221期末概率论复习
- 格式:ppt
- 大小:858.54 KB
- 文档页数:23
概率论期末复习题集一、基本概念与原理1. 定义随机试验、样本空间、事件,并举例说明。
2. 解释概率的古典定义、频率定义和主观定义。
3. 描述概率的公理化定义,并列出概率的三个基本公理。
4. 举例说明条件概率的概念,并解释全概率公式和贝叶斯公式。
5. 描述随机变量、离散型随机变量和连续型随机变量的区别。
6. 定义数学期望、方差、标准差,并解释它们的意义。
二、离散型随机变量1. 给出离散型随机变量的概率分布列和概率质量函数。
2. 计算离散型随机变量的数学期望和方差。
3. 解释二项分布、泊松分布和几何分布,并给出它们的期望和方差公式。
4. 利用二项分布解决实际问题,例如药物测试的成功率问题。
三、连续型随机变量1. 描述连续型随机变量的概率密度函数和分布函数。
2. 计算连续型随机变量的数学期望和方差。
3. 解释均匀分布、指数分布和正态分布,并给出它们的概率密度函数和期望、方差的公式。
4. 利用正态分布解决实际问题,例如测量误差的分布问题。
四、多变量随机变量1. 定义联合分布函数和边缘分布函数,并解释它们之间的关系。
2. 描述协方差、相关系数和独立性的概念。
3. 计算两个随机变量的协方差和相关系数。
4. 利用联合分布解决实际问题,例如两个独立试验的联合成功概率。
五、大数定律和中心极限定理1. 解释切比雪夫不等式、马尔可夫不等式和切比雪夫大数定律。
2. 描述中心极限定理的内容,并解释为什么它在统计学中非常重要。
3. 利用中心极限定理估计样本均值的分布。
六、随机过程1. 定义随机过程和遍历理论。
2. 描述泊松过程和维纳过程,并解释它们在实际中的应用。
3. 解释随机过程的平稳性和遍历性。
七、应用题1. 一个袋子里有10个红球和20个蓝球,随机抽取5个球,计算以下事件的概率:至少有3个红球。
2. 某工厂生产的零件,每个零件合格的概率为0.95。
求生产100个零件中,至少有90个合格的概率。
3. 一个随机变量X服从正态分布N(μ, σ²),求X的数学期望和方差。
概率论与数理统计第一章:掌握概率的性质、条件概率公式、全概率公式和贝叶斯公式,会用全概率公式和贝叶斯公式计算问题。
第二章:一维随机变量包括离散型和连续型;离散型随机变量分布律的性质;连续性随机变量密度函数的性质;常见的三种离散型分布及连续型分布;会计算一维随机变量函数的分布(可以出大题);第三章:多维随机变量掌握离散型和连续型变量的边缘分布;条件分布及两个变量独立的定义;重点掌握两个随机变量函数的分布(掌握两个随机变量和、差的密度函数的求法;了解两个随机变量乘、除的分布;掌握多个随机变量最大、最小的分布的密度函数的求法);第四章:重点掌握期望、方差、协方差的计算公式、性质;了解协方差矩阵的构成;第六章:掌握统计量的定义、三大分布的定义和性质;教材142页的四个定理及式3.19、3.20务必记住;第七章:未知参数的矩估计法和最大似然估计法是考点,还要掌握估计量的无偏性、有效性的定义;教材的例题及习题:19页例5;26页19、23、24、36;43页例1;51页例2;53页例5;58页25、36;63页例2;66页例2;77页例1、例2;87页22;99页例12;114页6;147页4、6;151页例2、例3;153页例4、例5;173页5、11样题一、填空1. 设A ,B 相互独立,且2.0)(,8.0)(==A P B A P ,则=)(B P __________.2. 已知),2(~2σN X ,且3.0}42{=<<X P ,则=<}0{X P __________.3.已知B A ,两个事件满足条件()()B A P AB P =,且()p A P =,则()=B P _________.4.设随机变量X 的密度函数为()2,01,0,x x f x <<⎧=⎨⎩其他,用Y 表示对X 的3次独立重复观察中事件⎭⎬⎫⎩⎨⎧≤21X 出现的次数,则()2P Y == . 5、设连续型随机变量X 的分布函数为 , ,则A=B= ;X 的密度函数为 。
概率论期末复习题库一、选择题1. 以下哪个事件是必然事件?A. 抛一枚硬币,正面朝上B. 抛一枚硬币,正面或反面朝上C. 抛一枚硬币,反面朝上D. 抛一枚硬币,硬币立起来2. 随机变量X服从标准正态分布,其概率密度函数为:A. f(x) = 1/π(1 + x^2)^(-1/2)B. f(x) = e^(-x^2/2)/√(2π)C. f(x) = 2πe^(-x^2/2)D. f(x) = 1/√(2π)e^(-x^2/2)3. 假设随机变量X服从参数为λ的泊松分布,那么P(X=k)的表达式为:A. λ^k / k!B. e^(-λ) * λ^k / k!C. 1 - e^(-λ)D. λ^k * e^(-λ) / k!4. 以下哪个是二项分布的期望值?A. nλB. nC. λD. n(n-1)/25. 假设事件A和事件B是互斥的,P(A)=0.4,P(B)=0.3,那么P(A∪B)等于:A. 0.4B. 0.7C. 0.3D. 0.6二、填空题6. 假设随机变量X服从均匀分布U(a,b),其概率密度函数为________。
7. 如果随机变量X服从指数分布,其参数为λ,那么其概率密度函数为________。
8. 事件的互斥性是指两个事件__________。
9. 假设随机变量X和Y是独立的,那么P(X∩Y)等于________。
10. 假设随机变量X服从正态分布N(μ,σ^2),其累积分布函数为________。
三、简答题11. 什么是条件概率?请给出其数学表达式。
12. 什么是大数定律?请简要说明其含义。
13. 什么是中心极限定理?请解释其在统计学中的重要性。
14. 请解释什么是随机变量的方差,并说明其在概率论中的意义。
15. 什么是马尔可夫链?请简述其基本性质。
四、计算题16. 假设一个工厂每天生产的产品数量服从泊松分布,其平均值λ=5。
求该工厂在一天内生产少于3个产品的概率。
17. 假设随机变量X服从正态分布N(0,1),求P(-1 < X < 1)。
概率论与数理统计期末复习《概率论与数理统计》总复习提纲第⼀块随机事件及其概率内容提要基本内容:随机事件与样本空间,事件的关系与运算,概率的概念和基本性质,古典概率,⼏何概率,条件概率,与条件概率有关的三个公式,事件的独⽴性,贝努⾥试验.1、随机试验、样本空间与随机事件(1)随机试验:具有以下三个特点的试验称为随机试验,记为.1)试验可在相同的条件下重复进⾏;2)每次试验的结果具有多种可能性,但试验之前可确知试验的所有可能结果;3)每次试验前不能确定哪⼀个结果会出现.(2)样本空间:随机试验的所有可能结果组成的集合称为的样本空间记为Ω;试验的每⼀个可能结果,即Ω中的元素,称为样本点,记为.(3)随机事件:在⼀定条件下,可能出现也可能不出现的事件称为随机事件,简称事件;也可表述为事件就是样本空间的⼦集,必然事件(记为)和不可能事件(记为). 2、事件的关系与运算(1)包含关系与相等:“事件发⽣必导致发⽣”,记为或;且.(2)互不相容性:;互为对⽴事件且.(3)独⽴性:(1)设为事件,若有,则称事件与相互独⽴. 等价于:若().(2)多个事件的独⽴:设是n个事件,如果对任意的,任意的,具有等式,称个事件相互独⽴.3、事件的运算(1)和事件(并):“事件与⾄少有⼀个发⽣”,记为.(2)积事件(交):“事件与同时发⽣”,记为或.(3)差事件、对⽴事件(余事件):“事件发⽣⽽不发⽣”,记为称为与的差事件;称为的对⽴事件;易知:.4、事件的运算法则1) 交换律:,;2) 结合律:,;3) 分配律:,;4) 对偶(De Morgan)律:,,可推⼴5、概率的概念(1)概率的公理化定义:(2)频率的定义:事件在次重复试验中出现次,则⽐值称为事件在次重复试验中出现的频率,记为,即.(3)统计概率:称为事件的(统计)概率.在实际问题中,当很⼤时,取(4)古典概率:若试验的基本结果数为有限个,且每个事件发⽣的可能性相等,则(试验对应古典概型)事件发⽣的概率为:.(5)⼏何概率:若试验基本结果数⽆限,随机点落在某区域g的概率与区域g的测度(长度、⾯积、体积等)成正⽐,⽽与其位置及形状⽆关,则(试验对应⼏何概型),“在区域中随机地取⼀点落在区域中”这⼀事件发⽣的概率为:.(6)主观概率:⼈们根据经验对该事件发⽣的可能性所给出的个⼈信念.6、概率的基本性质(1)不可能事件概率零:=0.(2)有限可加性:设是n个两两互不相容的事件,即=,(),则有=+.(3)单调不减性:若事件,且.(4)互逆性:且.(5)加法公式:对任意两事件,有-;此性质可推⼴到任意个事件的情形.(6)可分性:对任意两事件,有,且7、条件概率与乘法公式(1)条件概率:设是两个事件,即,则称为事件发⽣的条件下事件发⽣的条件概率.(2)乘法公式:设且则称为事件的概率乘法公式.8、全概率公式与贝叶斯(Bayes)公式(1)全概率公式:设是的⼀个划分,且,,则对任何事件,有称为全概率公式.(2)贝叶斯(Bayes)公式:设是的⼀个划分,且,则对任何事件,有称为贝叶斯公式或逆概率公式.9、贝努⾥(Bernoulli)概型(1)只有两个可能结果的试验称为贝努⾥试验,常记为.也叫做“成功—失败”试验,“成功”的概率常⽤表⽰,其中=“成功”.(2)把重复独⽴地进⾏次,所得的试验称为重贝努⾥试验,记为.(3)把重复独⽴地进⾏可列多次,所得的试验称为可列重贝努⾥试验,记为.以上三种贝努⾥试验统称为贝努⾥概型.(4)中成功次的概率是:其中.疑难分析1、必然事件与不可能事件必然事件是在⼀定条件下必然发⽣的事件,不可能事件指的是在⼀定条件下必然不发⽣的事件.它们都不具有随机性,是确定性的现象,但为研究的⽅便,把它们看作特殊的随机事件.2、互逆事件与互斥(不相容)事件如果两个事件与必有⼀个事件发⽣,且⾄多有⼀个事件发⽣,则、为互逆事件;如果两个事件与不能同时发⽣,则、为互斥事件.因⽽,互逆必定互斥,互斥未必互逆.区别两者的关键是:当样本空间只有两个事件时,两事件才可能互逆,⽽互斥适⽤与多个事件的情形.作为互斥事件在⼀次试验中两者可以都不发⽣,⽽互逆事件必发⽣⼀个且只发⽣⼀个.3、两事件独⽴与两事件互斥两事件、独⽴,则与中任⼀个事件的发⽣与另⼀个事件的发⽣⽆关,这时;⽽两事件互斥,则其中任⼀个事件的发⽣必然导致另⼀个事件不发⽣,这两事件的发⽣是有影响的,这时.可以⽤图形作⼀直观解释.在图1.1左边的正⽅形中,图1.1,表⽰样本空间中两事件的独⽴关系,⽽在右边的正⽅形中,,表⽰样本空间中两事件的互斥关系.4、条件概率与积事件概率是在样本空间内,事件的概率,⽽是在试验增加了新条件发⽣后的缩减的样本空间中计算事件的概率.虽然、都发⽣,但两者是不同的,⼀般说来,当、同时发⽣时,常⽤,⽽在有包含关系或明确的主从关系时,⽤.如袋中有9个⽩球1个红球,作不放回抽样,每次任取⼀球,取2次,求:(1)第⼆次才取到⽩球的概率;(2)第⼀次取到的是⽩球的条件下,第⼆次取到⽩球的概率.问题(1)求的就是⼀个积事件概率的问题,⽽问题(2)求的就是⼀个条件概率的问题. 5、全概率公式与贝叶斯(Bayes)公式当所求的事件概率为许多因素引发的某种结果,⽽该结果⼜不能简单地看作这诸多事件之和时,可考虑⽤全概率公式,在对样本空间进⾏划分时,⼀定要注意它必须满⾜的两个条件.贝叶斯公式⽤于试验结果已知,追查是何种原因(情况、条件)下引发的概率.第⼆块随机变量及其分布内容提要基本内容:随机变量,随机变量的分布的概念及其性质,离散型随机变量的概率分布,连续型随机变量的概率分布,常见随机变量的分布,随机变量函数的分布.1、随机变量设是随机试验的样本空间,如果对于试验的每⼀个可能结果,都有唯⼀的实数与之对应,则称为定义在上的随机变量,简记为.随机变量通常⽤⼤写字母等表⽰.2、离散型随机变量及其分布列如果随机变量只能取有限个或可列个可能值,则称为离散型随机变量.如果的⼀切可能值为,并且取的概率为,则称为离散型随机变量的概率函数(概率分布或分布律).也称分布列,常记为其中.常见的离散型随机变量的分布有:(1)两点分布(0-1分布):记为,分布列为或(2)⼆项分布:记为,概率函数(3)泊松分布,记为,概率函数泊松定理设是⼀常数,是任意正整数,设,则对于任⼀固定的⾮负整数,有.当很⼤且很⼩时,⼆项分布可以⽤泊松分布近似代替,即,其中(4)超⼏何分布:记为,概率函数,其中为正整数,且.当很⼤,且较⼩时,有(5)⼏何分布:记为,概率函数.3、分布函数及其性质分布函数的定义:设为随机变量,为任意实数,函数称为随机变量的分布函数.分布函数完整地描述了随机变量取值的统计规律性,具有以下性质:(1)有界性;(2)单调性如果,则;(3)右连续,即;(4)极限性;(5)完美性.4、连续型随机变量及其分布分布如果对于随机变量的分布函数,存在⾮负函数,使对于任⼀实数,有,则称为连续型随机变量.函数称为的概率密度函数.概率密度函数具有以下性质:(1);(2);(3);(4);(5)如果在处连续,则.常⽤连续型随机变量的分布:(1)均匀分布:记为,概率密度为分布函数为(2)指数分布:记为,概率密度为分布函数为(3)正态分布:记为,概率密度为,相应的分布函数为当时,即时,称服从标准正态分布.这时分别⽤和表⽰的密度函数和分布函数,即具有性质:①.②⼀般正态分布的分布函数与标准正态分布的分布函数有关系:.5、随机变量函数的分布(1)离散型随机变量函数的分布设为离散型随机变量,其分布列为(表2-2):表2-2则任为离散型随机变量,其分布列为(表2-3):表2-3……有相同值时,要合并为⼀项,对应的概率相加.(2)连续型随机变量函数的分布设为离散型随机变量,概率密度为,则的概率密度有两种⽅法可求.1)定理法:若在的取值区间内有连续导数,且单调时,是连续型随机变量,其概率密度为.其中是的反函数.2)分布函数法:先求的分布函数然后求.疑难分析1、随机变量与普通函数随机变量是定义在随机试验的样本空间上,对试验的每⼀个可能结果,都有唯⼀的实数与之对应.从定义可知:普通函数的取值是按⼀定法则给定的,⽽随机变量的取值是由统计规律性给出的,具有随机性;⼜普通函数的定义域是⼀个区间,⽽随机变量的定义域是样本空间.2、分布函数的连续性定义左连续或右连续只是⼀种习惯.有的书籍定义分布函数左连续,但⼤多数书籍定义分布函数为右连续. 左连续与右连续的区别在于计算时,点的概率是否计算在内.对于连续型随机变量,由于,故定义左连续或右连续没有什么区别;对于离散型随机变量,由于,则定义左连续或右连续时值就不相同,这时,就要注意对定义左连续还是右连续.第三块多维随机变量及其分布内容提要基本内容:多维随机变量及其分布函数⼆维离散型随机变量的联合分布列,⼆维连续型随机变量的联合分布函数和联合密度函数,边际分布,随机变量的独⽴性和不相关性,常⽤多维随机变量,随机向量函数的分布.1、⼆维随机变量及其联合分布函数为n维(n元)随机变量或随机向量.联合分布函数的定义设随机变量,为随机向量的联合分布函数⼆维联合分布函数具有以下基本性质:(1)单调性是变量或的⾮减函数;(2)有界性;(3)极限性(3)连续性关于右连续,关于也右连续;(4)⾮负性对任意点,若,则.上式表⽰随机点落在区域内的概率为:.2、⼆维离散型随机变量及其联合分布列如果⼆维随机变量所有可能取值是有限对或可列对,则称为⼆维离散型随机变量.设为⼆维离散型随机变量,它的所有可能取值为将或表3.1称为的联合分布列.………………联合分布列具有下列性质:(1);(2).3、⼆维连续型随机变量及其概率密度函数如果存在⼀个⾮负函数,使得⼆维随机变量的分布函数对任意实数有,则称是⼆维连续型随机变量,称为的联合密度函数(或概率密度函数).联合密度函数具有下列性质:(1)⾮负性对⼀切实数,有;(2)规范性;(3)在任意平⾯域上,取值的概率;(4)如果在处连续,则.4、⼆维随机变量的边缘分布设为⼆维随机变量,则称分别为关于和关于的边缘(边际)分布函数.当为离散型随机变量,则称分别为关于和关于的边缘分布列.当为连续型随机变量,则称分别为关于和关于的边缘密度函数.5、⼆维随机变量的条件分布(了解)(1)离散型随机变量的条件分布设为⼆维离散型随机变量,其联合分布律和边缘分布列分别为,则当固定,且时,称为条件下随机变量的条件分布律.同理,有(2)连续型随机变量的条件分布设为⼆维连续型随机变量,其联合密度函数和边缘密度函数分别为:.则当时,在和的连续点处,在条件下,的条件概率密度函数为.同理,.6、随机变量的独⽴性设及分别是的联合分布函数及边缘分布函数.如果对任何实数有则称随机变量与相互独⽴.设为⼆维离散型随机变量,与相互独⽴的充要条件是.设为⼆维连续型随机变量,与相互独⽴的充要条件是对⼏乎⼀切实数,有.7、两个随机变量函数的分布设⼆维随机变量的联合概率密度函数为,是的函数,则的分布函数为.(1)的分布若为离散型随机变量,联合分布列为,则的概率函数为:或.若为连续型随机变量,概率密度函数为,则的概率函数为:.(2)的分布若为连续型随机变量,概率密度函数为,则的概率函数为:.8.最⼤值与最⼩值的分布则9.数理统计中常⽤的分布(1)正态分布:(2):(3):(4):疑难分析1、事件表⽰事件与的积事件,为什么不⼀定等于?如同仅当事件相互独⽴时,才有⼀样,这⾥依乘法原理.只有事件与相互独⽴时,才有,因为.2、⼆维随机变量的联合分布、边缘分布及条件分布之间存在什么样的关系?由边缘分布与条件分布的定义与公式知,联合分布唯⼀确定边缘分布,因⽽也唯⼀确定条件分布.反之,边缘分布与条件分布都不能唯⼀确定联合分布.但由知,⼀个条件分布和它对应的边缘分布,能唯⼀确定联合分布.但是,如果相互独⽴,则,即.说明当独⽴时,边缘分布也唯⼀确定联合分布,从⽽条件分布也唯⼀确定联合分布.3、两个随机变量相互独⽴的概念与两个事件相互独⽴是否相同?为什么?两个随机变量相互独⽴,是指组成⼆维随机变量的两个分量中⼀个分量的取值不受另⼀个分量取值的影响,满⾜.⽽两个事件的独⽴性,是指⼀个事件的发⽣不受另⼀个事件发⽣的影响,故有.两者可以说不是⼀个问题.但是,组成⼆维随机变量的两个分量是同⼀试验的样本空间上的两个⼀维随机变量,⽽也是⼀个试验的样本空间的两个事件.因此,若把“”、“”看作两个事件,那么两者的意义近乎⼀致,从⽽独⽴性的定义⼏乎是相同的.第四块随机变量的数字特征内容提要基本内容:随机变量的数学期望和⽅差、标准差及其性质,随机变量函数的数学期望,原点矩和中⼼矩,协⽅差和相关系数及其性质.1、随机变量的数学期望设离散型随机变量的分布列为,如果级数绝对收敛,则称级数的和为随机变量的数学期望.设连续型随机变量的密度函数为,如果⼴义积分绝对收敛,则称此积分值为随机变量的数学期望.数学期望有如下性质:(1)设是常数,则;(2)设是常数,则;(3)若是随机变量,则;对任意个随机变量,有;(4)若相互独⽴,则;对任意个相互独⽴的随机变量,有.2、随机变量函数的数学期望设离散型随机变量的分布律为,则的函数的数学期望为,式中级数绝对收敛.设连续型随机变量的密度函数为,则的函数的数学期望为,式中积分绝对收敛.3、随机变量的⽅差设是⼀个随机变量,则称为的⽅差.称为的标准差或均⽅差.。
概率统计、概率论与数理统计、随机数学课程期末复习资料注:以下是考试的参考内容,不作为实际考试范围,考试内容以教学大纲和实施计划为准;注明“了解”的内容一般不考;1、能很好地掌握写样本空间与事件方法,会事件关系的运算,了解概率的古典定义2、能较熟练地求解古典概率;了解概率的公理化定义3、掌握概率的基本性质和应用这些性质进行概率计算;理解条件概率的概念;掌握加法公式与乘法公式4、能准确地选择和运用全概率公式与贝叶斯公式解题;掌握事件独立性的概念及性质;5、理解随机变量的概念,能熟练写出0—1分布、二项分布、泊松分布的分布律;6、理解分布函数的概念及性质,理解连续型随机变量的概率密度及性质;7、掌握指数分布参数λ、均匀分布、正态分布,特别是正态分布概率计算8、会求一维随机变量函数分布的一般方法,求一维随机变量的分布律或概率密度;9、会求分布中的待定参数;10、会求边缘分布函数、边缘分布律、条件分布律、边缘密度函数、条件密度函数,会判别随机变量的独立性;11、掌握连续型随机变量的条件概率密度的概念及计算;12、理解二维随机变量的概念,理解二维随机变量的联合分布函数及其性质,理解二维离散型随机变量的联合分布律及其性质,理解二维连续型随机变量的联合概率密度及其性质,并会用它们计算有关事件的概率;13、了解求二维随机变量函数的分布的一般方法;14、会熟练地求随机变量及其函数的数学期望和方差;会熟练地默写出几种重要随机变量的数学期望及方差;15、较熟练地求协方差与相关系数.16、了解矩与协方差矩阵概念;会用独立正态随机变量线性组合性质解题;17、了解大数定理结论,会用中心极限定理解题;18、掌握总体、样本、简单随机样本、统计量及抽样分布概念,掌握样本均值与样本方差及样本矩概念,掌握χ2分布及性质、t分布、F分布及其分位点概念;19、理解正态总体样本均值与样本方差的抽样分布定理;会用矩估计方法来估计未知参数;20、掌握极大似然估计法,无偏性与有效性的判断方法;21、会求单正态总体均值与方差的置信区间;会求双正态总体均值与方差的置信区间;23、明确假设检验的基本步骤,会U检验法、t检验、2χ检验法、F检验法解题;24、掌握正态总体均值与方差的检验法;概率论部分必须要掌握的内容以及题型1.古典概型中计算概率用到的基本的计数方法;2.概率的基本性质、条件概率、加法、乘法公式的应用;掌握事件独立性的概念及性质;3.准确地选择和运用全概率公式与贝叶斯公式;4.一维、二维离散型随机变量的分布律,连续型随机变量的密度函数性质的运用;分布中待定参数的确定,分布律、密度函数与分布函数的关系,联合分布与边缘分布、条件分布的关系,求数学期望、方差、协方差、相关系数,求函数的分布律、密度函数及期望和方差;5.会用中心极限定理解题;6.熟记0-1分布、二项分布、泊松分布的分布律、期望和方差,指数分布参数λ、均匀分布、正态分布的密度函数、期望和方差;数理统计部分必须要掌握的内容以及题型1.统计量的判断;2.计算样本均值与样本方差及样本矩;3.熟记正态总体样本均值与样本方差的抽样分布定理;4.会求未知参数的矩估计、极大似然估计; 5.掌握无偏性与有效性的判断方法; 6.会求正态总体均值与方差的置信区间;7.理解假设检验的基本思想和原理,明确正态总体均值与方差的假设检验的基本步骤;概率论部分必须要掌握的内容以及题型1.古典概型中计算概率用到的基本的计数方法; 古典概型例子 摸球模型例1:袋中有a 个白球,b个黑球,从中接连任意取出mm ≤a +b个球,且每次取出的球不再放回去,求第m 次取出的球是白球的概率; 例2:袋中有a 个白球,b个黑球,c 个红球,从中任意取出mm ≤a +b个球,求取出的m 个球中有k 1≤a 个白球、k 2≤b 个黑球、k 3≤c 个红球k 1+k 2+k 3=m 的概率. 占位模型例:n 个质点在N 个格子中的分布问题.设有n 个不同质点,每个质点都以概率1/N 落入N 个格子N ≥n 的任一个之中,求下列事件的概率:1 A ={指定n 个格子中各有一个质点};2 B ={任意n 个格子中各有一个质点};3 C ={指定的一个格子中恰有mm ≤n 个质点}. 抽数模型例:在0~9十个整数中任取四个,能排成一个四位偶数的概率是多少2.概率的基本性质、条件概率、加法、乘法公式的应用;掌握事件独立性的概念及性质;如对于事件A ,B ,A 或B ,已知P A ,PB ,P AB ,P A B ,P A |B ,PB |A 以及换为A 或B 之中的几个,求另外几个; 例1:事件A 与B 相互独立,且P A =,PB =,求:P AB ,P A -B ,P A B例2:若P A =,PB =,P AB =,求: P A -B ,P A B ,)|(B A P ,)|(B A P ,)|(B A P 3.准确地选择和运用全概率公式与贝叶斯公式;若已知导致事件A 发生或者是能与事件A 同时发生的几个互斥的事件B i ,i =1,2,…,n ,…的概率PB i ,以及B i 发生的条件下事件A 发生的条件概率P A |B i ,求事件A 发生的概率P A 以及A 发生的条件下事件B i 发生的条件概率PB i | A ;例:玻璃杯成箱出售,每箱20只;假设各箱含0、1、2只残次品的概率相应为、和,某顾客欲购买一箱玻璃杯,在购买时,售货员随意取一箱,而顾客随机地察看4只,若无残次品,则买下该箱玻璃杯,否则退回;试求:1顾客买下该箱的概率;2在顾客买下的该箱中,没有残次品的概率;4.一维、二维离散型随机变量的分布律,连续型随机变量的密度函数性质的运用;分布中待定参数的确定,分布律、密度函数与分布函数的关系,联合分布与边缘分布、条件分布的关系,求数学期望、方差、协方差、相关系数,求函数的分布律、密度函数及期望和方差;1已知一维离散型随机变量X 的分布律PX =x i =p i ,i =1,2,…,n ,… 确定参数 求概率Pa <X <b 求分布函数Fx 求期望EX ,方差DX求函数Y =gX 的分布律及期望EgX 例:随机变量X 的分布律为.确定参数k求概率P 0<X <3,}31{<<X P 求分布函数Fx 求期望EX ,方差DX求函数2)3(-=X Y 的分布律及期望2)3(-X E2已知一维连续型随机变量X 的密度函数fx确定参数求概率Pa <X <b 求分布函数Fx 求期望EX ,方差DX求函数Y =gX 的密度函数及期望EgX例:已知随机变量X 的概率密度为()⎩⎨⎧<<=其他202x kx x f ,确定参数k求概率}31{<<X P 求分布函数Fx 求期望EX ,方差DX求函数X Y =的密度及期望)(X E3已知二维离散型随机变量X ,Y 的联合分布律PX =x i ,Y =y j =p ij ,i =1,2,…,m ,…;j =1,2,…,n ,… 确定参数求概率P {X ,Y ∈G }求边缘分布律PX =x i =p i.,i =1,2,…,m ,…;PY =y j =, j =1,2,…,n ,… 求条件分布律PX =x i |Y =y j ,i =1,2,…,m ,…和PY =y j |X =x i , j =1,2,…,n ,… 求期望EX ,EY ,方差DX ,DY求协方差 cov X ,Y ,相关系数XY ρ,判断是否不相关 求函数Z =gX , Y 的分布律及期望EgX , Y 例求概率PX <Y 求边缘分布律PX =k k =0,1,2 和PY =k k =0,1,2,3求条件分布律PX =k |Y =2 k =0,1,2和PY =k |X =1 k =0,1,2,3 求期望EX ,EY ,方差DX ,DY求协方差 cov X ,Y ,相关系数XY ρ,判断是否不相关 求Z =X +Y ,W =max{X ,Y },V =min{X ,Y }的分布律4已知二维连续型随机变量X 的联合密度函数fx , y 确定参数求概率P {X ,Y ∈G }求边缘密度)(x f X ,)(y f Y ,判断Y X ,是否相互独立 求条件密度)|(|y x f Y X ,)|(|x y f X Y求期望EX ,EY ,方差DX ,DY求协方差 cov X ,Y ,相关系数XY ρ,判断是否不相关 求函数Z =gX , Y 的密度函数及期望EgX , Y例:已知二维随机变量X ,Y 的概率密度为⎩⎨⎧<<=其它,01,),(22y x y cx y x f ,确定常数c 的值;求概率PX <Y求边缘密度)(x f X ,)(y f Y ,判断Y X ,是否相互独立求条件密度)|(|y x f Y X ,)|(|x y f X Y求期望EX ,EY ,方差DX ,DY求协方差 cov X ,Y ,相关系数XY ρ,判断是否不相关 5.会用中心极限定理解题;例1:每次射击中,命中目标的炮弹数的均值为2,方差为25.1,求在100次射击中有180到220发炮弹命中目标的概率.例2:设从大批发芽率为的种子中随意抽取1000粒,试求这1000粒种子中至少有880粒发芽的概率;6.熟记0-1分布、二项分布、泊松分布的分布律、期望和方差,指数分布参数λ、均匀分布、正态分布的密度函数、期望和方差;数理统计部分必须要掌握的内容以及题型 1.统计量的判断;对于来自总体X 的样本n X X X ,,,21 ,由样本构成的各种函数是否是统计量; 2.计算样本均值与样本方差及样本矩;3.熟记正态总体样本均值与样本方差的抽样分布定理; 4.会求未知参数的矩估计、极大似然估计;例:设总体X 的概率密度为()()⎩⎨⎧<<+=其它,010,1x x x f θθ,n X X ,,1 是来自总体X 的一个样本,求未知参数θ的矩估计量与极大似然估计量.5.掌握无偏性与有效性的判断方法;对于来自总体X 的样本n X X X ,,,21 ,判断估计量是否无偏,比较哪个更有效; 例:设321,,X X X 是来自总体X 的一个样本,下列统计量是不是总体均值的无偏估计3212110351X X X ++;)(31321X X X ++;321X X X -+;)(2121X X +;3211214331X X X ++求出方差,比较哪个更有效;6.会求正态总体均值与方差的置信区间;对于正态总体,由样本结合给出条件,导出参数的置信区间;7.理解假设检验的基本思想和原理,明确正态总体均值与方差的假设检验的基本步骤; 对于单、双正态总体根据给定条件,确定使用什么检验方法,明确基本步骤;例:设),(~2σu N X ,u 和2σ未知,X 1,…,X n 为样本,x 1,…,x n 为样本观察值;1试写出检验u 与给定常数u 0有无显著差异的步骤;2试写出检验2σ与给定常数20σ比较是否显著偏大的步骤;1.古典概型中计算概率用到的基本的计数方法; 古典概型例子 摸球模型例1:袋中有a 个白球,b个黑球,从中接连任意取出mm ≤a +b个球,且每次取出的球不再放回去,求第m 次取出的球是白球的概率;分析:本例的样本点就是从a +b中有次序地取出m 个球的不同取法;第m 次取出的球是白球意味着:第m次是从a 个白球中取出一球,再在a +b-1个球中取出m-1个球; 解:设B ={第m 次取出的球是白球}样本空间的样本点总数: mb a A n +=事件B 包含的样本点: 111--+=m b a a AC r ,则 b a a A aA n r B P mba mb a +===+--+11)( 注:本例实质上也是抽签问题,结论说明按上述规则抽签,每人抽中白球的机会相等,同抽签次序无关;例2:袋中有4个白球,5个黑球,6个红球,从中任意取出9个球,求取出的9个球中有1 个白球、3个黑球、5个红球的概率.解:设B ={取出的9个球中有1个白球、3个黑球、5个红球}样本空间的样本点总数: 915C n ==5005事件B 包含的样本点: 563514C C C r ==240,则 PB =120/1001=占位模型例:n 个质点在N 个格子中的分布问题.设有n 个不同质点,每个质点都以概率1/N 落入N 个格子N ≥n 的任一个之中,求下列事件的概率:1 A ={指定n 个格子中各有一个质点};2 B ={任意n 个格子中各有一个质点};3 C ={指定的一个格子中恰有mm ≤n 个质点}. 解:样本点为n 个质点在N 个格子中的任一种分布,每个质点都有N 种不同分布,即n 个质点共有N n 种分布;故样本点总数为:N n1在n 个格子中放有n 个质点,且每格有一个质点,共有n 种不同放法;因此,事件A 包含的样本点数:n,则n Nn A P !)(=2先在N 个格子中任意指定n 个格子,共有nN C 种不同的方法;在n 个格子中放n 个质点,且每格一个质点,共有n 种不同方法;因此,事件B 包含的样本点数: n Nn NA C n =!,则n n NNA B P =)(3在指定的一个格子中放mm ≤n 个质点共有mn C 种不同方法;余下n-m 个质点任意放在余下的N-1个格子中,共有mn N --)1(种不同方法.因此,事件C 包含的样本点数:m n C mn N --)1(, 则mn m m n nm n m n N N N C NN C C P ---=-=)1()1()1()( 抽数模型例:在0~9十个整数中任取四个,能排成一个四位偶数的概率是多少解:考虑次序.基本事件总数为:410A =5040,设B ={能排成一个四位偶数} ;若允许千位数为0,此时千位数可在0、2、4、6、8这五个数字中任选其一,共有5种选法;其余三位数则在余下的九个数字中任选,有39A 种选法;从而共有539A =2520个;其中,千位数为0的“四位偶数”有多少个 此时个位数只能在2、4、6、8这四个数字中任选其一,有4种选法;十位数与百位数在余下的八个数字中任选两个,有28A种选法;从而共有428A=224个; 因此410283945)(A A A B P -==2296/5040= 2.概率的基本性质、条件概率、加法、乘法公式的应用;掌握事件独立性的概念及性质; 例1:事件A 与B 相互独立,且P A =,PB =,求:P AB ,P A -B ,P A B 解:P AB = P APB =,P A -B = P A -P AB =,P A B = P A +PB -P AB =例2:若P A =,PB =,P AB =,求: P A -B ,P A B ,)|(B A P ,)|(B A P ,)|(B A P 解:P A -B =,P A B =,)|(B A P =)()(B P AB P =3/7,)|(B A P =)()()()()(B P AB P B P B P B A P -==4/7,)|(B A P =)(1)()()(B P B A P B P B A P -= =2/33.准确地选择和运用全概率公式与贝叶斯公式;例:玻璃杯成箱出售,每箱20只;假设各箱含0、1、2只残次品的概率相应为、和,某顾客欲购买一箱玻璃杯,在购买时,售货员随意取一箱,而顾客随机地察看4只,若无残次品,则买下该箱玻璃杯,否则退回;试求:1顾客买下该箱的概率;2在顾客买下的该箱中,没有残次品的概率;解:设事件A 表示“顾客买下该箱”,i B 表示“箱中恰好有i 件次品”,2,1,0=i ;则8.0)(0=B P ,1.0)(1=B P ,1.0)(2=B P ,1)|(0=B A P ,54)|(4204191==C C B A P ,1912)|(4204182==C C B A P ;由全概率公式得 ∑==⨯+⨯+⨯==294.019121.0541.018.0)|()()(i i i B A P B P A P ; 由贝叶斯公式 85.094.018.0)()|()()|(000=⨯==A PB A P B P A B P ; 4.1例:随机变量X 的分布律为.确定参数k求概率P 0<X <3,P 1<X <3 求分布函数Fx 求期望EX ,方差DX求函数2)3(-=X Y 的分布律及期望2)3(-X E 解:由1=∑iip,有 k +2 k +3 k +4 k =1 得 k =P 0<X <3= PX =1+PX =2=,P 1<X <3= PX =2=⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<≤<=41436.0323.0211.010)(x x x x x x F∑=ii i p x X E )(=3,∑=i i p x X E 22)(=10,DX =22))(()(X E X E -=12)3(-X E =12例:已知随机变量X 的概率密度为()⎩⎨⎧<<=其他202x kx x f ,确定参数k 求概率P 1<X <3 求分布函数Fx 求期望EX ,方差DX 求函数X Y =的密度函数及期望)(X E 解:由⎰+∞∞-dx x f )(=1,有⎰+∞∞-dx x f )(=k dx kx 38202=⎰=1,得 k =3/8P 1<X <3=⎰31)(dx x f =⎰21283dx x =7/8. ⎪⎩⎪⎨⎧≥<<≤=2120800)(3x x x x x F⎰+∞∞-=dx x xf X E )()(=⎰2383dx x =3/2,⎰+∞∞-=dx x f x X E )()(22=⎰20483dx x =12/5DX =22))(()(X E X E -=3/20⎪⎩⎪⎨⎧<<=其他02043)(5y y y f)(X E =⎰+∞∞-dx x f x )(=⎰202583dx x =726 3例求概率PX <Y 求边缘分布律PX =k k =0,1,2 和PY =k k =0,1,2,3求条件分布律PX =k |Y =2 k =0,1,2和PY =k |X=1 k =0,1,2,3 求期望EX ,EY ,方差DX ,DY求协方差 cov X ,Y ,相关系数XY ρ,判断是否不相关 求Z =X +Y ,W =max{X ,Y },V =min{X ,Y }的分布律 解:PX <Y =, PX =Y =YXY =iij ji p x X E )(=,=iij ji p x X E )(=,DX =))(()(X E X E -=∑∑=i ij j j p y Y E )(=2,∑∑=i ij jj p y Y E 22)(=5,DY =22))(()(Y E Y E -=1∑∑=iij jj i p y x XY E )(=,cov X ,Y =)()()(Y E X E XY E -=XY ρ=)()(),cov(Y D X D Y X = 相关V =min{X ,Y }4例:已知二维随机变量X ,Y 的概率密度为⎩⎨⎧<<=其它,01,),(22y x y cx y x f ,确定常数c 的值;求概率PX <Y求边缘密度)(x f X ,)(y f Y ,判断Y X ,是否相互独立 求条件密度)|(|y x f Y X ,)|(|x y f X Y求期望EX ,EY ,方差DX ,DY求协方差 cov X ,Y ,相关系数XY ρ,判断是否不相关 解:由⎰⎰+∞∞-+∞∞-dxdy y x f ),(=1,有⎰⎰+∞∞-+∞∞-dxdy y x f ),(=⎰⎰-11212ydy x c dx x=1,得 c =21/4PX <Y =⎰⎰-12421ydx x dy y y = ⎪⎩⎪⎨⎧≤≤--==⎰其它011)1(821421)(42122x x x ydy x x f x X ⎪⎩⎪⎨⎧≤≤==⎰-其它1027421)(252y y ydx x y f yy Y X 与Y 不独立⎪⎩⎪⎨⎧≤≤-==-其它023)(),()|(232|yx y y x y f y x f y x f YY X⎪⎩⎪⎨⎧≤≤-==其它0118)(),()|(24|y x x y x f y x f x y f X X Y⎰⎰+∞∞-+∞∞-=dxdy y x f x X E ),()(=⎰⎰-11312421ydy x dx x =0⎰⎰+∞∞-+∞∞-=dxdy y x f x X E ),()(22=⎰⎰-11412421ydy x dx x =7/15DX =22))(()(X E X E -=7/15⎰⎰+∞∞-+∞∞-=dxdy y x f y Y E ),()(=⎰⎰-112212421dy y x dx x =7/9⎰⎰+∞∞-+∞∞-=dxdy y x f y Y E ),()(22=⎰⎰-113212421dy y x dx x =7/11DY =22))(()(Y E Y E -=28/891⎰⎰+∞∞-+∞∞-=dxdy y x f xy XY E ),()(=⎰⎰-112312421dy y x dx x =0cov X ,Y =0, XY ρ=0,X 与Y 不相关5.会用中心极限定理解题;例1:每次射击中,命中目标的炮弹数的均值为2,方差为25.1,求在100次射击中有180到220发炮弹命中目标的概率. 解:例2:设从大批发芽率为的种子中随意抽取1000粒,试求这1000粒种子中至少有880粒发芽的概率; 解:设这批种子发芽数为X ,则)9.0,1000(~B X ,由中心极限定理得所求概率为}880{≥X P 9826.0)108.2()108.2(1)90900880(1=Φ=-Φ-=-Φ-=;数理统计部分必须要掌握的内容以及题型 1.统计量的判断;2.计算样本均值与样本方差及样本矩;3.熟记正态总体样本均值与样本方差的抽样分布定理; 4.会求未知参数的矩估计、极大似然估计;例:设总体X 的概率密度为()()⎩⎨⎧<<+=其它,010,1x x x f θθ,n X X ,,1 是来自总体X 的一个样本,求未知参数θ的矩估计量与极大似然估计量.5.掌握无偏性与有效性的判断方法;例:设321,,X X X 是来自总体X 的一个样本,下列统计量是不是总体均值的无偏估计3212110351X X X ++;)(31321X X X ++;321X X X -+;)(2121X X +;3211214331X X X ++求出方差,比较哪个更有效;6.会求正态总体均值与方差的置信区间;7.理解假设检验的基本思想和原理,明确正态总体均值与方差的假设检验的基本步骤;例:设),(~2σu N X ,u 和2σ未知,X 1,…,X n 为样本,x 1,…,x n 为样本观察值;1试写出检验u 与给定常数u 0有无显著差异的步骤;2试写出检验2σ与给定常数20σ比较是否显著偏大的步骤; 解: 1 1.提出假设 u u H u u H ≠=:,:12.选取统计量nS u X t /)(0-=3.对给定的显著性水平α,查表得)1(2-n t α4.计算 ns u x t /)(0-=5.判断 若),1(2->n t t α拒绝; H 反之,接受. H21.提出假设2021202:,:σσσσ>≤H H2.选取统计量2022)1(σχS n -=3.对给定的显著性水平α,查表得)1(2-n αχ4.计算.)1(2022σχs n -=5.判断 若),1(22-<n αχχ拒绝; H 反之,接受. H。
概率论期末考试技巧总结首先,备战期末考试的第一步是复习知识点。
概率论的内容包括基本概念、概率的计算、概率分布、随机变量等。
学习者应当对课程中的重点知识点进行梳理和总结,对基本公式和定理进行记忆和理解。
同时,还要熟练掌握解题方法和技巧。
可以通过课本、笔记、习题及参考书籍进行复习。
在复习过程中,可以适当制定学习计划,按部就班地进行知识点的复习。
其次,做好习题是巩固和应用知识的有效方式。
概率论的学习中,习题是不可或缺的一部分。
通过做习题,可以巩固和应用知识,提高解题能力。
可以选择一些经典的习题集、试卷或题库进行练习。
在做题的过程中,要注意分析问题,明确问题所问,运用适当的理论和方法进行解答。
不仅要注重计算过程,还要注意解题思路和方法的合理性。
遇到难题可以询问老师或同学的意见,多方位地思考问题,寻找解题的灵感。
此外,考试之前还要进行模拟测试。
模拟测试是检验考试水平和实际能力的有力手段。
可以找一些历年期末考试卷进行模拟考试。
在模拟考试的过程中,要严格按照考试时间和要求进行答题,尽量保持严谨和专注。
考完试后要认真复习试卷,查漏补缺。
找出考试过程中出现的不足和错误,针对性地进行弥补和改进。
最后,备战期末考试还要注重调节心态。
概率论是一门比较抽象和理论性较强的学科,在学习过程中可能会遇到困难和挫折。
因此,要保持积极的学习态度和良好的心态。
面对困难要有耐心和恒心,不断追求进步。
要相信自己能够取得好的成绩,对自己充满信心。
在备考期间,要合理安排时间,合理进行学习和休息,保持良好的身体状态和精神状态。
可以进行适量的锻炼,放松身心,缓解学习压力。
总之,备战概率论期末考试需要进行系统而有针对性的复习。
重点掌握并理解重要的概念、公式和定理。
做好习题,巩固和应用知识。
进行模拟测试,检验自己的考试水平和实际能力。
调节心态,保持积极乐观的学习态度。
相信只要付出努力,认真备考,就一定能够取得好的成绩。
希望本文提供的概率论期末考试技巧能够对学习者有所启发和帮助。