五年级数学上册掷一掷
- 格式:doc
- 大小:109.50 KB
- 文档页数:3
人教版数学五年级上册掷一掷教案(推荐3篇)〖人教版数学五年级上册掷一掷教案第【1】篇〗掷一掷教学内容:教材P50~51及P48~49练习十一第6、7、9、10、11题。
教学目标:知识与技能:使学生通过猜想、实验、验证的过程,巩固“组合”的有关知识,探讨事件发生的可能性大小。
过程与方法:通过活动,使学生初步获得一些数学活动的经验,经历“猜想、实验、验证”的过程,引导学生在活动中发现问题,分析问题,体会到数学在生活中的应用。
情感、态度与价值观:结合学习内容,对学生进行思想教育,使学生体会到生活中处处有数学,增强学好数学的信心和应用数学的意识。
教学重点:探索两个骰子点数之和在5、6、7、8、9居多的原理。
教学难点:让学生在“玩”中获得数学知识,在学中感受数学的趣味。
教学方法:创设情境;小组合作、实践操作。
教学准备:多媒体、骰子。
教学过程一、创设情境,引入新课出示骰子,师问:同学们见过骰子吗?你们在哪见过?它和数学有什么联系?(学生可能回答:在打麻将时、玩具上见过;骰子上有6个数字。
)学生回答后,师引导:这节课我们就来掷一掷骰子,通过游戏一起探究骰子里面还有哪些数学知识。
二、师生互动,探究新知1.思考:如果同时掷出两颗骰子,它们出现的点数之和会有哪一些7根据学生的回答板书:2、3、4、5……12。
追问:可能有1和13吗?为什么?学生自主思考,通过组合知识得出结论。
(不可能,因为两个数的和最小是2最大是12。
)2.游戏探究。
规则:把这11种结果分成两组:A组:1、2、3、4、10、11,B 组:5、6、7、8、9。
一共掷20次,总次数多者为胜。
(l)选择一组结果与教师进行比赛。
(2)两个小组为一个单位比赛,自由选择结果组别,4人轮流掷骰子,由组长记录试验数据,最后比较实验数据,分出胜负。
学生操作时,组员轮流掷骰子,组长负责填写数据。
掷骰子时要注意先在手中晃几下再投入杯子中。
3.汇报比赛数据和结论,师汇总并引导学生比较总结。
第4单元可能性投我以桃,报之以李。
《诗经·大雅·抑》翰辰学校李道友组长第3课时掷一掷一、用到的数学知识1.组合(两个骰子上的数字之和)2.事件的确定性和不确定性、列举所有可能出现的结果(每个骰子上可能的结果是1至6六个数,组成的和可能是2至12的所有数,不可能是1或13等数。
)3.可能性大小(组成的和是2至12中任一个数,但发生的可能性大小是不同的。
)二、活动步骤(一)示范游戏1.体验确定现象与不确定现象,列举所有可能的结果。
(运用组合的知识,判断哪些和不可能出现,哪些和可能出现。
)2.教师提出游戏规则,学生猜想结果。
11个可能结果中教师选5个,学生选6个,学生错误地认为赢的可能性比教师大。
3.开始游戏。
学生总是输,产生认知冲突,从而引起进一步探索的欲望。
(二)小组内游戏,探索结论。
通过小组内游戏的方式,进行实验,利用统计的方式呈现实验的结果,初步探索教师总能赢的原因。
要引导学生在实验的结果中寻找统计学上的规律。
(三)理论验证通过组合的理论来验证实验的结果。
可以用不同的方式来进行组合,让学生探讨每个“和”所包含的组合情况的多少与这个“和”出现的次数之间的关系。
【教学反思】通过学习可能性,培养了学生的统计意识和分析问题的能力。
【素材积累】从诞生的那一刻起,我们就像一支离弦的箭,嗖嗖地直向着生命的终点射去。
但我们无论怎样地气喘吁吁疾步如飞,也赶不上岁月那轻捷的步履。
她无声无息波澜不惊地带走纷沓的人群,卷走一个又一个朝代,不在世界的任何一个角落停留,也不在心灵的重重羁绊前稍一驻足。
无论历经了多少沧海桑田的变迁,她永远年轻、纯洁、轻盈、清澈如初。
时光不老人易老。
穿行在一片又一片洁白的日子里,我们可曾朝涂曦霞,暮染烟岚,在她的脉络里注进拼搏的汗水,把每一页洁白的日子都涂成一幅斑斓的图画,剪成一贴丰满的记忆?穿行在一片又一片洁白的日子里,我们可曾删繁就简,除去芜杂的枝蔓,抖落发黄的往事,省略多余的情节,向着既定的目标轻装向前。
五年级数学上册掷一掷在数学的世界里,掷一掷游戏是一种富有策略和技巧的游戏,它让玩家在数字和概率的世界中寻找乐趣。
在五年级数学上册的课程中,我们将一起探索掷一掷游戏的奥秘。
一、游戏规则掷一掷游戏是一个简单的游戏,只需要一个骰子和几个数字便可以开始。
在这个游戏中,每个玩家轮流掷骰子,将掷出的点数与自己选择的数字进行比较。
如果选择的数字与掷出的点数相同,那么这个玩家就赢得了这一轮。
二、游戏策略在掷一掷游戏中,策略的选择至关重要。
如果你想赢得游戏,你需要学会观察和分析。
你需要理解每个数字出现的概率。
例如,一个六面的骰子,每个数字出现的概率都是相等的,即1/6。
你需要根据对手的行为来调整你的策略。
例如,如果你的对手一直在选择偶数,那么你可能会选择一个奇数来增加你的胜率。
三、游戏结果在掷一掷游戏中,结果并不是固定的。
每一次掷骰子都可能改变游戏的走向。
有时,即使你选择了看似不可能的数字,也有可能赢得游戏。
同样,有时即使你选择了看似必胜的数字,也可能最终失败。
这就是数学的魅力所在,也是掷一掷游戏的魅力所在。
四、游戏意义掷一掷游戏不仅是一种娱乐方式,也是一种教育工具。
它可以帮助我们理解概率和统计的概念,让我们更好地理解数学在日常生活中的应用。
它还可以培养我们的策略思维和决策能力,让我们在面对困难时更加冷静和果断。
五年级数学上册的掷一掷游戏是一个富有挑战性和趣味性的游戏。
它让我们在轻松愉快的氛围中学习数学知识,提高我们的数学素养。
让我们一起加入这个充满策略和乐趣的游戏吧!4单元可能性第3课时掷一掷标题:4单元可能性第3课时:掷一掷在我们的生活中,概率和可能性的概念无处不在。
它们不仅在我们的日常生活中扮演着重要角色,也在我们进行决策和判断时起到关键作用。
在上一节课中,我们学习了如何使用概率论来理解和预测随机事件。
现在,我们将通过一个有趣的活动——“掷一掷”,来进一步探索概率和可能性的世界。
掷一掷是一个简单的游戏,我们只需要一个骰子就可以进行。
掷一掷
教学
内容
教材P50—P51
教学目标1.使学生通过猜想、试验、验证的过程,巩固已经学过的组合、统计、可能性、找规律等有关知识,探讨事件发生的可能性的大小。
2.通过活动使学生初步获得一些教学活动的经验,经历猜想、试验、验证的过程,引导学生在活动中发现问题、分析问题,体会数学在生活中的应用。
3.让学生在有趣的操作中感受数学的实用价值,体验学数学、用数学的乐趣。
重点难点重点:让学生探索并理解“同时掷两个骰子,得到的两个数的和为什么是5,6,7,8,9的可能性大”。
难点:探讨影响事件发生可能性的相关因素。
教学
准备
多媒体课件、骰子、统计表。
课时
安排
1课时
一、情境导入
师:同学们,这是什么呀?(课件出示骰子图片)对,这叫骰子。
谁知道一个骰子有几个面?你还知道哪些关于骰子的秘密?
根据学生的回答,引导总结:一个骰子的每个面上都有点,根据点的个数,每个面表示一个数。
师:一个骰子可以表示哪些数?
生:一个骰子可以表示1,2,3,4,5,6。
师:下面我们就用两个骰子玩一个游戏,看谁在游戏中能发现其中的数学奥秘。
(板书课题:掷一掷)
二、探索新知
1.列举两个骰子的点数组成的和。
师:同学们,我这里有两个骰子,如果老师同时将它们掷出,看两个骰子朝上的那个面上的点所表示的两个数。
请你们猜一猜:这两个数的和可能是几?
生1:可能是5。
生2:可能是10。
生3:可能是2到12之间的任何一个数。
师:你是怎么想的?
生3:最小的和是1+1=2,最大的和是6+6=12,所以这些和应该是2到
12之间的数。
师:这位同学说最小是2,那可能是1吗?最大是12,那可能是13吗?
指名回答。
(不可能)
师:同学们都说得非常有道理,不可能是1,也不可能是12以上的数,它们只能是2到12之间的数。
老师示范掷一次后,问:和是几?
还真如大家说的那样,和在2到12之间。
课件演示2—12这11个数。
师:现在我把这11个数分成两组,A组是2,3,4,10,11,12这6个数,B组是5,6,7,8,9这5个数。
为了体现对同学们的关照,我选择5个数这组,你们选6个数这组。
下面我们来掷20次,如果和是5,6,7,8,9,算我赢;否则算你们赢,你们敢接受老师的挑战吗?
2.动手实践,发现问题。
(1)教师与部分学生做游戏,课件出示游戏规则(一)
①如果掷出的两数之和在B组,算老师赢;如果掷出的两数之和在A组,算同学们赢。
②每个小组派出一个选手上台跟老师比赛,其他的同学当记录员,将结果统计在下面的表格中。
师:在刚才一轮的游戏中,老师赢得多,同学们赢得少,同学们不服气,认为还有很多同学没有掷,不能说明问题。
接下来继续掷,老师还会赢吗?为了体现公平、满足大家的要求,在下一轮的游戏中,我们每个人都动手轮流掷,好吗?
(2)全体学生参与游戏,课件出示游戏规则(二)
①继续游戏:两人一组,轮流掷,和是多少就在对应的数字上方涂一格。
涂满其中任意一列,游戏结束。
(出示教材P51统计图)
②游戏结束后每小组派一名代表在黑板上用画“正”字统计法来给最先涂满的和做记录。
学生两人小组进行游戏,并作好记录。
师:观察实验统计结果,你们发现了什么?
想一想:为什么掷出的点数之和是B组数的可能性大一些,而点数之和是A 组数的可能性小一些呢?
3.理论验证,揭示奥秘。
教师引导学生思考:如果点数之和是2,红色骰子上是1,蓝色骰子上是多少?
如果点数之和是3,红色骰子上是1,蓝色骰子上是多少?如果红色骰子上是2,蓝色骰子上是多少?还有其他点数之和是3的情况吗?一共有几种情况?
点数之和是4的有几种情况呢?和是5的呢?(学生回答后,教师在课件中依次呈现各种点数之和的组成情况。
)
思考:和是2只有1种情况,和是3有2种情况,和是4有3种情况,和是5有4种情况。
那么,和是6,7,8,9,10,11,12又各有哪几种情况呢?红色骰子的点数可能是多少,蓝色骰子呢?
师:同学们可以想一想、写一写,也可以借助骰子摆一摆进行验证,然后把
你得到的组合记录下来。
(见板书设计)
观察和是2,3,4,5,…,12的列举记录并进行统计(课件出示)。
师:和是2,3,4,…,12的各有几种组合呢?请大家记录下来。
同学们,你发现B组能赢的秘密了吗?(学生独立观察组成图及统计表,然后小组内交流。
) 每组派代表汇报,交流小组的发现。
老师选择的B组是中间的5,6,7,8,9这5个数,共有24种组合,而同学们选择的A组是两边的2,3,4,10,11,12这6个数,共有12种组合,这就是为什么老师赢的机会更多的原因。
4.小结。
在两个相关联的组合事件中,在不确定哪个结果出现的可能性大的情况下,我们可列表或画图列举出所有的可能性,再根据出现这个事件结果的次数来判断可能性的大小。
三、巩固应用
有三个同学进行掷骰子求和比赛,看谁选择的数出现次数多谁就赢。
小红选择的数是3,4,5,6,7;小明选择的是8,9,10,11,12,13;小强选择的是14,15,16,17,18。
同学们请你猜一猜谁获胜的可能性最大。
四、课堂小结
师:通过今天的学习,你有什么收获?
在两个相关联的组合事件中,在不确定哪个结果出现的可能性大的情况下,我们可列表或画图列举出所有的可能性,再根据出现这个事件结果的次数来判断可能性的大小。
五、课后练习
《探究乐园·高效课堂》对应课时练习。
掷一掷。