第二章 热力学
- 格式:ppt
- 大小:119.00 KB
- 文档页数:13
第二章热力学第二定律§2.1热力学第二定律2.1.1 什么是热力学第二定律热力学第一定律指出能量在转化的过程中严格遵守守恒的原则,但并没有指出能量转化的方向。
例如温度不同的铁球相接触,两球进行热传递时,第一定律指出一个球放出的热量必等于另一个球吸收的热量,但并没有指出哪个球放热,哪个球吸热。
事实上我们总是看到温度高的球放热,温度低的球吸热。
其相反的过程是不可能发生的。
例如一石块从高处自由落下,其势能变为动能,动能在石块与地面发生撞击时变为热能被环境吸收。
第一定律指出石块失去的势能与环境得到的热能严格相等,但并未指出静止在地面的石块能否从环境中吸热使之变为等量的功将石块举起。
虽然这个过程并不违反第一定律,但是它是不能发生的。
例如在一个恒温槽中置一容器,容器内有一隔板,隔板两边一边是真空,另一边盛有一定量理想气体。
若将隔板上开一个孔,气体将自动充满整个容器。
第一定律指出气体初、末态的热力学能是严格相等的,但并未指出终态的气体能否通过隔板上的孔自动地从一边聚集到另一边。
这样的过程并不违反第一定律,事实上它也是不可能发生的。
无数事实说明能量在转化过程中不仅严格遵守守恒的原则,而且总是沿着一定的方向进行的。
这个方向就是热力学第二定律所揭示的能量转化的方向。
热力学第二定律是人类长期生产实践与科学研究的经验总结。
它是十九世纪人们对蒸汽机的应用进行深入研究过程中发现的。
1824年法国工程师卡诺分析了热机工作的基本过程,设想了一部理想热机(可逆热机),即卡诺热机,此热机的循环过程称为卡诺循环(§1.4.2)。
卡诺在当时的历史条件下曾经证明如下结论:“所有工作于两个温度一定的热源之间的热机,以可逆机的效率为最大。
”并推论出“可逆热机的效率与工作物质无关”。
这就是著名的卡诺定理及其推论。
卡诺定理提出的时候,热力学第一定律尚未建立,当时卡诺对这个定理的证明采用了错误的“热质说”。
十九世纪中叶在热力学第一定律建立后,人们重新研究卡诺的工作,发现尽管卡诺定理的证明是错误的,但卡诺定理是不能违背的。
第二章 热力学第一定律主要内容1.热力学基本概念和术语(1)系统和环境:系统——热力学研究的对象。
系统与系统之外的周围部分存在边界。
环境——与系统密切相关、有相互作用或影响所能及的部分称为环境。
根据系统与环境之间发生物质的质量与能量的传递情况,系统分为三类: (Ⅰ)敞开系统——系统与环境之间通过界面既有物质的质量传递也有能量的传递。
(Ⅱ)封闭系统——系统与环境之间通过界面只有能量的传递,而无物质的质量传递。
(Ⅲ)隔离系统——系统与环境之间既无物质的质量传递亦无能量的传递。
(2)系统的宏观性质:热力学系统是大量分子、原子、离子等微观粒子组成的宏观集合体。
这个集合体所表现出来的集体行为,如G A S H U T V p ,,,,,,,等叫热力学系统的宏观性质(或简称热力学性质)。
宏观性质分为两类:(Ⅰ)强度性质——与系统中所含物质的量无关,无加和性(如T p ,等); (Ⅱ)广度性质——与系统中所含物质的量有关,有加和性(如H U V ,,等)。
而强度性质另一种广度性质一种广度性质= n V V =m 如,等V m =ρ(3)相的定义:相的定义是:系统中物理性质及化学性质完全相同的均匀的部分。
(4)系统的状态和状态函数:系统的状态是指系统所处的样子。
热力学中采用系统的宏观性质来描述系统的状态,所以系统的宏观性质也称为系统的状态函数。
(Ⅰ) 当系统的状态变化时,状态函数的改变量只决定于系统的始态和终态,而与变化的过程或途径无关。
即系统变化时其状态函数的改变量=系统终态的函数值-系统始态的函数值。
(Ⅱ) 状态函数的微分为全微分,全微分的积分与积分途径无关。
即:2121X X X dX X X ∆==-⎰y yX x x X X x y d d d ⎪⎪⎭⎫⎝⎛∂∂+⎪⎭⎫⎝⎛∂∂=(5)热力学平衡态:系统在一定环境条件下,经足够长的时间,其各部分可观测到的宏观性质都不随时间而变,此后将系统隔离,系统的宏观性质仍不改变,此时系统所处的状态叫热力学平衡态。
第二章 热力学第二定律引 言一、热力学第一定律的局限性:凡是违背第一定律的过程一定不能实现,但是不违背第一定律的过程并不是都能自动实现的。
例如: 1.两块不同温度的铁相接触,究竟热从哪一块流向哪一块呢?按热力学第一定律,只要一块铁流出的热量等于另一块铁吸收的热量就可以了,但实际上,热必须温度从较高的一块流向温度较低的那块,最后两块温度相等,至于反过来的情况,热从较冷的一块流向热的一块,永远不会自动发生。
2.对于化学反应:以上化学反应计量方程告诉我们,在上述条件下,反应生成1mol NO 2,则放热57.0KJ,若1mol NO 2分解,吸热57.0KJ,均未违反热力学第一定律,但热力学第一定律不能告诉我们,在上述条件下的混合物中,究竟是发生NO 2的分解反应,还是NO 2的生成反应?假定是生成NO 2的反应能自动进行,那么进行到什么程度呢?这些就是过程进行的方向和限度问题,第一定律无法解决,要由第二定律解决。
二、热力学第二定律的研究对象及其意义:1.研究对象:在指定条件下,过程自发进行的方向和限度:当条件改变后,方向和限度有何变化。
2.意义:过程自发进行的方向和限度是生产和科研中所关心和要解决的重要问题。
例如:在化工及制药生产中,不断提出新工艺,或使用新材料,或合成新药品这一类的科学研究课题,有的为了综合利用,减少环境污染,有的为了改善劳动条件不使用剧毒药品,……等。
这些方法能否成功?也就是在指定条件下,所需要的化学反应能否自动进行?以及在什么条件下,能获得更多新产品的问题。
当然,我们可以进行各种实验来解决这一问题,但若能事先通过计算作出正确判断,就可以大大节省人力,物力。
理论计算认为某条件下根本不可能进行的反应,就不要在该条件下去进行实验了。
NO(g)+12O 2(g)2(g)KJH m r 0.57298..=∆KJ H m r 0.57298..-=∆NO(g)+12O 2(g)NO 2(g)§2–1 自发过程的共同特征一、自发过程举例:1.理想气体自由膨胀2.热量由高温物体传向低温物体3.锌投入硫酸铜溶液中发生置换反应:Zn + CnSO4→ Cu + ZnSO4二、自发过程的共同特征:由上述例子可以分析,所有自发变化是否可逆的问题,最终都可归结为“热能否全部转变为功而没有其他变化”这样一个问题。