生物法治理有机废气
- 格式:doc
- 大小:64.50 KB
- 文档页数:5
A167-有机废气(VOCs)处理生物分解法生物分解法是在已成熟的采用微生物处理废水基础上发展起来的处理有机废气的方法。
通过附着在多孔、潮湿介质上的活性微生物,用大气中低浓度的有机废气为其生命活动的能源或养分,将其转化为简单的无机物(CO2、H2O)或细胞组成物质。
按照荷兰学者Ottengraf提出的生物膜理论,生化法处理有机废气主要经历3个步骤:①废气中的有机污染物首先同水接触并溶解于水中(即由气膜扩散进入液膜);②溶解于液膜中的有机物成分在浓度差的推动下进一步扩散到生物膜,进而被其中的微生物捕获并吸收;③进入微生物体内的有机污染物在其自身的代谢过程中作为能源和营养物质被分解,经生物化学反应最终转化成为无害的化合物。
近些年来国外研究者对生物分解法处理VOCs在动力学模型、微生物菌种的培养及工艺设备方面进行了大量的研究工作。
通过对生物废气处理过程数学模型的建立与计算,预测在给定条件下生物净化法的处理效果,为设计和过程优化提供依据。
Tang研究了生物过滤器的吸附、微动力学、质量传递和气体流线谱之间的相互作用,用开发出的数学模型描述了生物过滤器的瞬间特性,实验研究和模型分析结果均表明,过滤器的瞬间特性主要受过滤材料的性质和运行条件影响。
Okkerse等研究了生物滴滤池处理废气中生物量累积和阻塞的问题,并利用二氯甲烷作为模拟污染物质,获得了动力学模型。
Hwang等研究了甲苯生物过滤法的动力学行为,由于甲苯是不溶于水的气体污染物,所以可作为模型化合物选用,有效性因素分析结果表明,生物过滤非水溶性化合物(如甲苯)时,受系统质量传递影响,不宜在气体流动速度较高的条件下操作。
Abumaizar用提出的稳态数学模型描述(VOCs)在生物过滤池中的去除动力学,在稳态条件下处理苯、甲苯、乙苯和二甲苯,实验数据与模型预测比较结果表明,粒状活性炭存在可提高堆肥生物过滤池对苯系污染物的去除效率。
郭静对反应器中微生物的生长状况进行了分析,发现被处理污染物的成分以及微环境条件不同,将繁殖出不同的微生物种群。
生物法处理废气废气的生物处理是利用微生物的生命过程把废气中的气态污染物分解转化成少或甚至无害物质。
自然界中存在各种各样的微生物,几乎所有无机的和有机的污染物都能转化。
生物处理不需要再生和其他高级处理过程,与其他净化法相比,具有设备简单、能耗低、安全可靠、无二次污染等优点,但不能回收利用污染物质。
1.2.3.1 基本原理在适宜的环境条件下,微生物不断吸收营养物质,并按照自己的代谢方式进行新陈代谢活动。
废气中生物处理正是利用微生物新陈代谢过程中需要营养物质这一特点,把废气中的有害物质转化成简单的无机物如二氧化碳、水,以及细胞物质等。
1.2.3.2 微生物降解污染物的过程由于微生物将废气中的有害物质进行转化的过程在气相中难以进行,所以废气中气态污染物首先要经气相转移到液相或固体表面的液膜中的传质过程,然后污染物才在液相或固体表面被微生物吸附降解。
按照Ottengraf 提出的生物膜理论,生物法净化处理工业废气一般要经历以下四个步骤(图1-1)。
1)废气中的污染物首先同水接触并溶解于水中(由气膜扩散进入液膜);2)溶解于液膜中的污染物在浓度差的推动下进一步扩散到生物膜,进而被其中的微生物捕获并吸收;3)微生物将污染物转化为生物量、新陈代谢副产品或者C02、水等;4)生化反应产物0 0 2从生物膜表面脱附并反扩散进入气相本体,而1120 则被保持在生物膜内。
气态污染物的生物处理过程也是人类对自然过程的强化和工程控制,其过程的速率取决于:①气相向液固相的传质速率(与污染物的理化性质和反应器的结构等因素有关);②能起降解作用的活性生物质量;③生物降解速率(与污染物的种类、生物生长环境条件、控制作用有关)。
表1-1 列出了各种气态污染物的生物降解效果。
填料固液混合层图1-1生物法净化工业废气的传质降解模型按照获取营养的方式不同,用于污染物生物降解的微生物有两大类:自养菌和异养菌。
自养菌可以在无有机碳和氧的条件下,以光和氨、硫化氢、硫和铁离子等的氧化获得必要的能量,而生长所需的碳则由二氧化碳通过卡尔文循环提供,因此它特别适合于无机物的转化。
生物池处理废气的原理是
生物池处理废气的原理是利用微生物(如细菌、真菌等)降解废气中的有机物质,将其转化为无害的物质或将其吸附并固定在生物体内,从而净化废气。
具体原理如下:
1. 吸附: 废气经过生物池时,其中的有机物质可以被微生物吸附在其表面。
2. 降解: 吸附的有机物质被微生物降解,微生物利用有机物质作为能源和营养源,通过代谢作用分解为无害的物质,如二氧化碳和水。
3. 含集: 部分废气中的有机物质可能无法被微生物降解,但仍能被微生物生长和繁殖。
微生物生长繁殖时会吸附废气中的有机物质并将其固定在生物体内,减少其释放到大气中。
4. 氧化: 一些废气中的有机物质可能需要在氧化条件下才能被降解,生物池中的微生物会提供足够的氧气以促进有机物质的降解。
通过上述过程,生物池可以有效地净化废气中的有机污染物,达到环境保护和空气治理的目的。
这种生物处理废气的方法相对于化学和物理方法更为环保和经济。
生物滴滤法净化挥发性有机废气(VOCs)的研究生物滴滤法净化挥发性有机废气(VOCs)的研究引言:挥发性有机化合物(VOCs)是一类在大气中存在并具有挥发性的废气,由于其具有毒性和臭味,对人体健康和环境造成了严重的影响。
有效地净化和治理VOCs成为了环境保护领域的重要课题。
生物滴滤法作为一种生物处理技术,具有高效、环保和经济的特点,成为了净化VOCs的研究热点之一。
本文将系统地介绍生物滴滤法的原理、应用和进展,以及未来的发展趋势。
一、生物滴滤法的原理生物滴滤法是利用生物膜或活性污泥进行滴滤处理,通过废气与生物膜或活性污泥接触,使废气中的有机污染物通过生物作用转化为无机物或无害物质。
该方法主要依靠生物膜中的微生物,通过附着和代谢作用,将VOCs降解为二氧化碳和水。
生物滴滤法通过高效的生物滤层,实现了高效的挥发性有机废气的净化效果。
二、生物滴滤法的应用生物滴滤法适用于许多领域的VOCs处理,如印刷、涂装、化工等行业。
它不仅可以高效地净化VOCs废气,还可以将VOCs 转化为有用的物质。
例如,在制药行业,生物滴滤法已成功应用于处理含有有机溶剂的废气,并通过生物转化产生有机酸和生物质。
三、生物滴滤法的进展随着对环境保护的要求越来越高,生物滴滤法在净化VOCs方面得到了广泛应用和研究。
目前,研究者们正在致力于改进生物滴滤法的性能和效果,以应对不同类型和浓度的VOCs废气。
例如,引入多种微生物群落,提高废气处理的效率和稳定性;研究膜材料和改进传质装置,减少压降和提高处理能力;优化运行参数,如温度、湿度、流速等,以提高生物滤层的性能。
此外,与其他生物处理技术相结合,如生物膜反应器、生物滤池等,也为生物滴滤法的发展提供了新的途径。
四、生物滴滤法的未来展望虽然生物滴滤法在VOCs废气处理中取得了较好的效果,但仍存在一些挑战和不足。
未来的研究可以侧重于以下几个方面的改进:一是提高生物滤层的稳定性和降解效率,以适应不同的工业废气污染。
生物发酵废气处理方法生物发酵废气是指在微生物发酵过程中产生的一种废气,主要成分是二氧化碳、一氧化碳、硫化物、氨等。
这些废气中的有害物质对于人体和环境都有一定的危害性。
因此,对于生物发酵废气的处理非常重要。
下面介绍几种常见的生物发酵废气处理方法。
1.生物滴滤法生物滴滤法是利用微生物菌群来降解废气中的有害物质。
首先,将废气通过滴滤器进行预处理,去除颗粒物和一些无机气体。
然后,将废气通过滴滤装置,使废气和微生物菌群接触,微生物通过降解废气中的有害物质,将其转化为无害物质。
最后,经过滤网去除微生物,得到净化后的废气。
2.生物吸附法生物吸附法是利用生物材料对废气中的有害物质进行吸附。
常用的生物材料有活性炭、活性白土等。
将这些生物吸附剂放置在吸附装置中,废气通过时,有害物质被生物吸附剂吸附下来,进而实现废气净化。
3.生物氧化法生物氧化法是利用微生物对废气中的有害物质进行氧化降解的方法。
常用的微生物有泡泡藻、硫氧化细菌等。
将这些微生物放置在生物氧化器中,废气经过生物氧化器时,微生物利用废气中的有机物进行代谢,将有害物质转化为无害的氧化产物,从而实现废气净化。
4.生物过滤法生物过滤法利用生物滤料对废气中的有害物质进行吸附和分解。
常用的生物滤料有活性炭、陶粒、葡萄藤丝等。
将这些生物滤料填充在生物过滤器中,废气经过时,有害物质被生物滤料吸附并分解,从而达到净化的效果。
5.生物堆肥法生物堆肥法是将废气中的有机物进行堆肥处理,使其转化为无害物质的方法。
将废气中的有机物与一定比例的菌群和添加剂混合,放置在适宜的条件下进行堆肥处理,经过一段时间的堆肥,废气中的有机物被微生物逐渐分解,转化为稳定的有机肥料,从而实现废气净化和资源化利用。
以上是几种常见的生物发酵废气处理方法,这些方法各有优劣,具体选择哪种方法主要取决于废气的成分和处理要求。
废气处理过程中需要注意适宜的温度、湿度、通气量等参数的控制,以确保处理效果。
同时,不同的废气处理方法可以结合使用,形成综合的废气处理系统,提高废气处理的效率和效果。
废气处理中生物法的原理废气处理中的生物法是指利用生物体代谢活动来降解和转化废气中的有害气体成分,以达到净化废气的目的。
生物法处理废气主要是利用微生物的生长和代谢特性,通过生物转化、吸附和副产物转化等过程将废气中的污染物转化为无害物质。
生物法废气处理的原理主要包括生物吸附、生物脱除和生物降解三个过程。
1. 生物吸附:利用微生物细胞表面的菌体或菌丝结构,对废气中的有害气体分子进行吸附。
通过微生物的细胞壁和附着物来吸附废气中的污染物,使其分子附着在生物体表面上,从而实现对有害气体的去除。
生物吸附主要适用于有机废气中的低浓度有机物和某些无机物质。
2. 生物脱除:利用微生物细胞内特异的酶系统,对废气中的有害气体进行转化和脱除。
通过微生物体内的酶系统,将废气中的有害气体经过代谢转化为无害物质,并释放为代谢产物或溶解于细胞内外,从而达到废气净化的目的。
生物脱除主要适用于高浓度有机废气、硫化氢、氨气等。
3. 生物降解:利用微生物体内的生物化学反应,将废气中的有机物分子分解为无害物质。
通过微生物体内酶的作用,有机物分子被分解为无害物质,例如二氧化碳和水,这些无害物质可以释放到废气中或通过生物体代谢排出。
生物降解适用于含有可生物降解有机物的废气治理。
生物法废气处理的工艺流程一般包括废气收集、生物反应器、废气处理和废气排放四个主要环节。
首先,废气收集是指通过管道、风机等设备将废气从生产源处收集起来,集中到废气处理系统中。
废气收集主要是为了提高废气处理系统对废气的利用率,确保废气处理效果。
然后,废气进入生物反应器,在生物反应器中进行生物转化和净化。
生物反应器一般分为厌氧反应器和好氧反应器两种。
厌氧反应器适用于处理含有硫化氢、氨气等有机废气,而好氧反应器适用于处理含有甲醛、苯、甲苯等有机废气。
接下来,经过生物反应器处理后的废气,进入废气处理设备进行后处理。
后处理主要包括废气的分离、过滤、清洗和脱湿等步骤,以进一步降低废气中有害气体的浓度,确保废气净化的效果。
废气处理生物法
废气处理是指将产生的废气进行处理,去除污染物,以减少对环境的影响。
其中,生物法是一种利用微生物和生物化学反应来净化废气的处理方法。
生物法的原理是通过使用特定的微生物,将废气中的有机污染物转化为无害的物质。
这些微生物可以是自然界存在的,也可以是经过改良和选育的菌群。
在生物法中,废气首先经过预处理,去除其中的颗粒物、气态污染物等。
然后,废气会进入一个生物反应器,这个反应器内会有适宜生物生长和活动的环境。
微生物会利用废气中的有机污染物作为能源和营养源,通过酵解、氧化等过程将其转化为二氧化碳、水和其他无害物质。
最后,经过处理后的废气会被释放到大气中或经进一步处理后达到排放标准。
生物法相比于传统的物理或化学处理方法具有许多优点。
首先,它是一种相对低成本的处理方法,可以利用自然界中已经存在的微生物资源。
其次,生物法能够高效地去除有机污染物,处理效果稳定可靠。
此外,生物法还具有可持续性和环保性,不会产生二次污染物。
值得一提的是,生物法在处理某些特定的有机废气中表现出很高的选择性,能够实现高效的处理效果。
总之,生物法是一种有效的废气处理方法,通过利用微生物和生物化学反应将废气中的有机污染物转化为无害物质。
它具有低成本、高效、环保等诸多优点,应用广泛。
voc生物吸收法VOC生物吸收法导语:VOC(挥发性有机化合物)是一类对环境和人体有害的化合物,广泛存在于工业生产、交通运输和家庭生活等方面。
为了减少VOC 对环境和人体的危害,科学家们研究出了VOC生物吸收法。
本文将介绍VOC生物吸收法的原理、应用及其优势。
一、VOC生物吸收法的原理VOC生物吸收法是利用特定的微生物或植物对VOC进行吸收和降解的一种技术手段。
微生物和植物具有吸收和降解VOC的能力,通过利用它们的代谢机制,可以将VOC转化为无害的物质,从而达到净化环境和保护人体健康的目的。
二、VOC生物吸收法的应用1. 工业废气处理:工业生产过程中产生的废气中常含有大量的VOC,通过利用VOC生物吸收法,可以将废气中的VOC转化为无害物质,减少对环境的污染。
2. 家居空气净化:家居环境中的装修材料、家具和清洁用品等都会释放出VOC,对人体健康造成潜在威胁。
通过使用具有VOC吸收能力的植物,如常绿植物、芦苇等,可以有效净化家居空气,提高室内空气质量。
3. 汽车尾气处理:汽车尾气中含有大量的VOC,对空气质量和人体健康产生负面影响。
利用微生物处理尾气中的VOC,可以减少尾气对环境的污染,并改善空气质量。
三、VOC生物吸收法的优势1. 高效净化:VOC生物吸收法能够高效地吸收和降解VOC,将其转化为无害物质,有效净化环境和空气。
2. 环保无害:VOC生物吸收法是一种环保的处理技术,不会产生二次污染,对环境没有负面影响。
3. 节能省成本:VOC生物吸收法相对于传统的物理吸附和化学处理方法来说,能耗低,成本相对较低。
4. 应用广泛:VOC生物吸收法可以应用于工业废气处理、家居空气净化以及汽车尾气处理等多个领域,具有广泛的应用前景。
结语:VOC生物吸收法作为一种环保、高效的处理技术,对净化环境、保护人体健康具有重要意义。
通过运用微生物和植物的吸收和降解能力,可以有效减少VOC对环境和人体的危害,改善空气质量。
生物滴滤法处理甲苯废气的工艺优化及关键参数研究生物滴滤法是一种用于处理废气的生物技术,它利用生物滤床内的微生物降解有机污染物。
本文将围绕任务名称的描述,探讨生物滴滤法处理甲苯废气的工艺优化及关键参数研究。
首先,生物滴滤法处理甲苯废气的工艺优化是指通过优化处理工艺,提高废气处理效率和降解效果。
工艺优化的关键是合理选择滤料和微生物菌种,调整滴滤床的操作条件。
在选择滤料方面,应考虑其表面积大、孔隙率高、质地均匀的特点。
常用的滤料有陶粒、煤屑、聚酯纤维球等。
滤料的选择对生物降解甲苯有着重要影响,因为滤料上的微生物附着层是废气处理的关键部分。
在菌种选择方面,应选择适应甲苯降解的细菌或真菌。
常见的甲苯降解菌有假单胞菌属、绿短杆菌属、石蜡烷菌属等。
此外,也可以采用混合菌种来提高降解效果。
调整滴滤床的操作条件也是工艺优化的重要部分,主要包括废气进风速度、滤料湿度、温度以及通气量等参数的调节。
废气进风速度应适中,过高的进风速度会导致气液分离不彻底,过低则会影响废气的分布。
滤料湿度是保证微生物正常生长和降解的重要因素,应保持适宜的湿度。
温度的调节需要根据菌种的生活特性来确定,一般在30℃左右有较好的降解效果。
通气量的调节可以影响微生物的生长速率和废气与滤料表面的接触程度,因此也需要根据实际情况进行调整。
其次,关键参数研究包括滤料层厚度、滴滤液循环量、甲苯浓度等参数的研究。
滤料层厚度的研究是为了确定最佳的滤料层厚度,以提高降解效果和废气处理效率。
滴滤液循环量的研究是为了确定最佳的滴滤液循环量,以保证微生物正常生长和降解反应的进行。
甲苯浓度的研究是为了确定不同浓度下的降解效果,以便于确定最佳处理条件。
最后,为了优化生物滴滤法处理甲苯废气的工艺和关键参数,还需要进行实验研究。
通过实验可以验证理论模型的准确性,找出影响降解效果和废气处理效率的因素,并优化处理工艺。
实验研究包括滤料选择实验、菌种选择实验、滴滤床操作条件实验、关键参数研究实验等。
生物法处理废气废气的生物处理是利用微生物的生命过程把废气中的气态污染物分解转化成少或甚至无害物质。
自然界中存在各种各样的微生物,几乎所有无机的和有机的污染物都能转化。
生物处理不需要再生和其他高级处理过程,与其他净化法相比,具有设备简单、能耗低、安全可靠、无二次污染等优点,但不能回收利用污染物质。
1.2.3.1基本原理在适宜的环境条件下,微生物不断吸收营养物质,并按照自己的代谢方式进行新陈代谢活动。
废气中生物处理正是利用微生物新陈代谢过程中需要营养物质这一特点,把废气中的有害物质转化成简单的无机物如二氧化碳、水,以及细胞物质等。
1.2.3.2微生物降解污染物的过程由于微生物将废气中的有害物质进行转化的过程在气相中难以进行,所以废气中气态污染物首先要经气相转移到液相或固体表面的液膜中的传质过程,然后污染物才在液相或固体表面被微生物吸附降解。
按照Ottengraf提出的生物膜理论,生物法净化处理工业废气一般要经历以下四个步骤(图1-1)。
1)废气中的污染物首先同水接触并溶解于水中(由气膜扩散进入液膜);2)溶解于液膜中的污染物在浓度差的推动下进一步扩散到生物膜,进而被其中的微生物捕获并吸收;3)微生物将污染物转化为生物量、新陈代谢副产品或者C02、水等;4)生化反应产物002从生物膜表面脱附并反扩散进入气相本体,而1120则被保持在生物膜内。
气态污染物的生物处理过程也是人类对自然过程的强化和工程控制,其过程的速率取决于:①气相向液固相的传质速率(与污染物的理化性质和反应器的结构等因素有关);②能起降解作用的活性生物质量;③生物降解速率(与污染物的种类、生物生长环境条件、控制作用有关)。
表1-1列出了各种气态污染物的生物降解效果。
填料固液混合层图1-1生物法净化工业废气的传质降解模型表1-1微生物对各种气态污染物的生物降解效果1.2.3.3废气生物处理的微生物按照获取营养的方式不同,用于污染物生物降解的微生物有两大类:自养菌和异养菌。
有机废气(VOC)生物处理研究现状与发展趋势有机废气(VOC)生物处理研究现状与发展趋势一、引言近年来,随着工业发展的迅猛,有机废气的排放量不断增加,对环境和人类健康带来了严重威胁。
有机废气通常由挥发性有机物 (volatile organic compounds, VOCs) 组成,包括苯、甲苯、乙酸、丙酮等。
这些有机物不仅有较强的毒性,还对大气臭氧的生成产生不利影响。
因此,开展有机废气的处理研究具有重要意义。
二、有机废气生物处理技术现状目前,有机废气的处理主要采用物理吸附、化学吸收、燃烧等方法。
然而,这些方法存在着高能耗、废渣产生多和操作维护成本高等问题。
相比之下,生物处理技术在VOCs废气处理中具有独特优势,包括低能耗、无二次污染等特点。
主要的生物处理技术包括生物吸附、生物氧化、生物脱附和生物过滤。
2.1 生物吸附生物吸附是指利用活性生物物质吸附 VOCs,将其转化为不活性化合物。
常用的吸附剂包括活性炭、硅胶、天然纤维等。
生物吸附技术具有吸附效果好、适用于多种 VOCs 的特点,但其吸附饱和后需要再生或处理。
2.2 生物氧化生物氧化是指利用微生物将 VOCs 进行降解分解的过程。
常用的微生物包括细菌、真菌、藻类等。
生物氧化技术能够有效降解 VOCs,但操作条件要求较高,容易受到温度、pH值等因素的影响。
2.3 生物脱附生物脱附是指将 VOCs 从生物质中解离出来的过程。
通过调整温度、压力等条件,使 VOCs 脱附并收集进行处理。
生物脱附技术既能降低 VOCs 的浓度,又可回收生物质进行再利用。
2.4 生物过滤生物过滤是指将 VOCs 通过与微生物相互作用,使 VOCs 通过空气滤材层时被微生物降解分解的过程。
生物过滤技术具有体积小、能耗低等优势,并且适用于多种 VOCs 的处理。
三、有机废气生物处理研究进展近年来,有机废气生物处理研究取得了一些进展。
其中,微生物资源的开发与研究是有机废气生物处理研究的重点之一。
生物法有机废气处理的工艺及设计生物法有机废气处理是一种利用生物技术处理有机废气的方法,广泛应用于化工、制药、食品加工、冶金等产业中。
其工艺包括生物氧化和生物吸附两种主要方式,设计时需要考虑废气成分、浓度、温度、湿度等因素。
下面将详细介绍生物法有机废气处理的工艺及设计。
生物氧化是将有机废气中的有机物通过微生物代谢氧化成无害的无机物的过程。
生物氧化反应需要提供合适的基质、温度、pH值和氧气等条件。
常见的生物氧化反应有好氧生物氧化和厌氧生物氧化。
好氧生物氧化是利用好氧微生物将有机物氧化成CO2和H2O的过程。
该过程需要提供充足的氧气,通常通过喷淋式、曝气式或百叶窗式氧气供给设备实现。
为了提高反应效率,常规反应器可采用活性污泥法、固定膜生物反应器或曝气沟反应器等工艺。
厌氧生物氧化是利用厌氧微生物在缺氧的环境下将有机物转化为甲烷和CO2的过程。
通常采用厌氧反应器进行反应,如厌氧污泥床反应器、厌氧滤池反应器等。
为了保持缺氧环境,反应器内可设计适当的封闭系统,并提供适量的供给碳源和营养物质。
生物吸附是利用生物颗粒或生物膜表面的活性微生物吸附有机气体分子的工艺。
生物吸附通常包括干法吸附和湿法吸附两种方式。
干法吸附是将有机气体在生物颗粒表面吸附后进行降解,适用于有机气体浓度较低的情况。
常用的干法吸附包括生物填料层、生物滤床和生物棉等,其中生物填料层是将生物颗粒填充在填料层中,通过填料层内的空隙和微生物颗粒表面的吸附作用实现废气处理。
湿法吸附是将废气通过湿润的微生物颗粒或生物膜表面,通过微生物的吸附和生物膜的生物降解作用将有机物转化成无害物质。
常用的湿法吸附包括湿式生物过滤器、生物湿润床和生物液滴沉滤塔等。
在设计生物法有机废气处理系统时,首先需要了解废气的成分、浓度、温度、湿度等参数。
根据不同的有机物特性选择合适的生物处理方式,同时考虑处理效率、设备可靠性、运行成本和维护成本等因素。
设备的设计要合理布置反应器、吸附剂和辅助设备,确保废气与生物颗粒或生物膜充分接触,同时提供充足的氧气、碳源和营养物质。
生物除臭的工程有哪些方法生物除臭工程是利用生物学的原理和方法,采用微生物、酶和植物等生物材料来去除有机污染物臭味的技术。
以下是一些常见的生物除臭工程方法:1. 微生物降解法:利用特定的微生物来降解有机污染物,从而去除臭味。
常用的微生物包括细菌、真菌等。
微生物通过吸附、分解、转化等方式降解有机物,产生无臭或低臭的产物,实现去除臭味的效果。
2. 酶技术法:利用特定的酶催化有机物降解,去除臭味。
酶是一种特殊的蛋白质,具有高效催化降解有机物的能力。
通过加入适量的酶到有机臭味物质中,可以加速其降解过程,有效去除臭味。
3. 厌氧消化法:利用厌氧微生物降解有机废水,去除臭味。
厌氧消化是一种通过微生物分解有机物成为可稳定产生沼气的有机物的过程。
这个过程中,产生的气体中有一部分是臭味,通过适当的处理可以去除臭味。
4. 活性炭吸附法:利用活性炭的孔隙结构和表面化学吸附性能吸附有机气体,去除臭味。
活性炭是一种具有大量微孔和化学吸附性能的材料,能够有效吸附有机物质,并达到去除臭味的效果。
5. 植物净化法:通过植物的生物化学代谢功能,吸收并分解空气中的有机气体,去除臭味。
植物可以吸收有害气体,如硫化氢、苯、甲醛等,并通过光合作用和呼吸作用分解有机物,净化空气。
6. 反应塔除臭法:将臭气通过反应塔中的填料与催化剂接触反应,将有机物氧化分解为无害的物质,去除臭味。
这种方法适用于臭气较浓的情况,通过催化剂的作用将有机物氧化为无害物质。
7. 光催化技术:利用光催化剂催化有机物分解为无害物质,去除臭味。
光催化技术利用光催化剂吸收可见光或紫外线光源,产生电子-空穴对,从而催化降解有机污染物,去除臭味。
8. 生物滤池:将有机废气通过装有特定微生物的滤池,微生物在滤池中降解有机物,去除臭味。
生物滤池是一种简单、有效的生物除臭工程方法,通过微生物的活性降解有机物,达到去除臭味的效果。
9. 生物遮罩法:利用含有芬香成分的物质覆盖有机臭味,掩盖并去除臭味。
生物法处理有机废气(超详细)生物法处理废气废气的生物处理是利用微生物的生命过程把废气中的气态污染物分解转化成少或甚至无害物质。
自然界中存在各种各样的微生物,几乎所有无机的和有机的污染物都能转化。
生物处理不需要再生和其他高级处理过程,与其他净化法相比,具有设备简单、能耗低、安全可靠、无二次污染等优点,但不能回收利用污染物质。
1.2.3.1基本原理在适宜的环境条件下,微生物不断吸收营养物质,并按照自己的代谢方式进行新陈代谢活动。
废气中生物处理正是利用微生物新陈代谢过程中需要营养物质这一特点,把废气中的有害物质转化成简单的无机物如二氧化碳、水,以及细胞物质等。
1.2.3.2微生物降解污染物的过程由于微生物将废气中的有害物质进行转化的过程在气相中难以进行,所以废气中气态污染物首先要经气相转移到液相或固体表面的液膜中的传质过程,然后污染物才在液相或固体表面被微生物吸附降解。
按照Ottengraf提出的生物膜理论,生物法净化处理工业废气一般要经历以下四个步骤(图1-1)。
1)废气中的污染物首先同水接触并溶解于水中(由气膜扩散进入液膜);2)溶解于液膜中的污染物在浓度差的推动下进一步扩散到生物膜,进而被其中的微生物捕获并吸收;3)微生物将污染物转化为生物量、新陈代谢副产品或者C02、水等;4)生化反应产物002从生物膜表面脱附并反扩散进入气相本体,而1120则被保持在生物膜内。
气态污染物的生物处理过程也是人类对自然过程的强化和工程控制,其过程的速率取决于:①气相向液固相的传质速率(与污染物的理化性质和反应器的结构等因素有关);②能起降解作用的活性生物质量;③生物降解速率(与污染物的种类、生物生长环境条件、控制作用有关)。
表1-1列出了各种气态污染物的生物降解效果。
按照获取营养的方式不同,用于污染物生物降解的微生物有两大类:自养菌和异养菌。
自养菌可以在无有机碳和氧的条件下,以光和氨、硫化氢、硫和铁离子等的氧化获得必要的能量,而生长所需的碳则由二氧化碳通过卡尔文循环提供,因此它特别适合于无机物的转化。
生物法处理废气
废气的生物处理是利用微生物的生命过程把废气中的气态污染物分解转化成少或甚至无害物质。
自然界中存在各种各样的微生物,几乎所有无机的和有机的污染物都能转化。
生物处理不需要再生和其他高级处理过程,与其他净化法相比,具有设备简单、能耗低、安全可靠、无二次污染等优点,但不能回收利用污染物质。
1.2.3.1基本原理
在适宜的环境条件下,微生物不断吸收营养物质,并按照自己的代谢方式进行新陈代谢活动。
废气中生物处理正是利用微生物新陈代谢过程中需要营养物质这一特点,把废气中的有害物质转化成简单的无机物如二氧化碳、水,以及细胞物质等。
1.2.3.2微生物降解污染物的过程
由于微生物将废气中的有害物质进行转化的过程在气相中难以进行,所以废气中气态污染物首先要经气相转移到液相或固体表面的液膜中的传质过程,然后污染物才在液
相或固体表面被微生物吸附降解。
按照Ottengraf提出的生物膜理论,生物法净化处理工业废气一般要经历以下四个步骤(图1-1)。
1)废气中的污染物首先同水接触并溶解于水中(由气膜扩散进入液膜);
2)溶解于液膜中的污染物在浓度差的推动下进一步扩散到生物膜,进而被其中的微生物捕获并吸收;
3)微生物将污染物转化为生物量、新陈代谢副产品或者C02、水等;
4)生化反应产物002从生物膜表面脱附并反扩散进入气相本体,而1120则被保持在生物膜内。
气态污染物的生物处理过程也是人类对自然过程的强化和工程控制,其过程的速率取决于:①气相向液固相的传质速率(与污染物的理化性质和反应器的结构等因素有关);
②能起降解作用的活性生物质量;③生物降解速率(与污染物的种类、生物生长环境条件、控制作用有关)。
表1-1列出了各种气态污染物的生物降解效果。
填料
固液混合层
图1-1生物法净化工业废气的传质降解模型
表1-1微生物对各种气态污染物的生物降解效果
化合物生物降解效果
甲苯、二甲苯、甲醇、乙醇、丁醇、四氢呋喃、甲醛、乙醛、丁醛、三甲胺非常好苯、丙酮、乙酸乙酯、苯酚、二甲基硫、噻吩、甲基硫醇、二硫化碳、酰胺类、吡
啶、乙腈、异腈类、氯酚
好
甲烷、戊烷、环己烷、乙醚、二氯甲烷较差1,1,1-三氯甲烷无
乙炔,异丁烯酸甲酯、异氰酸酯、三氯乙烯、四氯乙烯不明1.2.3.3废气生物处理的微生物
按照获取营养的方式不同,用于污染物生物降解的微生物有两大类:自养菌和异养菌。
自养菌可以在无有机碳和氧的条件下,以光和氨、硫化氢、硫和铁离子等的氧化获得必要的能量,而生长所需的碳则由二氧化碳通过卡尔文循环提供,因此它特别适合于无机物的转化。
由于自养菌的能量转换过程缓慢,导致其生长速率也非常慢,其生物负荷不可能很大,因此对无机气态污染物采用生物处理方法比较困难,仅有少数工艺找到了适当种类的细菌,如采用硝化、反硝化及硫酸菌等去除浓度不太高的臭味气体硫化氢、氨等。
异养菌则是通过有机化合物的氧化来获取营养物和能量,适合进行有机物的转化, 在适当的温度、酸碱度和有氧的条件下,该类微生物能较快地完成污染物的降解。
事实上,国内外广泛应用的是异养菌降解有机物如乙醇、硫醇、酚、甲酚、吲哚、脂肪酸、
乙醛、胺等。
特定的微生物群落具有特定的污染物处理对象。
在某些情况下,起净化作用的多种微生物在相同条件下均可正常繁殖。
因此,在一个装置内可同时处理含多种污染物的气体。
在废气生物处理的系统中,微生物是工作的主体,只有了解和掌握微生物的基本生理特性,筛选、培育出优势高效菌种,才能获得较好的净化效果。
以一种物质作为目标污染物的微生物菌种一般是通过污泥驯化或培养的方法来进行(表1-2)。
表1-2用于大气污染控制的一些微生物菌属
种类微生物目标污染物举例
假单胞菌属(Pseudomonas)小分子烃类乙烷
诺卡式菌属(Nocardia)小分子芳香族化合物二甲苯、苯乙烯
黄杆菌属(Flavobacterium)氯代化合物氯甲烷、五氯苯酹
放线菌属(Actinomyces)芳香族化合物甲苯
真菌(Fungi)聚合高分子聚乙烯
氧化亚铁硫杆菌(T.ferrooxidans)无机硫化物二氧化硫、硫化氢
氧化硫硫杆菌(T.thiooxidans)有机硫化物硫醇(RSH)
而对于含有复杂的、多种污染成分的目标污染物,则必须用混合培养的方法,驯化、培育出分工、协作的微生物菌群来完成污染物的降解任务。
1.2.3.4影响生物净化废气的主要因素
生物法主要依靠微生物的作用来去除气体中的污染物,微生物的活性决定了反应器的性能。
因此反应器的条件应适合微生物的生长,这些条件包括填料(介质)、湿度、pH、溶解氧浓度、温度和污染物的浓度等。
(1)填料
对所有类型的生物净化器而言,理想的填料应是良好的传质和发生化学转化的场所,具有以下性质:
1)最佳的微生物生长环境:营养物、湿度、pH和碳源的供应不受限制;
2)较大的比表面积:接触面积、吸附容量、单位体积的反应点更多;
3) 一定的结构强度:防止填料压实,否则会使压降升髙、气体停留时间缩短;
4)高水分持留能力:水分是维持微生物活性的关键因素;
5)高孔隙率:使气体有较长的停留时间;
6)较低的体密度:减小填料压实的可能性。
常用的堆肥、泥煤等填料能基本符合以上要求,但是其中含有的有机物会逐渐降解,这不仅使填料压实,还要在一定时间后更换,即有寿命限制。
将有机填料和惰性的填充剂混合,使用寿命可髙达5a, —般为2〜4a。
为卞提髙填料性能、降低压降,一般要求60% 的填料直径大于4mm。
(2)温度
温度是影响微生物生长的重要因素。
任何微生物只能在一定温度范围内生存,在此温度范围内微生物能大量生长繁殖。
根据微生物对温度的依赖,可以将它们分为低温性(<25°C),中温性(25〜40°C)和高温性(>40°C)微生物。
在适宜的温度范围内,随着温度的升高,微生物的代谢速率和生长速率均可相应提高,但高于最高生长温度后,微生物停止生长,甚至最终死亡。
因此,需根据微生物种类选择最适宜的温度。
通常,用于有机物和无机物降解的微生物均是中温、高温菌占优势。
一般情况下,生物处理可在25〜35°C进行,很多研究表明,35°C是很多好氧微生物的最佳温度。
温度除了改变微生物的代谢速率外,还能影响污染物的物理状态,使得一部分污染物发生固一液、气一液相转换,从而影响生物净化效果。
如:温度的提高,会降低污染物特别是有机污染物在水中的溶解以及在填料上的吸附,从而影响气相中污染物的去除。
(3) pH
微生物的生命活动,物质代谢都与pH有密切联系,每种微生物都有不同的pH要求。
大多数细菌、藻类和原生动物对pH的适宜范围为4〜10,最佳pH为6.5〜7.5。
表1-3列出了几种常用微生物的适宜温度和pH范围。
表1-3几种微生物适宜的温度和pH
微生物假单胞菌环状菌属硫氰氧化杆菌硫杆菌放线菌S2
温度/。
25 〜3530 〜3527 〜3325 〜3020 〜30
pH 6.5 〜7.57.0 〜8.0 6.8 〜7.6 5.5 〜7.57.0 〜8.0
最适宜pH7.07.57.07.07.0
(4)溶解氧
根据微生物的呼吸与氧的关系,微生物可分为好氧微生物、兼性厌氧(或兼性好氧)微生物和厌氧微生物。
'
好氧微生物需要供给充足的氧。
氧对好氧微生物具有两个作用:①在呼吸中氧作为最终电子受体;②在留醇类和不饱和脂肪酸的生物合成中需要氧。
充氧的效果与好氧微生物的生长量呈正相关性,氧供应量的多少根据微生物的数量、生理特性、基质性质及浓度综合考虑。
兼性微生物具有脱氢酶也具有氧化酶,既可在无氧条件也在有氧条件下存在。
在好氧生长时氧化酶活性强,细胞色素及电子传递体系的其他组分正常存在,而在无氧条件下,细胞色素及电子传递体系的其他组分减少或全部丧失,氧化酶不活动,一旦通入氧气,这些组分的合成很快恢复。
厌氧微生物只有在无氧条件下才能生存,它们进行发酵或无氧呼吸。
因此在其进行生物处理过程中要尽可能保持无氧状态。
(5)湿度
在生物过滤处理废气中,湿度是一个重要的环境因素。
首先,它控制氧的水平,决定是好氧还是厌氧条件。
如果滤料的微孔中80%〜90%充满水,则可能是厌氧条件。
其次,大多数微生物的生命活动都需要水,而且只有溶解于水相中的污染物才可能被微生物所降解。
如果填料的湿度太低,将使微生物失活,填料也会收缩破裂而产生气流短流;如填料湿度太高,不仅会使气体通过滤床的压降增高、停留时间降低,而且由于空气•水界面的减少引起氧供应不足,形成厌氧区域从而产生臭味并使降解速率降低。
许多实验表明,填料的湿度在40%〜60% (湿重)范围内时,生物滤膜的性能较为稳定。
对于致密的、排水困难的填料和憎水性挥发性有机物(VOCs),最佳含水量在40%左右;对于密度较小、多孔性的填料和亲水性的VOCs,则最佳含水量在60%以上。