废气的生物处理技术
- 格式:ppt
- 大小:1.41 MB
- 文档页数:101
vocs生物法处理工艺:
VOCs生物法处理工艺主要包括生物洗涤法、生物过滤法和生物滴滤法等。
生物洗涤法是利用微生物、营养物和水组成的微生物吸收液处理废气。
适合于吸收可溶性气态污染物。
生物洗涤法中气、液相接触方法,除采用液相喷淋外,还可以采用气相鼓泡。
一般,若气相阻力较大时,可采用喷淋法;反之,液相阻力较大时则采用鼓泡法。
由于生物洗涤法的循环洗涤液需采用活性污泥法来再生,所以在通常情况下,循环洗涤液主要是水,因此,该方法只适用于水溶性较好的VOCs,如乙醇、乙醚等,而对于难溶的VOCs,该方法则不适用。
生物过滤法净化系统由增湿塔和生物过滤塔组成。
VOC气体经增湿塔加压预湿后进入过滤塔,与生物膜接触而被吸收,最终降解成二氧化碳,水蒸汽和微生物基质,净化后的气体由顶部排出。
生物滴滤法是利用微生物的新陈代谢过程对多种有机物和某些无机物进行生物降解,生成CO2 和H2O,进而有效去除工业废气中的污染物质。
该法具有设备简单,运行维护费用低,无二次污染等优点。
但对成分复杂的废气或难以降解的VOC,去除效果较差,体积大和停留时间长,选用不同的填料其降解有机废气的效果参差不同。
废气处理中生物法的原理废气处理中的生物法是指利用生物体代谢活动来降解和转化废气中的有害气体成分,以达到净化废气的目的。
生物法处理废气主要是利用微生物的生长和代谢特性,通过生物转化、吸附和副产物转化等过程将废气中的污染物转化为无害物质。
生物法废气处理的原理主要包括生物吸附、生物脱除和生物降解三个过程。
1. 生物吸附:利用微生物细胞表面的菌体或菌丝结构,对废气中的有害气体分子进行吸附。
通过微生物的细胞壁和附着物来吸附废气中的污染物,使其分子附着在生物体表面上,从而实现对有害气体的去除。
生物吸附主要适用于有机废气中的低浓度有机物和某些无机物质。
2. 生物脱除:利用微生物细胞内特异的酶系统,对废气中的有害气体进行转化和脱除。
通过微生物体内的酶系统,将废气中的有害气体经过代谢转化为无害物质,并释放为代谢产物或溶解于细胞内外,从而达到废气净化的目的。
生物脱除主要适用于高浓度有机废气、硫化氢、氨气等。
3. 生物降解:利用微生物体内的生物化学反应,将废气中的有机物分子分解为无害物质。
通过微生物体内酶的作用,有机物分子被分解为无害物质,例如二氧化碳和水,这些无害物质可以释放到废气中或通过生物体代谢排出。
生物降解适用于含有可生物降解有机物的废气治理。
生物法废气处理的工艺流程一般包括废气收集、生物反应器、废气处理和废气排放四个主要环节。
首先,废气收集是指通过管道、风机等设备将废气从生产源处收集起来,集中到废气处理系统中。
废气收集主要是为了提高废气处理系统对废气的利用率,确保废气处理效果。
然后,废气进入生物反应器,在生物反应器中进行生物转化和净化。
生物反应器一般分为厌氧反应器和好氧反应器两种。
厌氧反应器适用于处理含有硫化氢、氨气等有机废气,而好氧反应器适用于处理含有甲醛、苯、甲苯等有机废气。
接下来,经过生物反应器处理后的废气,进入废气处理设备进行后处理。
后处理主要包括废气的分离、过滤、清洗和脱湿等步骤,以进一步降低废气中有害气体的浓度,确保废气净化的效果。
生物发酵废气处理方法
随着工业生产的不断发展和人们生活水平的提高,对环境的保护也越来越受到重视。
尤其是有机废气的排放,不仅直接危害到环境,而且还对人体健康造成了潜在的危害。
因此,对有机废气的处理成为了当今社会的一个重要课题。
传统的处理方法主要有三种:一是排放到大气中,这种方法存在着对环境造成污染的风险;二是利用吸收剂吸收废气中的有机物,这种方法存在着成本高、吸附效率低等问题;三是利用物理方法处理废气,这种方法存在着设备成本高、处理效率低等问题。
因此,现在正在逐渐开发新的有机废气处理方法。
生物发酵废气处理方法是目前最为理想的有机废气处理方法之一、它利用微生物的发酵作用将废气中的有机物转化为无毒物质,从而达到净化环境的目的。
目前,生物发酵废气处理方法已经被广泛应用于处理各种有机废气,其净化效果良好。
生物发酵废气处理方法的优点是:一是处理效率高,可以将废气中的大部分有机物净化掉;二是处理成本低,相比于其他方法而言,生物发酵废气处理方法成本相对较低;三是处理过程简单,可以在现有的微生物发酵设施中进行处理;四是处理风险低,因为生物发酵废气处理方法是一个无毒的过程。
废气处理生物法
废气处理是指将产生的废气进行处理,去除污染物,以减少对环境的影响。
其中,生物法是一种利用微生物和生物化学反应来净化废气的处理方法。
生物法的原理是通过使用特定的微生物,将废气中的有机污染物转化为无害的物质。
这些微生物可以是自然界存在的,也可以是经过改良和选育的菌群。
在生物法中,废气首先经过预处理,去除其中的颗粒物、气态污染物等。
然后,废气会进入一个生物反应器,这个反应器内会有适宜生物生长和活动的环境。
微生物会利用废气中的有机污染物作为能源和营养源,通过酵解、氧化等过程将其转化为二氧化碳、水和其他无害物质。
最后,经过处理后的废气会被释放到大气中或经进一步处理后达到排放标准。
生物法相比于传统的物理或化学处理方法具有许多优点。
首先,它是一种相对低成本的处理方法,可以利用自然界中已经存在的微生物资源。
其次,生物法能够高效地去除有机污染物,处理效果稳定可靠。
此外,生物法还具有可持续性和环保性,不会产生二次污染物。
值得一提的是,生物法在处理某些特定的有机废气中表现出很高的选择性,能够实现高效的处理效果。
总之,生物法是一种有效的废气处理方法,通过利用微生物和生物化学反应将废气中的有机污染物转化为无害物质。
它具有低成本、高效、环保等诸多优点,应用广泛。
VOCs废气的生物技术处理摘要:VOCs废气对于环境和人类危害巨大,不同类型的VOCs废气,应采取富有针对性且行之有效的处理工艺以达到处理效果的最优化。
本文研究了生物技术处理VOCs废气的技术要点,并对多种技术联合处理苯系物的研究做出展望。
关键词:VOCs;生物学技术引言VOCs挥发性有机化合物的主要成分有烃类、卤代烃、氮烃、含氧烃、硫烃及低沸点的多环芳烃等,特点为沸点较低、分子量小、常温状态下易挥发。
很多化工产业都不可避免地排放该类物质,如果不能合理地处理,将对大气造成较大的污染,对人畜以及各类建筑设施造成一定的伤害。
1.VOCs废气的生物技术要点1.1基本原理利用生物技术进行VOCs的处理,以最常见的反应器来分析,其具体的原理是,构建一个反应容器,其中最底层是生物膜层,设置了一定量的微生物群落,其上是以水为主的液体,是为液相,再至上则是气体空间,是为气相,含有一定的氧气。
VOCs从气相位置被液体吸附,并逐渐融入到液体中,然后再与生物膜接触并被微生物所降解,对于特定的微生物来说,很多VOCs是一种能量和碳元素的来源。
微生物将其降解后,就生成一定的水与二氧化碳,没有任何毒性,排出到气体环境中。
在这个过程中,需要VOCs从气相环境里中通过气液传质融入到液体环境中,然后再进一步被生物膜吸附。
根据上述原理我们不难看出,采用生物技术对VOCs进行消除,其具体的效果,与VOCs自身的各类物质含量、浓度,与容器的结构大小,与微生物的生物活性等有直接的关系。
同时也与VOCs从气相到生物膜的两次传质情况有直接的关系。
1.2控制要点前文已述,在利用生物技术对VOCs进行处理时,需要经过两次传质过程,其一是污染气体从气相环境中到液相环境中,其二是被处理物从液相传质到生物膜。
这里引入亨利常数的概念,亨利常数,是指一定温度下溶于定量液体中的气体量与溶液处于平衡的该气体分压的比值。
可见在其他条件固定的情况下,不同的VOCs成分的传质效果取决于其亨利常数。
生物法处理废气废气的生物处理是利用微生物的生命过程把废气中的气态污染物分解转化成少或甚至无害物质。
自然界中存在各种各样的微生物,几乎所有无机的和有机的污染物都能转化。
生物处理不需要再生和其他高级处理过程,与其他净化法相比,具有设备简单、能耗低、安全可靠、无二次污染等优点,但不能回收利用污染物质。
1.2.3.1基本原理在适宜的环境条件下,微生物不断吸收营养物质,并按照自己的代谢方式进行新陈代谢活动。
废气中生物处理正是利用微生物新陈代谢过程中需要营养物质这一特点,把废气中的有害物质转化成简单的无机物如二氧化碳、水,以及细胞物质等。
1.2.3.2微生物降解污染物的过程由于微生物将废气中的有害物质进行转化的过程在气相中难以进行,所以废气中气态污染物首先要经气相转移到液相或固体表面的液膜中的传质过程,然后污染物才在液相或固体表面被微生物吸附降解。
按照Ottengraf提出的生物膜理论,生物法净化处理工业废气一般要经历以下四个步骤(图1-1)。
1)废气中的污染物首先同水接触并溶解于水中(由气膜扩散进入液膜);2)溶解于液膜中的污染物在浓度差的推动下进一步扩散到生物膜,进而被其中的微生物捕获并吸收;3)微生物将污染物转化为生物量、新陈代谢副产品或者C02、水等;4)生化反应产物002从生物膜表面脱附并反扩散进入气相本体,而1120则被保持在生物膜内。
气态污染物的生物处理过程也是人类对自然过程的强化和工程控制,其过程的速率取决于:①气相向液固相的传质速率(与污染物的理化性质和反应器的结构等因素有关);②能起降解作用的活性生物质量;③生物降解速率(与污染物的种类、生物生长环境条件、控制作用有关)。
表1-1列出了各种气态污染物的生物降解效果。
填料固液混合层图1-1生物法净化工业废气的传质降解模型表1-1微生物对各种气态污染物的生物降解效果1.2.3.3废气生物处理的微生物按照获取营养的方式不同,用于污染物生物降解的微生物有两大类:自养菌和异养菌。
有机废气(VOC)生物处理研究现状与发展趋势有机废气(VOC)生物处理研究现状与发展趋势一、引言近年来,随着工业发展的迅猛,有机废气的排放量不断增加,对环境和人类健康带来了严重威胁。
有机废气通常由挥发性有机物 (volatile organic compounds, VOCs) 组成,包括苯、甲苯、乙酸、丙酮等。
这些有机物不仅有较强的毒性,还对大气臭氧的生成产生不利影响。
因此,开展有机废气的处理研究具有重要意义。
二、有机废气生物处理技术现状目前,有机废气的处理主要采用物理吸附、化学吸收、燃烧等方法。
然而,这些方法存在着高能耗、废渣产生多和操作维护成本高等问题。
相比之下,生物处理技术在VOCs废气处理中具有独特优势,包括低能耗、无二次污染等特点。
主要的生物处理技术包括生物吸附、生物氧化、生物脱附和生物过滤。
2.1 生物吸附生物吸附是指利用活性生物物质吸附 VOCs,将其转化为不活性化合物。
常用的吸附剂包括活性炭、硅胶、天然纤维等。
生物吸附技术具有吸附效果好、适用于多种 VOCs 的特点,但其吸附饱和后需要再生或处理。
2.2 生物氧化生物氧化是指利用微生物将 VOCs 进行降解分解的过程。
常用的微生物包括细菌、真菌、藻类等。
生物氧化技术能够有效降解 VOCs,但操作条件要求较高,容易受到温度、pH值等因素的影响。
2.3 生物脱附生物脱附是指将 VOCs 从生物质中解离出来的过程。
通过调整温度、压力等条件,使 VOCs 脱附并收集进行处理。
生物脱附技术既能降低 VOCs 的浓度,又可回收生物质进行再利用。
2.4 生物过滤生物过滤是指将 VOCs 通过与微生物相互作用,使 VOCs 通过空气滤材层时被微生物降解分解的过程。
生物过滤技术具有体积小、能耗低等优势,并且适用于多种 VOCs 的处理。
三、有机废气生物处理研究进展近年来,有机废气生物处理研究取得了一些进展。
其中,微生物资源的开发与研究是有机废气生物处理研究的重点之一。
废气净化生物除臭工程方案一、废气净化生物除臭工程的原理废气净化生物除臭工程是指利用活性微生物对有机废气进行生物降解和去除异味的过程。
具体原理如下:1. 生物降解:利用适宜的生物载体(例如生物膜、生物软泥等),将含有有机废气引入生物反应器中,通过生物膜或微生物菌群的代谢作用,将有机废气中的有害气体降解为无害物质,如二氧化碳、水等。
2. 去除异味:生物膜或微生物菌群能够吸附并代谢含硫、含氮及其他异味物质,从而实现废气的去臭作用。
二、废气净化生物除臭工程的技术方案废气净化生物除臭工程的实施,需要考虑工程场地、废气性质、环境要求等多方面因素,综合选择适宜的技术方案。
一个典型的废气净化生物除臭工程技术方案包括以下几个环节:1. 废气采集系统的设计:根据工业生产过程中产生的废气特性和产生的地点,设计合理的废气采集系统,确保废气能够有效地被引导到净化除臭设备中。
2. 生物反应器的选型和设计:生物反应器是废气净化生物除臭工程的核心设备,根据废气的量、性质和需求水平,选择合适的生物反应器类型和规模,进行设计和布置。
3. 生物载体的选择和培养:选择适宜的生物载体,针对废气中的有害气体和异味物质,培养富有生物降解能力的微生物菌群。
4. 运行控制系统的建设:建设一套完善的废气净化生物除臭运行控制系统,保证生物反应器能够稳定运行,实现废气净化和除臭效果。
5. 检测监测及数据记录系统:建立废气净化生物除臭工程的检测监测体系,并建立相应的数据记录系统,对废气净化和除臭效果进行实时监测和记录。
三、废气净化生物除臭工程的实施步骤废气净化生物除臭工程的实施步骤包括以下几个阶段:1. 项目可行性研究:分析工场废气的特性、排放量和环境要求等数据,进行项目可行性评估,明确废气净化与除臭的技术路径和处理工艺。
2. 设计方案编制:根据项目可行性评估的结果,编制废气净化生物除臭工程的详细设计方案,包括技术方案、设备选型、工艺流程、环保措施等。
关于生物除臭废气处理技术方案生物除臭工作原理生物除臭是一种高效、环保的废气处理技术,其原理是利用微生物将臭味物质转化为无害或低害物质,实现净化臭气的目的。
以下是生物除臭工作原理的详细介绍:一、恶臭气体收集系统生物除臭的第一步是收集恶臭气体。
为了确保处理效果,需要建立一个高效合理的密封系统。
该系统主要由构筑物密封罩和收集风管组成,负责将产生的恶臭物质进行收集并输送至处理系统。
密封罩通常采用有机玻璃、玻璃钢、阳光板、PC耐力板、氟碳纤膜等材料制成,以确保气密性。
收集风管则通常采用有机玻璃或玻璃钢材质,管路的横截面为矩形或圆形,根据实用《供热空调设计手册》及实际估算处理量选定管径。
二、处理系统处理系统主要由离心风机和一体化生物化滤池(含预洗池和生物滤池)组成。
离心风机将臭气从臭气进行加湿,同时部分恶臭物质从气相进入液相,通过在预洗池内添加填料,增加空气与水的接触面积,提高洗涤和加湿效果。
生物滤池主要由生物填料组成,生物填料为微生物的生存和生长提供了适宜的环境和营养。
经过加湿的臭气在与生物填料属接触过程中,附着在生物填料表面的微生物将恶臭物质进行吸收并分解,从而完成除臭过程。
三、排放系统排放系统主要由风机、排放烟囱风管、在线监测系统以及避雷针等部分组成。
处理后的气体达到排放标准后,通常要求高度在15m以上,通过风机、排放烟囱风管等设备排放到大气中。
在线监测系统可以实时监测排放气体中的污染物浓度,确保排放符合国家标准。
避雷针则可以防止雷电对排放系统的破坏。
四、喷淋系统喷淋系统由循环水泵、喷淋水泵、喷淋管道、喷头、过滤器、循环水箱及其它附件组成。
循环水泵的作用是为预洗池提供充足的喷淋水,以满足预洗和加湿臭气的需要。
喷淋水泵主要是向生物滤池提供一定量的水份,以满足微生物生长所需的水份以及环境的要求。
喷头的设计和选择应考虑喷淋效果和覆盖范围,以确保臭气能够充分与水接触。
过滤器则用于去除水中的杂质和悬浮物,保证喷淋水的质量。
大气污染废气治理新技术在当今社会,大气污染是全球面临的重要环境问题之一。
其中,废气污染是造成大气环境恶化的主要原因之一。
为了应对这一问题,科学家们不断努力研究和发展新技术来治理废气污染。
本文将介绍几种大气污染废气治理的新技术。
一、生物除臭技术生物除臭技术是一种利用生物微生物对废气中的臭气进行生物降解的技术。
它通过在特定的条件下,将含有臭气的废气引导进入生物反应器中,利用微生物代谢活动将臭气分解成无害的物质,从而实现去除臭气的目的。
这种技术具有高效、环保、经济等优势,在许多领域得到了广泛应用,如垃圾处理厂、畜牧养殖场等。
二、等离子废气净化技术等离子废气净化技术是一种利用等离子体对废气进行净化的技术。
等离子体是一种高能离子态气体,它能够通过电离、激发等方式将废气中的有害物质分解或转化为无害物质。
这种技术具有高效、无污染、可重复使用等特点,广泛应用于工业废气处理、汽车尾气净化等领域。
三、光催化氧化技术光催化氧化技术是一种利用光催化剂对废气进行氧化分解的技术。
通过光催化剂吸收特定波长的光能,使其表面产生电子空穴对,并通过氧化还原反应将有机物降解为无害的物质。
这种技术具有高效、选择性强、无污染等特点,在挥发性有机物(VOCs)治理、甲醛净化等方面具有广泛应用。
四、碳纳米管废气过滤技术碳纳米管废气过滤技术是一种利用碳纳米管过滤器对废气进行过滤的技术。
碳纳米管具有高比表面积和细小的孔隙结构,能够有效捕获废气中的颗粒物、重金属离子等有害物质。
该技术具有高效、可靠、经济等优点,在工业废气过滤、室内空气净化等领域得到了广泛应用。
总结随着科学技术的不断发展,大气污染废气治理新技术不断涌现。
上述介绍的生物除臭技术、等离子废气净化技术、光催化氧化技术和碳纳米管废气过滤技术只是其中的几种代表,还有许多其他新技术在不断完善和应用。
这些新技术的不断发展将为解决大气污染问题提供更多的可能性,为创造清洁健康的大气环境做出贡献。
大家应该重视这些新技术的研究和应用,并共同努力保护我们的环境。
生物技术在有机废气处理中的应用分析
1. 生物滤池技术:生物滤池是利用微生物的新陈代谢作用将有机废气中的有机物质
降解为无害物质的一种方法。
生物滤池的填料通常采用多孔材料,如活性炭、泡沫塑料等,有利于细菌的附着和生长。
废气经过生物滤池时,废气中的有机物质会被微生物降解,同
时产生二氧化碳和水。
生物滤池具有处理效果好、能耗低、操作简单等优点,已经成功应
用于工业废气处理和生活废气处理等领域。
生物技术在有机废气处理中具有广阔的应用前景。
随着科技的不断进步和生物技术的
发展,相信生物技术将会在有机废气处理中发挥更大的作用,为改善环境质量和保护人民
健康做出更大的贡献。
生物滴滤法处理甲苯废气的工艺优化及关键参数研究生物滴滤法是一种用于处理废气的生物技术,它利用生物滤床内的微生物降解有机污染物。
本文将围绕任务名称的描述,探讨生物滴滤法处理甲苯废气的工艺优化及关键参数研究。
首先,生物滴滤法处理甲苯废气的工艺优化是指通过优化处理工艺,提高废气处理效率和降解效果。
工艺优化的关键是合理选择滤料和微生物菌种,调整滴滤床的操作条件。
在选择滤料方面,应考虑其表面积大、孔隙率高、质地均匀的特点。
常用的滤料有陶粒、煤屑、聚酯纤维球等。
滤料的选择对生物降解甲苯有着重要影响,因为滤料上的微生物附着层是废气处理的关键部分。
在菌种选择方面,应选择适应甲苯降解的细菌或真菌。
常见的甲苯降解菌有假单胞菌属、绿短杆菌属、石蜡烷菌属等。
此外,也可以采用混合菌种来提高降解效果。
调整滴滤床的操作条件也是工艺优化的重要部分,主要包括废气进风速度、滤料湿度、温度以及通气量等参数的调节。
废气进风速度应适中,过高的进风速度会导致气液分离不彻底,过低则会影响废气的分布。
滤料湿度是保证微生物正常生长和降解的重要因素,应保持适宜的湿度。
温度的调节需要根据菌种的生活特性来确定,一般在30℃左右有较好的降解效果。
通气量的调节可以影响微生物的生长速率和废气与滤料表面的接触程度,因此也需要根据实际情况进行调整。
其次,关键参数研究包括滤料层厚度、滴滤液循环量、甲苯浓度等参数的研究。
滤料层厚度的研究是为了确定最佳的滤料层厚度,以提高降解效果和废气处理效率。
滴滤液循环量的研究是为了确定最佳的滴滤液循环量,以保证微生物正常生长和降解反应的进行。
甲苯浓度的研究是为了确定不同浓度下的降解效果,以便于确定最佳处理条件。
最后,为了优化生物滴滤法处理甲苯废气的工艺和关键参数,还需要进行实验研究。
通过实验可以验证理论模型的准确性,找出影响降解效果和废气处理效率的因素,并优化处理工艺。
实验研究包括滤料选择实验、菌种选择实验、滴滤床操作条件实验、关键参数研究实验等。