传热学 第三章 非稳态导热
- 格式:ppt
- 大小:2.25 MB
- 文档页数:42
第三章非稳态导热Transient Conduction第五讲13.1 非稳态导热的基本概念一、非稳态导热的概念非稳态导热:物体内的各点温度随时间而变化的导热过程。
稳态导热:物体内各点温度随时间而温度不变的导热过程。
对于非稳态导热,物体内各点的热流密度随时间改变不?第五讲2二、应用背景•加热炉、连铸、连轧,加热时间和工件质量•改变材料的力学特性热处理(淬火、正火、回火);•机加工,零件的热应力、热变形;•微电子器件,瞬态、交变工作状态下的寿命、热应力;•热力设备的启动与停机;•表面处理、光盘的读写;•航天器的升空与降落过程;•子弹出膛时的升温过程;•。
第五讲3第五讲4工程上典型温度变化率的数量级第五讲6第五讲7第五讲8第五讲9无限大平板的初始温度为t 0。
τ= 0时刻,其左边温度突然上升为t 1并保持不变,右侧与温度为t 0的空气接触。
平板内温度变化过程?三、非稳态导热过程的特点第五讲10该阶段的温度变化规律是讨论的主要内容11二、非稳态导热问题作集总参数处理的条件•物体的尺寸比较小;•材料的热导率比较大;•表面传热系数比较小。
上述三条均为相对概念,并不能严格说明何时可以采用集总参数法。
那么应该用什么参数来作为判断准则呢?第五讲13第五讲16•Bi →∞导热热阻起决定作用,对流热阻极小,t w →t ∞, 第一类边界条件的瞬态问题•Bi →0 导热热阻极小,内部温度趋于一致•Bi 有限大小,内外热阻都起作用不同Bi数平板内温度变化(初温t 0、环境温度t ∞)第五讲24ρcV /hA 具有时间的量纲,称为时间常数τc.0/0.368θθ=用集总参数法分析时物体过余温度的变化曲线当τ=τc 时,第五讲26M :与物体的几何形状有关的常数平板:M=1圆柱:M=1/2球:M=1/3四、集中参数法的适用范围当Bi V <0.1M时,物体内各点间的过余温度的偏差将小于5%。
五、多集总系统由两个或两个以上子系统构成的系统(如两个接触良好的固体或盛在容器中的液体),集总参数法可以应用于其子系统。
《传热学》第3章_非稳态热传导分析非稳态热传导分析是传热学中一个重要的研究内容。
在真实的物理系统中,尤其是工程实际中,非稳态热传导过程往往更为常见。
非稳态热传导分析主要研究物体内部温度分布随时间的变化规律,以及热传导过程中的能量交换。
本文将重点介绍非稳态热传导分析的基本原理和方法。
非稳态热传导分析需要考虑时间因素以及物质的热传导性质。
在非稳态热传导过程中,物体内部的温度分布随时间的变化满足热传导方程。
传热方程的一般形式为:∂(ρcT)/∂t=k∇²T+Q其中ρ是物质密度,c是比热容,T是温度,k是热传导系数,∇²是拉普拉斯算子,Q是热源项,即热传导过程中的能量增减。
解决非稳态热传导分析的一般步骤如下:1.建立热传导方程。
根据实际情况,确定适当的坐标系,并根据系统的几何形状和边界条件,建立热传导方程。
2.确定边界条件。
边界条件包括物体表面的温度、热通量以及对流边界等。
根据具体情况,选择适当的边界条件。
3.选择合适的数值方法。
非稳态热传导问题通常需要借助数值方法进行求解。
有限差分法、有限元法、迭代法等都可以应用于非稳态热传导分析,具体选择哪种方法需要根据具体问题的特点进行判断。
4.数值求解。
根据使用的数值方法,将热传导方程离散化,并进行数值求解。
通常需要在计算过程中进行迭代,直到得到满足要求的结果。
5.结果分析和验证。
得到物体内部温度随时间的变化规律后,可以通过实验进行验证。
比较模拟结果与实验结果,判断模拟的准确性。
非稳态热传导分析的典型应用包括热处理过程中的温度变化分析、电子元器件的散热分析、建筑物内部温度分布分析等。
通过对非稳态热传导问题的分析,可以更好地理解和控制物体内部温度分布的变化规律,为实际工程提供指导。
然而,非稳态热传导分析也存在一些挑战和限制。
首先,非稳态热传导分析通常需要考虑物质性质的非线性以及边界条件的复杂性,这增加了问题的难度。
其次,非稳态热传导问题的求解往往需要较长的计算时间和大量的计算资源。