用A 的LU 分解求解下列方程组
(a)b Ax =, (b)b x A =2, (c)b x A =3.
对方程组(c),若先求3A LU =,再解b x LU =)(有何缺点?
三、实验原理
求解线性方程组的LU 分解法直接解线性方程组.
四、实验内容及结果
2. b Ax =,b x A =2,b x A =3的求解。
3. 若先求3
A LU =,再解b x LU =)(.
五、实验结果分析
LU 分解法的优点:根据题目,如果直接用b x A =3来计算的话,需要先计算3A 的值,然后再计算方程组的值,步骤会多出很多,使得计算更复杂。
如果使用LU 分解法来解方程组的话,只需要对系数矩阵做一次LU 分解,以后只要解三角方程即可,计算的步骤明显减少。
第2章 插值法1、当x=1,-1,2时,f(x)=0,-3,4,求f(x)的二次插值多项式。
(1)用单项式基底。
(2)用Lagrange 插值基底。
(3)用Newton 基底。
证明三种方法得到的多项式是相同的。
解:(1)用单项式基底设多项式为:2210)(x a x a a x P ++=,所以:6421111111111222211200-=-==x x x x x x A 37614421111111424113110111)()()(222211200222221112000-=-=---==x x x x x x x x x f x x x f x x x f a 2369421111111441131101111)(1)(1)(12222112002222112001=--=--==x x x x x x x x f x x f x x f a 6565421111111421311011111)(1)(1)(12222112002211002=--=---==x x x x x x x f x x f x x f x a 所以f(x)的二次插值多项式为:2652337)(x x x P ++-= (2)用Lagrange 插值基底)21)(11()2)(1())(())(()(2010210-+-+=----=x x x x x x x x x x x l)21)(11()2)(1())(())(()(2101201------=----=x x x x x x x x x x x l)12)(12()1)(1())(())(()(1202102+-+-=----=x x x x x x x x x x x lLagrange 插值多项式为:372365)1)(1(314)2)(1(61)3(0)()()()()()()(22211002-+=+-⨯+--⨯-+=++=x x x x x x x l x f x l x f x l x f x L所以f(x)的二次插值多项式为:22652337)(x x x L ++-= (3) 用Newton 基底: 均差表如下:Newton 372365)1)(1(65)1(230))(](,,[)](,[)()(21021001002-+=+-+-+=--+-+=x x x x x x x x x x x x f x x x x f x f x N所以f(x)的二次插值多项式为:22652337)(x x x N ++-= 由以上计算可知,三种方法得到的多项式是相同的。
数值分析小论文线性方程组的直接解法线性方程组的直接解法是指通过一系列的代数运算直接求解线性方程组的解。
线性方程组是数值分析中非常重要的问题,广泛应用于工程、科学、计算机图形学等领域。
在线性方程组的直接解法中,最常用的方法是高斯消元法,它是一种基于矩阵变换的方法。
高斯消元法将线性方程组表示为增广矩阵,并通过一系列的行变换将增广矩阵转化为行阶梯形矩阵,从而得到方程组的解。
高斯消元法的主要步骤包括消元、回代和得到方程组的解。
消元是高斯消元法的第一步,通过一系列的行变换将增广矩阵的元素转化为上三角形式。
在消元过程中,我们首先找到主元素,即矩阵的对角线元素,然后将其它行的元素通过消元操作转化为0,从而使得矩阵逐步变成上三角形矩阵。
回代是高斯消元法的第二步,通过一系列的回代操作求解线性方程组。
回代操作是从上三角形矩阵的最后一行开始,通过依次求解每个未知数的值,最终得到方程组的解。
高斯消元法的优点是算法简单易于实现,可以在有限的步骤内求解线性方程组,适用于一般的线性方程组问题。
但是高斯消元法也存在一些问题,例如当矩阵的主元素为0时,无法进行消元操作,此时需要通过行交换操作来避免这种情况。
另外,高斯消元法对病态矩阵的求解效果较差,容易引起舍入误差累积,导致解的精度下降。
在实际应用中,为了提高求解线性方程组的效率和精度,人们常常使用一些改进的直接解法,例如列主元高斯消元法和LU分解法。
列主元高斯消元法通过选择最大主元来避免主元为0的情况,进一步提高了求解线性方程组的精度。
LU分解法将矩阵表示为两个矩阵的乘积,从而将线性方程组的求解问题转化为两个三角形矩阵的求解问题,提高了求解效率。
综上所述,线性方程组的直接解法是一种基于矩阵变换的方法,通过一系列的代数运算求解线性方程组的解。
高斯消元法是最常用的直接解法之一,它简单易于实现,适用于一般的线性方程组问题。
在实际应用中,可以通过改进的直接解法来进一步提高求解效率和精度。
数值分析课程实验报告实验名称线性方程组的直接解法_____________________实验目的①掌握高斯消去法的基本思路和迭代步骤;②了解高斯消去法可能遇到的困难。
用文字或图表记录实验过程和结果列主元高斯消去法算法描述将方程组用增广矩阵B=[A:b]=(a j \心申)表示。
步骤1:消兀过程,对k=12|j|, n—1(1)选主元,找i k亡{k,k+1,川,n}使得k卜maxi a ikai k,(2)如果a i k,k = 0 ,则矩阵A奇异,程序结束;否则执行(3)。
(3)如果ik^k,则交换第k行与第i k行对应兀素位置,aq㈠a i k j,j=k,IH, n + 1。
(4)消兀,对i = k +1」H,n,计算m k=a k / a kk,对j = k +1,川,n +1,计算a j = a ij — m ik a^.步骤2:回代过程:(1)右a nn -0,则矩阵奇异,程序结束;否则执行(2)。
厲(2)nX n =a ng/a nn;对i = n—1川,2,1,计算X j = a,n 出一》a j X j /a H< j4 丿三、练习与思考题分析解答1、解方程组0.10伙2.304X2 3.555X3 =1.183-1.347为3.712X2 4.623X3 = 2.137-2.835X, 1.072X25.643X^3.035(1)编程用顺序高斯消去法求解上述方程组,记下解向量,验证所得到的解向量是否是原方程组的解,若不是原方程组的解,试分析原因,并证实你的分析的正确性!解:采用顺序消元法求得如下结果:请输入一个3行矩阵0.101 2.304 3.555 1.183-1.347 3.712 4.623 2.137-2.835 1.072 5.643 3.0350.101 2.304 3.555 1.1830 34.4396 52.0347 17.91420 0 6.09738 2.0435最后计算得到x =(-0.3982,0.0138,0.3351) T,代入原方程验证可知解向量是原方程组的解。
第一章绪论习题一1.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。
解:求lnx的误差极限就是求f(x)=lnx的误差限,由公式(1.2.4)有已知x*的相对误差满足,而,故即2.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。
解:直接根据定义和式(1.2.2)(1.2.3)则得有5位有效数字,其误差限,相对误差限有2位有效数字,有5位有效数字,3.下列公式如何才比较准确?(1)(2)解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。
(1)(2)4.近似数x*=0.0310,是 3 位有数数字。
5.计算取,利用:式计算误差最小。
四个选项:第二、三章插值与函数逼近习题二、三1. 给定的数值表用线性插值与二次插值计算ln0.54的近似值并估计误差限. 解:仍可使用n=1及n=2的Lagrange插值或Newton插值,并应用误差估计(5.8)。
线性插值时,用0.5及0.6两点,用Newton插值误差限,因,故二次插值时,用0.5,0.6,0.7三点,作二次Newton插值误差限,故2. 在-4≤x≤4上给出的等距节点函数表,若用二次插值法求的近似值,要使误差不超过,函数表的步长h 应取多少?解:用误差估计式(5.8),令因得3. 若,求和.解:由均差与导数关系于是4. 若互异,求的值,这里p≤n+1.解:,由均差对称性可知当有而当P=n+1时于是得5. 求证.解:解:只要按差分定义直接展开得6. 已知的函数表求出三次Newton均差插值多项式,计算f(0.23)的近似值并用均差的余项表达式估计误差.解:根据给定函数表构造均差表由式(5.14)当n=3时得Newton均差插值多项式N3(x)=1.0067x+0.08367x(x-0.2)+0.17400x(x-0.2)(x-0.3) 由此可得f(0.23) N3(0.23)=0.23203由余项表达式(5.15)可得由于7. 给定f(x)=cosx的函数表用Newton等距插值公式计算cos 0.048及cos 0.566的近似值并估计误差解:先构造差分表计算,用n=4得Newton前插公式误差估计由公式(5.17)得其中计算时用Newton后插公式(5.18)误差估计由公式(5.19)得这里仍为0.5658.求一个次数不高于四次的多项式p(x),使它满足解:这种题目可以有很多方法去做,但应以简单为宜。
数值分析第五章解线性方程组的直接法解线性方程组是数值分析中的一个重要问题,对于大规模的线性方程组来说,直接法是一种常用的求解方法。
本文将介绍解线性方程组的直接法,包括高斯消元法和LU分解法,并对其稳定性和计算复杂度进行讨论。
高斯消元法是一种常用的直接法,用于求解非奇异线性方程组。
其基本思想是通过初等行变换将线性方程组转化为上三角方程组,然后通过回代求解得到方程的解。
高斯消元法的步骤如下:1.将线性方程组表示为增广矩阵[A,b],其中A是系数矩阵,b是常数向量。
2.从第一行开始,选择一个非零元素作为主元,通过行变换将主元下方的元素全部消为零。
3.重复第2步,直到矩阵变为上三角矩阵。
4.通过回代求解上三角矩阵,得到方程组的解。
高斯消元法的主要优点是简单直接,容易实现,但存在一些问题。
首先,如果系数矩阵A是奇异矩阵,即行列式为零,那么高斯消元法无法得到方程组的解。
其次,如果系数矩阵A的其中一行或几行接近于线性相关,那么在消元过程中会引入大量的舍入误差,导致计算结果不准确。
这也说明了高斯消元法的稳定性较差。
为了提高稳定性,可以使用LU分解法来解线性方程组。
LU分解法将系数矩阵A分解为两个矩阵L和U的乘积,其中L是下三角矩阵,U是上三角矩阵。
这样,原始的线性方程组可以表示为LUx=b,进而可以通过两个步骤来求解方程组:1.进行LU分解,将系数矩阵A分解为L和U。
2.分别用前代和回代的方法求解方程组Ly=b和Ux=y。
LU分解法相对于高斯消元法的优点是,可以在求解多个右端向量时,避免重复计算LU分解,从而提高计算效率。
同时,LU分解法的稳定性也较高,对于多个右端向量求解时,舍入误差的累积相对较小。
然而,LU分解法也存在一些问题。
首先,LU分解法的计算复杂度较高,需要进行两次矩阵乘法和一次矩阵向量乘法,而且LU分解过程中需要对系数矩阵A进行大量的行变换,增加了计算量。
其次,当系数矩阵A的一些元素非常小或非常大时,LU分解法容易出现数值不稳定的情况,即舍入误差的累积较大,导致计算结果不准确。
实验五 解线性方程组的直接方法实验5.1 (主元的选取与算法的稳定性) 问题提出:Gauss 消去法是我们在线性代数中已经熟悉的。
但由于计算机的数值运算是在一个有限的浮点数集合上进行的,如何才能确保Gauss 消去法作为数值算法的稳定性呢?Gauss 消去法从理论算法到数值算法,其关键是主元的选择。
主元的选择从数学理论上看起来平凡,它却是数值分析中十分典型的问题。
实验内容:考虑线性方程组n n n R b R A b Ax ∈∈=⨯,,编制一个能自动选取主元,又能手动选取主元的求解线性方程组的Gauss 消去过程。
实验要求:(1)取矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=1415157,6816816816 b A ,则方程有解T x )1,,1,1(* =。
取n=10计算矩阵的条件数。
让程序自动选取主元,结果如何?(2)现选择程序中手动选取主元的功能。
每步消去过程总选取按模最小或按模尽可能小的元素作为主元,观察并记录计算结果。
若每步消去过程总选取按模最大的元素作为主元,结果又如何?分析实验的结果。
(3)取矩阵阶数n=20或者更大,重复上述实验过程,观察记录并分析不同的问题及消去过程中选择不同的主元时计算结果的差异,说明主元素的选取在消去过程中的作用。
(4)选取其他你感兴趣的问题或者随机生成矩阵,计算其条件数。
重复上述实验,观察记录并分析实验结果。
思考题一:(Vadermonde 矩阵)设⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=∑∑∑∑====n i i n n i i ni i n i i n n n n n n nx x x x b x x x x x x x x x x x x A 002010022222121102001111 ,, 其中,n k k x k ,,1,0,1.01 =+=,(1)对n=2,5,8,计算A 的条件数;随n 增大,矩阵性态如何变化?(2)对n=5,解方程组Ax=b ;设A 的最后一个元素有扰动10-4,再求解Ax=b(3)计算(2)扰动相对误差与解的相对偏差,分析它们与条件数的关系。