新人教版数学九年级下册复习题28答案
- 格式:pptx
- 大小:505.43 KB
- 文档页数:17
人教版初中数学九年级下册第28章《锐角三角函数》全章测试一、选择题1. 在直角三角形中,如果各边都扩大1倍,则其锐角的三角函数值( )A. 都扩大1倍B.都缩小为原来的一半C.都没有变化D. 不能确定2.Rt △ABC 中,∠C =90°,若BC =4,,32sin =A 则AC 的长为( )A .6B .52C .53D .132 3.已知β为锐角,cos β≤21,则β的取值范围为( ) A.30°≤β <90° B. 0°<β≤60° C. 60°≤β<90° D. 30°≤β<60° 4.化简:140tan 240tan 2+-︒︒ 的结果为( )A.1+tan40°B. 1-tan40°C. tan40°-1D. tan 240°+1 5.△ABC 中,若AB =6,BC =8,∠B =120°,则△ABC 的面积为( )A .312B .12C .324D .3486.如图,△ABC 中,,90︒=∠C AD 是BAC ∠的角平分线,交BC 于点D ,那么CDACAB -=( )(A )BAC ∠sin (B )BAC ∠cos (C )BAC ∠tan (D )无法确定7.已知:如图,AB 是⊙O 的直径,弦AD 、BC 相交于P 点,那么ABDC的值为( )A .sin ∠APCB .cos ∠APC C .tan ∠APCD .APC∠tan 18.铁路路基的横断面是一个等腰梯形,若腰的坡度为2∶3,顶宽为3m ,路基高为4m ,则路基的下底宽应为( )A .15mB .12mC .9mD .7m 9. 已知α是锐角,且sin α+cos α=332,则sin α·cos α值为( ) A. 32 B. 23 C. 61D. 110.P 为⊙O 外一点,PA 、PB 分别切⊙O 于A 、B 点,若∠APB =2,⊙O 的半径为R ,则AB 的长为( )A .ααtan sin RB .ααsin tan R C .ααtan sin 2R D .ααsin tan 2R二、填空题11. 计算:1sin 60cos302-= . 12.ABC △中,90C =∠,若1tan 2A =,则sin ______A =13. 已知山坡的坡度i =1,则坡角为________.14. 在△ABC 中,∠C =90°,∠ABC =60°,若D 是AC 边中点,则tan ∠DBC 的值为______. 15. 在Rt △ABC 中,∠C =90°,a =10,若△ABC 的面积为3350,则∠A =______度. 第6题 第7题16. 菱形的两条对角线长分别为23和6,则菱形的相邻的两内角分别为_________.17.如图,已知直线1l ∥2l ∥3l ∥4l ,相邻两条平行直线间的距离都是1,如果正方形ABCD 的四个顶点分别在四条直线上,则sin α= .18. 如图所示,四边形ABCD 中,∠B =90°,AB =2,CD =8,AC ⊥CD ,若,31s i n =∠A C B 则cos ∠ADC =______.19.如图,小明同学在东西方向的环海路A 处,测得海中灯塔P 在北偏东60°方向上,在A 处东500米的B 处,测得海中灯塔P 在北偏东30°方向上,则灯塔P 到环海路的距离PC = 米(用根号表示). 20.在数学活动课上,小敏,小颖分别画了△ABC •和△DEF ,数据如图7,如果把小敏画的三角形面积记作ABC S ∆,小颖画的三角形面积记作DEF S ∆,那么你认为小敏和小颖画的两个三角形的面积的大小关系是ABC S ∆ DEF S ∆.(填“>,<,或=”) 三、解答题 21.计算:(1) 200822)45cot (30cot 60tan 60cot 30sin 2︒-+︒︒-︒+︒ (2) 130cos 260sin 60tan 45tan 2+︒-︒+︒-︒ (3)已知α是锐角,且sin (α+15°)=32,求8 -4cos α—( 2 -1)0+tan α的值. 22. 在Rt △ABC 中,∠C = 90°,a =3 ,c =5,求sin A 和tan A 的值.23由于保管不慎,小明把一道数学题染上了污渍,变成了“如图,在△ABC 中∠A =30°,tan B = ▲,AC =AB 的长”。
28.1 锐角三角函数(满分120分;时间:120分钟)一、选择题(本题共计8 小题,每题3 分,共计24分,)1. 已知Rt△ABC中,∠C=90∘,∠CAB=α,AC=7,那么BC为()A.7sinαB.7cosαC.7tanαD.7cotα2. 在Rt△ABC中,∠C=90∘,那么sin∠B等于()A.AC ABB.BCABC.ACBCD.BCAC3. 已知tanα=23,则锐角α的取值范围是()A.0∘<α<30∘B.30∘<α<45∘C.45∘<α<60∘D.60∘<α<90∘4. 已知α为锐角,且tanα=3,则sinα−2cosα2cosα+sinα的值为()A.1 3B.14C.15D.165. 如图,在6×6的正方形网格中,△ABC的顶点都在小正方形的顶点上,则tan∠BAC的值是()A.4 5B.43C.34D.356. 在△ABC中,∠C=90∘,sin A=35,则sin B的值是()A.2 3B.25C.45D.√2157. 计算2sin30∘tan45∘的值为()A.1B.√22C.√32D.√28. 已知:如图,在Rt△ABC中,斜边AB的长为m,∠B=65∘,则直角边BC的长是()A.m sin65∘B.m cos65∘C.m tan65∘D.mtan65∘二、填空题(本题共计9 小题,每题3 分,共计27分,)9. 已知∠A为锐角且7sin2A−5sin A+cos2A=0,则tan A=________.10. 如图,△ABC的三个顶点均在正方形网格格点上,则tan∠BAC=________.11. 计算:cos245∘+tan30∘sin60∘=________.12. 在正方形网格中,△ABC的位置如图所示,则tan B的值为________.13. 计算:2sin245∘−tan45∘=________.14. 已知:Rt△ABC中,∠C=90∘,sin B=√3,则cos B=________,tan B=________.2,BC=4,则AB值是________.15. 在△ABC中,∠C=90∘,sin A=2516. 如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则∠BAC的余弦值是________.17. 如图,在5×5的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则cos∠BAC的值为________.三、解答题(本题共计7 小题,共计69分,),求cos A,sin B,cos B.18. 在Rt△ABC中,∠C=90∘,若sin A=121319. 计算:2cos30∘−tan45∘+sin60∘.20. 如图,已知在平面直角坐标系中,△ABC的三个顶点坐标分别是A(0,2),B(−3,−2),C(−2,−4).(1)将△ABC向右平移4个单位长度后得到△A1B1C1,请画出△A1B1C1;(2)画出△A1B1C1关于x轴对称的△A2B2C2;(3)连接OA2,求sin∠OA2C2的值.21. 在△ABC中,∠C=90∘,a:b=3:5,求∠A、∠B的正切值.,求sin A、cos A、sin B、cos B.22. 已知,Rt△ABC中,∠C=90∘,tan A=1223. 观察下列等式:①sin 30∘=12,cos 60∘=12; ②sin 45∘=√22,cos 45∘=√22; ③sin 60∘=√32,cos 30∘=√32.(1)根据上述规律,计算sin 2α+sin 2(90∘−α)=________.(2)计算:sin 21∘+sin 22∘+sin 23∘+...+sin 289∘.24. 研究锐角α的正弦、余弦与正切值之间的关系.(1)根据30∘、45∘、60∘角的三角函数值填表.比较同一个锐角的sin αcos α与tan α的值,由比较的结果你能得出什么猜想?(2)试用计算器计算,并将结果直接填入表格中(结果精确到0.0001)比较表中的数值,你能验证你的猜想吗?(3)请利用直角三角形来验证你的猜想.参考答案一、选择题(本题共计8 小题,每题3 分,共计24分)1.【答案】C【解答】∵Rt△ABC中,∠C=90∘,∠CAB=α,AC=7,∴tanα=BCAC =BC7,∴BC=tanα.2.【答案】A【解答】∵∠C=90∘,∴sin∠B=ACAB,3.【答案】B【解答】解:∵tan30∘=√33,tan45∘=1,正切函数随角增大而增大,若tanα=23,则30∘<α<45∘.故选B.4.【答案】C【解答】解:∵α为锐角,tanα=3,∴sinα−2cosα2cosα+sinα=tanα−22+tanα=3−22+3=15.故选:C .5.【答案】C【解答】解:根据正切三角函数的定义,结合网格,可得:tan ∠BAC =34. 故选C .6.【答案】C【解答】解:∵ 在Rt △ABC ,∠C =90∘,∴ ∠A +∠B =90∘,∴ sin 2A +sin 2B =1,sin B >0,∵ sin A =35, ∴ sin B =√1−(35)2=45.故选:C.7.【答案】A【解答】解:原式=2×12×1=1. 故选A .8.【答案】A【解答】解:sin ∠B =ACAB ,∵ AB =m ,∠B =65∘,∴ AC =m sin 65∘,故选:A .二、 填空题 (本题共计 9 小题 ,每题 3 分 ,共计27分 ) 9.【答案】√33或√24 【解答】解:∵ 7sin 2A −5sin A +cos 2A =0,sin 2A +cos 2A =1, ∴ 7sin 2A −5sin A +1−sin 2A =0,∴ 6sin 2A −5sin A +1=0∴ (3sin A −1)(2sin A −1)=0,∴ 3sin A −1=0,2sin A −1=0,∴ sin A =13,sin A =12, ∴ cos A =√1−(13)2=2√23,cos A =√1−(12)2=√32, ∴ tan A =sin A cos A =132√23=√24, tan A =12√32=√33, 故答案为:√33或√24.10.【答案】13【解答】解:过点B 作BD ⊥AC ,交AC 的延长线于点D ,如图所示.易知∠DBC=∠DCB=45∘,设BC=a,则BD=CD=√22a,AC=√2a,∴tan∠BAC=BDAD =BDAC+CD=√22a√2a+√22a=13.故答案为:13.11.【答案】1【解答】解:cos245∘+tan30∘sin60∘=(√22)2+√33×√32=1.故答案为:1.12.【答案】34【解答】解:如图所示:∴tan B=ADBD =34.故答案为:34.13.【答案】0【解答】原式=2×(√22)2−1=1−1=0.14.【答案】12,√3【解答】解:∵Rt△ABC中,∠C=90∘,sin B=√32,∴∠B=60∘,∴cos B=12,tan B=√3.故答案为:12,√3.15.【答案】10【解答】∵sin A=BCAB ,即25=4AB,∴AB=10,16.【答案】2√55【解答】解:∵AB2=32+42=25,AC 2=22+42=20,BC 2=12+22=5,∴ AC 2+BC 2=AB 2,∴ △ABC 为直角三角形,且∠ACB =90∘,则cos ∠BAC =AC AB =2√55. 故答案为:2√55. 17.【答案】35【解答】解:由勾股定理得:AC =√42+32=5,由余弦函数定义得:cos ∠BAC =AB−1AC =4−15=35. 故答案为:35.三、 解答题 (本题共计 7 小题 ,每题 10 分 ,共计70分 )18.【答案】解:∵ ∠C =90∘,sin A =1213,∴ cos A =√1−(1213)2=513,∵ ∠A +∠B =90∘,∴ sin B =cos A =513,cos B =sin A =1213.【解答】解:∵ ∠C =90∘,sin A =1213,∴ cos A =√1−(1213)2=513,∵ ∠A +∠B =90∘,∴ sin B =cos A =513,cos B =sin A =1213.19.【答案】解:原式=2×√32−1+√32=3√32−1.【解答】解:原式=2×√32−1+√32=3√32−1.20.【答案】解:(1)△A1B1C1如图所示.(2)△A2B2C2如图所示.(3)连结OC2.∵OA22=OC22=22+42=20,A2C22=22+62=40,∴OA22+OC22=A2C22,∴ △OA2C2为等腰直角三角形,∴ ∠OA2C2=45∘,∴sin∠OA2C2=√22.【解答】解:(1)△A1B1C1如图所示.(2)△A2B2C2如图所示.(3)连结OC2.∵OA22=OC22=22+42=20,A2C22=22+62=40,∴OA22+OC22=A2C22,∴ △OA2C2为等腰直角三角形,∴ ∠OA2C2=45∘,∴sin∠OA2C2=√22.21.【答案】解:如图,tan A=35,tan B=53.【解答】解:如图,tan A =35,tan B =53. 22.【答案】解:∵ Rt △ABC 中,∠C =90∘,tan A =12,∴ sin A cos A =12,∴ sin A =2cos A ,①又sin A >0,cos A >0,sin 2A +cos 2A =1,②联立①②得:sin A =2√55,cos A =√55. 又A +B =90∘, ∴ sin B =cos A =√55,cos B =sin A =2√55.【解答】 解:∵ Rt △ABC 中,∠C =90∘,tan A =12,∴ sin Acos A =12, ∴ sin A =2cos A ,①又sin A >0,cos A >0,sin 2A +cos 2A =1,②联立①②得:sin A =2√55,cos A =√55. 又A +B =90∘,∴ sin B =cos A =√55,cos B =sin A =2√55.23.【答案】 解:(1)∵ 根据已知的式子可以得到sin (90∘−α)=cos α,∴ sin 2α+sin 2(90∘−α)=1;(2)sin 21∘+sin 22∘+sin 23∘+...+sin 289∘=(sin 21∘+sin 289)+(sin 22∘+sin 288∘)+...+sin 245∘=1+1+...1+12=44+12=892.【解答】解:(1)∵ 根据已知的式子可以得到sin (90∘−α)=cos α,∴ sin 2α+sin 2(90∘−α)=1;(2)sin 21∘+sin 22∘+sin 23∘+...+sin 289∘=(sin 21∘+sin 289)+(sin 22∘+sin 288∘)+...+sin 245∘=1+1+...1+12=44+12=892.24.【答案】√33,1,√3,√33,1,√3 (2)解:经计算,填表如下:比较表中的数值,可验证:sin αcos α=tan α.(3)证明:sin α=对边斜边,cos α=邻边斜边, sin αcos α=对边邻边=tan α.【解答】(1)解:根据30∘、45∘、60∘角的三角函数值填表.经过比较结果,猜想:sin αcos α=tan α.(2)解:经计算,填表如下:比较表中的数值,可验证:sin αcos α=tan α.(3)证明:sin α=对边斜边,cos α=邻边斜边,sin αcos α=对边邻边=tan α.28.2解直角三角形及其应用一.选择题1.在如图所示8×8的网格中,小正方形的边长为1,点A、B、C、D都在格点上,AB与CD相交于点E,则∠AED的正切值是()A.2B.C.D.2.如图,在Rt△ABC中,∠ACB=90°,BC=4,cos B=,点M是AB的中点,则CM 的长为()A.2B.3C.4D.63.某简易房的示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AC的长为()A.米B.米C.米D.米4.如图,AC,BD为四边形ABCD的对角线,AC⊥BC,AB⊥AD,CA=CD.若tan∠BAC=.则tan∠DBC的值是()A.B.C.D.5.如图,在△ABC中,∠ABC=90°,D为BC的中点,点E在AB上,AD,CE交于点F,AE=EF=4,FC=9,则cos∠ACB的值为()A.B.C.D.6.如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内),已知AB=a,AD=b,∠BCO=x,则点D到OB的距离等于()A.a sin x+b sin x B.a cos x+b cos xC.a sin x+b cos x D.a cos x+b sin x7.如图,一个梯子靠在垂直水平地面的墙上,梯子AB的长是2米.若梯子与地面的夹角为α,则梯子顶端到地面的距离(BC的长)为()A.2sinα米B.2cosα米C.米D.米8.如图,一个直角梯形的堤坝坡长AB为6米,斜坡AB的坡角为60°,为了改善堤坝的稳固性,准备将其坡角改为45°,则调整后的斜坡AE的长度为()A.3米B.3米C.(3﹣2)米D.(3﹣3)米9.如图,某公园入口有三级台阶,每级台阶高18cm,深30cm,拟将台阶改为斜坡,设台阶的起点为A,斜坡的起始点为C,现设计斜坡BC的坡度i=1:5,则AC的长度是()A.270cm B.210cm C.180cm D.96cm10.如图,某“拓展训练营”的一个自行车爬坡项目有两条不同路线,路线一:从C到B,路线二:从D到A,AB为垂直升降梯.其中BC的坡度为i=1:2,BC=12米,CD =8米,∠D=36°(其中A,B,C,D均在同一平面内),则垂直升降梯AB的高度约为(精确到0.1米)()(参考数据:tan36°≈0.73,cos36°≈0.81,sin36°≈0.59)A.8.6B.11.4C.13.9D.23.4二.填空题11.如图,△ABC中,DE是BC的垂直平分线,DE交AC于点E,连接BE.若BC=12,S△BCE=24,则tan C=.12.在△ABC中,∠A=30°,AB=2,AC=6,则BC的长为.13.一座建于若干年前的水库大坝,目前坝高4米,现要在不改变坝高的情况下修整加固,将背水坡AB的坡度由1:0.75改为1:2,则修整后的大坝横截面积增加了平方米.14.如图,一个公共房屋门前的台阶共高出水平地面1.2米(即BC=1.2米).台阶被拆除后,换成供轮椅行走的斜坡.若轮椅行走斜坡的倾斜角不得超过9°,则从斜坡的起点A至房屋门B的最短的水平距离AC长约为米.(结果精确到0.1米)【参考数据:sin9°≈0.156,cos9°≈0.988,tan9°≈0.158】15.2022年在北京将举办第24届冬季奥运会,很多学校都开展了冰雪项目学习.如图,滑雪轨道由AB、BC两部分组成,AB、BC的长度都为200米,一位同学乘滑雪板沿此轨道由A点滑到了C点,若AB与水平面的夹角α为30°,BC与水平面的夹角β为45°,则他下降的高度为米(结果保留根号).三.解答题16.如图,已知在△ABC中,AB=AC=,tan B=2,点D为边BC延长线上一点,CD =BC,联结AD.求∠D的正切值.17.2019年4月18日,台湾省花莲县发生里氏6.7级地震,救援队救援时,利用生命探测仪在某建筑物废墟下方探测到点C处有生命迹象,已知废墟一侧地面上两探测点A、B相距6米,探测线与地面的夹角分别为30°和60°,如图所示,试确定生命所在点C的深度.(结果精确到0.1米,参考数据≈1.41,≈1.73)18.四川移动为了提升新型冠状肺炎“停课不停学”期间某片区网络信号,保证广大师生网络授课、听课的质量,临时在坡度为i=1:2.4的山坡上加装了信号塔PQ(如图所示),信号塔底端Q到坡底A的距离为3.9米.同时为了提醒市民,在距离斜坡底A点4.4米的水平地面上立了一块警示牌MN.当太阳光线与水平线成53°角时,测得信号塔PQ落在警示牌上的影子EN长为3米,求信号塔PQ的高.(结果精确到十分位,参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3,i=1:2.4=5:12)参考答案一.选择题1.解:如图,取格点K,连接AK,BK.观察图象可知AK⊥BK,BK=2AK,BK∥CD,∴∠AED=∠ABK,∴tan∠AED=tan∠ABK==,故选:B.2.解:在Rt△ABC中,∵cos B==,BC=4,∴AB=6.∵CM是Rt△ABC斜边AB的中线,∴CM=AB=3.故选:B.3.解:如图,过点A作AH⊥BC于H.由题意AB=AC,BC=4+0.2+0.2=4.4(m),∵AH⊥BC,∴BH=CH=2.2(m),∴AC=AB===(m),故选:D.4.解:∵tan∠BAC=,∴∠BAC=30°,∵AC⊥BC,∴∠ACB=90°,∴设BC=1,则AC=,∵AB⊥AD,∴∠BAD=90°,∴∠DAC=60°,∵CA=CD,∴△CAD为等边三角形,过点D作DE⊥CA,交CA于点E,设CA与BD交于点F,如图,则有:CE=AC=,DE=AD•sin60°=×=,设CF=x,则EF=﹣x,∵AC⊥BC,DE⊥CA,∴DE∥BC,∴∠DBC=∠FDE,∴tan∠DBC=tan∠FDE,∴=∴=,解得:x=,∴tan∠DBC==.故选:D.5.解:如图,延长AD到M,使得DM=DF,连接BM.∵BD=DC,∠BDM=∠CDF,DM=DF,∴△BDM≌△CDF(SAS),∴CF=BM=9,∠M=∠CFD,∵CE∥BM,∴∠AFE=∠M,∵EA=EF,∴∠EAF=∠EF A,∴∠BAM=∠M,∴AB=BM=9,∵AE=4,∴BE=5,∵∠EBC=90°,∴BC===12,∴AC===15,∴cos∠ACB===,故选:D.6.解:如图,过点D作DE⊥OC于点E,则点D到OB的距离等于OE的长.∵四边形ABCD是矩形,∴∠BCD=90°,CD=AB=a,AD=BC=b,∴∠CDE=∠BCO=x,∴OC=BC•cos x=b cos x,CE=CD•sin x=a sin x,∴OE=OC+CE=b cos x+a sin x.则点D到OB的距离等于b cos x+a sin x.故选:C.7.解:由题意可得:sinα==,故BC=2sinα(米).故选:A.8.解:作AH⊥BC于H,在Rt△ABH中,sin∠ABH=,cos∠ABH=,则AH=AB•sin∠ABH=6×=3,∵∠E=45°,∴AE=AH=×3=3,故选:A.9.解:过点B作BD⊥AC于D,根据题意得:AD=2×30=60(cm),BD=18×3=54(cm),∵斜坡BC的坡度i=1:5,∴BD:CD=1:5,∴CD=5BD=5×54=270(cm),∴AC=CD﹣AD=270﹣60=210(cm).∴AC的长度是210cm.故选:B.10.解:如图,延长AB和DC相交于点E,由斜坡BC的坡度为i=1:2,得BE:CE=1:2.设BE=x米,CE=2x米.在Rt△BCE中,由勾股定理,得BE2+CE2=BC2,即x2+(2x)2=(12)2,解得x=12,∵BE=12米,CE=24米,∴DE=DC+CE=8+24=32(米),由tan36°≈0.73,得=0.73,解得AE=0.73×32=23.36(米).由线段的和差,得AB=AE﹣BE=23.36﹣12=11.36≈11.4(米),故选:B.二.填空题11.解:∵DE垂直平分线段BC,∴BD=DC=6,∵S△EBC=×BC×DE=24,∴DE=4,∴tan C===,故答案为.12.解:作CD⊥AB于D,如图所示:则∠ADC=∠BDC=90°,∵∠A=30°,AC=6,∴CD=AC=3,∴AD==3,∵AB=2,∴BD=AD﹣AB=,∴BC===2,故答案为:2.13.解:∵背水坡AB的坡度为1:0.75,AC=4,∴=0.75,解得,BC=3,∵坡AD的坡度为1:2,AC=4,∴CD=8,∴BD=DC﹣BC=5,∴△ADB的面积=×5×4=10(平方米),故答案为:10.14.解:在Rt△ABC中,∠A=9°,BC=1.2,∴AC==≈7.6(米).答:从斜坡的起点A至房屋门B的最短的水平距离AC长约为7.6米.故答案为:7.6.15.解:过点A作AE⊥BM于点E,BF⊥CN于点F,∵α为30°,β为45°,AB=BC=200米,∴sin30°=,sin45°=,∴AE=AB•sin30°=100(米),BF=BC•sin45°=100(米),∴他下降的高度为:AE+BF=100(1+)米.故答案为:100(1+).三.解答题16.解:过点A作AH⊥BC于H,∵∴在Rt△ABH中AB2=AH2+BH2解得BH=2,则AH=4,∵AB=AC,AH⊥BC∴HC=BH=2∴CD=BC=2BH=4∴HD=HC+CD=617.解:过点C作CD⊥AB,交AB的延长线于D,在Rt△ACD中,∠CAD=30°,tan∠CAD=,∴AD==CD,在Rt△ACD中,∠CBD=60°,tan∠CBD=,∴BD==CD,由题意得,AD﹣BD=AB=6(米),∴CD﹣CD=6,解得,CD=3≈5.2(米),答:生命所在点C的深度约为5.2米.18.解:过点E作EF⊥PQ于点F,延长PQ交BA于点G,可得QG⊥BA,∵QA=3.9m,QG:AG=1:2.4,∴设QG=x,则AG=2.4x,∴x2+(2.4x)2=3.92,解得:x=1.5,则AG=2.4x=3.6,∴EF=NG=3.6+4.4=8(m),故tan53°==≈1.3,解得:PF=10.4(m),∵FQ=EN﹣QG=3﹣1.5=1.5(m),∴PQ=10.4+1.5=11.9(m).答:信号塔PQ的高约为11.9m.。
人教版九年级数学下册第二十八章-锐角三角函数专题练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在正方形ABCD 中、E 是BC 的中点,F 是CD 上的一点,AE EF ⊥,则下列结论:(1)1sin 2BAE ∠=;(2)2BE AB CF =⋅;(3)3CD CF =;(4)ABE AEF △△.其中结论正确的个数有( )A .1个B .2个C .3个D .4个2、如图所示,九(二)班的同学准备在坡角为α的河堤上栽树,要求相邻两棵树之间的水平距离为8 m ,那么这两棵树在坡面上的距离AB 为( )A .8cos αmB .8cos α mC .8sina mD .8sin αm 3、如图,某停车场入口的栏杆AB ,从水平位置绕点O 旋转到A B ''的位置,已知AO 的长为5米.若栏杆的旋转角AOA α'∠=,则栏杆A 端升高的高度为( )A .5sin α米B .5cos α米C .5sin α米D .5cos α米4 )A . 2B .32 C .D .25、如图,在33⨯的网格中,A ,B 均为格点,以点A 为圆心,AB 的长为半径作弧,图中的点C 是该弧与格线的交点,则tan BAC ∠的值是( )A .12B .255 C .53D .23 6、如图①,5AB =,射线AM BN ∥,点C 在射线BN 上,将△ABC 沿AC 所在直线翻折,点B 的对应点D 落在射线BN 上,点P ,Q 分别在射线AM 、BN 上,PQ AB ∥.设AP x =,QD y =.若y 关于x 的函数图象(如图②)经过点()9,2E ,则cos B 的值等于( )A.25B.12C.35D.7107、边长都为4的正方形ABCD和正EFG如图放置,AB与EF在一条直线上,点A与点F重合,现将EFG沿AB方向以每秒1个单位长度的速度匀速运动,当点F与点B重合时停止,在这个运动过程中,正方形ABCD和EFG重合部分的面积S与运动时间t的函数图象大致是()A.B.C.D.8、如图所示,某村准备在坡角为 的山坡上栽树,要求相邻两棵树之间的水平距离为m(m),那么这两棵树在坡面上的距离AB为()A .m cos α(m )B .co m s α(m )C .m sin α(m )D .sin mα(m )9、在ABC 中,(22cos 1tan 0A B +-= ,则ABC 一定是( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形 10) A .2 B .3 C .4 D .5第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图公路桥离地面的高度AC 为6米,引桥AB 的水平宽度BC 为24米,为降低坡度,现决定将引桥坡面改为AD ,使其坡度为1:6,则BD 的长____.2、半径为3cm 的圆内有长为的弦,则此弦所对的圆周角的度数为______.3、已知斜坡AB 的水平宽度为12米,斜面坡度为AB 的长为________;坡角为________.4、如图,点A 、B 、C 都在格点上,则∠CAB 的正切值为______.5、已知正方形ABCD 中,AB =2,⊙A 是以A 为圆心,1为半径的圆,若⊙A 绕点B 顺时针旋转,旋转角为α(0°<α<180°),则当旋转后的圆与正方形ABCD 的边相切时,α=_____.三、解答题(5小题,每小题10分,共计50分)1、如图,已知反比例函数1k y x=1(0)k >与一次函数21y k x =+2(0)k ≠相交于A 、B 两点,AC x ⊥轴于点C .若OAC ∆的面积为1,且tan 2AOC ∠=.(1)求出反比例函数与一次函数的解析式;(2)请直接写出B 点的坐标,并指出当x 在什么范围取值时,使12(1)0k k x x -+>2、计算:()1112cos30---︒3、先化简,再求代数式21()(1)11a a a a -⋅--+的值,其中tan 602sin30a ︒︒=-. 4、如图,某学校新建了一座雕塑CD ,小林站在距离雕塑3.5米的A 处自B 点看雕塑头顶D 的仰角为60°,看雕塑底部C 的仰角为45°,求雕塑CD 的高度.(最后结果精确到0.1米,参考数据:1.7)5、如图,四边形ABCD内接于⊙O,AB为直径,连结AC,BD交于点E,弦CF⊥BD于点G,连结AG,且满足∠1=∠2.(1)求证:四边形AGCD为平行四边形.(2)设tan F=x,tan∠3=y,①求y关于x的函数表达式.②已知⊙O的直径为y=34,点H是边CF上一动点,若AF恰好与△DHE的某一边平行时,求CH的长.③连结OG,若OG平分∠DGF,则x的值为.---------参考答案-----------一、单选题1、B【分析】首先根据正方形的性质与同角的余角相等证得:△BAE∽△CEF,则可证得②正确,①③错误,利用有两边对应成比例且夹角相等三角形相似即可证得△ABE∽△AEF,即可求得答案.【详解】解:∵四边形ABCD是正方形,∴∠B=∠C=90°,AB=BC=CD,∵AE⊥EF,∴∠AEF=∠B=90°,∴∠BAE+∠AEB=90°,∠AEB+FEC=90°,∴∠BAE=∠CEF,∴△BAE∽△CEF,∴AB CE BE CF,∵BE=CE,∴BE2=AB•CF.∵AB=2CE,∴CF=12CE=14CD,∴CD=4CF,故②正确,③错误,∴tan ∠BAE =BE :AB =12,∴∠BAE ≠30°,1sin 2BAE ∠≠故①错误; 设CF =a ,则BE =CE =2a ,AB =CD =AD =4a ,DF =3a ,∴AE =,EF ,AF =5a ,∴AE AF ==,BE EF == ∴AE BE AF EF=, ∵∠ABE =∠AEF =90°,∴△ABE ∽△AEF ,故④正确.故选:B .【点睛】此题考查了相似三角形的判定与性质,直角三角形的性质以及正方形的性质.熟练掌握相似三角形的判定与性质是解题的关键.2、B【分析】运用余弦函数求两树在坡面上的距离AB .【详解】解:∵坡角为α,相邻两树之间的水平距离为8米, ∴两树在坡面上的距离8cos AB α=(米). 故选:B .【点睛】此题主要考查解直角三角形中的坡度坡角问题及学生对坡度坡角的掌握及三角函数的运用能力.3、C【分析】过点A ′作A ′C ⊥AB 于点C ,根据锐角三角函数的定义即可求出答案.【详解】解:过点A ′作A ′C ⊥AB 于点C ,由题意可知:A ′O =AO =5,∴sinα=A CA O'', ∴A ′C =5sinα,故选:C .【点睛】本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于基础题型.4、B【分析】先分别求解特殊角的三角函数值,再代入运算式进行计算即可.【详解】22323212221322=+- 32=故选B【点睛】本题考查的是特殊角的三角函数值的混合运算,正确的记忆特殊角的三角函数值是解本题的关键.5、B【分析】利用CD AB ∥,得到∠BAC =∠DCA ,根据同圆的半径相等,AC =AB =3,再利用勾股定理求解,CD 可得tan ∠ACD =AD CD =. 【详解】解:如图, ∵CD AB ∥,∴∠BAC =∠DCA .∵同圆的半径相等, ∴AC =AB =3,而2,AD =225,CD AC AD在Rt △ACD 中,tan ∠ACD =AD CD∴tan ∠BAC =tan ∠ACD故选B .【点睛】 本题主要考查了解直角三角形的应用,利用图形的性质进行角的等量代换是解本题的关键.6、D【分析】由题意可得四边形ABQP 是平行四边形,可得AP =BQ =x ,由图象②可得当x =9时,y =2,此时点Q 在点D 下方,且BQ =x =9时,y =2,如图①所示,可求BD =7,由折叠的性质可求BC 的长,由锐角三角函数可求解.【详解】解:∵AM ∥BN ,PQ ∥AB ,∴四边形ABQP 是平行四边形,∴AP =BQ =x ,由图②可得当x =9时,y =2,此时点Q 在点D 下方,且BQ =x =9时,QD =y =2,如图①所示,∴BD =BQ ﹣QD =x ﹣y =7,∵将△ABC 沿AC 所在直线翻折,点B 的对应点D 落在射线BN 上,∴AC ⊥BN ,∴BC =CD =12BD =72,∴cos B =BC AB =725=710, 故选:D .【点睛】本题考查了平行四边形的判定与性质,折叠的性质,锐角三角函数等知识.理解函数图象上的点的具体含义是解题的关键.7、C【分析】由题意知当t =2时,三角形和正方形重合一半面积,由此可列0≤t ≤2和2≤t ≤4分段函数.【详解】当0≤t ≤2时,设运动时GF 与AD 交于点H∵四边形ABCD 为正方形,三角形EFG 为正三角形∴∠FAH =90°,∠AFH =60°∴AF =t ,AH =tan 60°·AF21122AHF S S AH AF t ==⋅⋅=⋅=△重合,开口向上当2≤t ≤4时,设运动时GE 与AD 交于点O∵四边形ABCD 为正方形,三角形EFG 为正三角形∴∠EAO =90°,∠OEA =60°∴AF =t ,EA =4-t ,AO =tan 60°·EA 4-t )1144604422GEF OEA S S S sin t t =-=⨯⨯⨯︒-⋅--△△重合()224S t =-=+-重合)综上所述,由图象可知仅C 选项满足两段函数.故选:C .【点睛】本题考查了动点的图像问题,做此类题需要弄清横纵坐标的代表量,并观察确定图像分为几段,弄清每一段自变量与因变量的变化情况及变化的趋势,主要是正负增减及变化的快慢等.匀速变化呈现直线段的形式,平行于x 轴的直线代表未发生变化,成曲线的形式需要看切线的坡度的大小确定变化的快慢.8、B【分析】 直接利用锐角三角函数关系得出m cos AB α=,进而得出答案. 【详解】 由题意可得:m cos ABα=, 则AB =co m s α.故选:B .【点睛】此题主要考查了解直角三角形的应用,正确记忆锐角三角函数关系是解题关键.9、D【分析】结合题意,根据乘方和绝对值的性质,得(32cos 0A =,1tan 0B -=,从而得cos A =tan 1B =,根据特殊角度三角函数的性质,得45A ∠=︒,45B ∠=︒;根据等腰三角形和三角形内角和性质计算,即可得到答案.【详解】解:∵(32cos 1tan 0A B +-=∴(32cos 0A =,1tan 0B -=∴02cos A =,1tan 0B -=∴cos A tan 1B = ∴45A ∠=︒,45B ∠=︒∴18090C A B ∠=︒-∠-∠=︒,BC AC = ∴ABC 一定是等腰直角三角形故选:D .【点睛】本题考查了绝对值、三角函数、三角形内角和、等腰三角形的知识;解题的关键是熟练掌握绝对值、三角函数的性质,从而完成求解.10、B【分析】如图,O 为正三角形ABC 的外接圆,过点O 作OD ⊥AB 于点D ,连接OA , 再由等边三角形的性质,可得∠OAB =30°,12AD AB =,然后根据锐角三角函数,即可求解.【详解】解:如图,O 为正三角形ABC 的外接圆,过点O 作OD ⊥AB 于点D ,连接OA ,根据题意得:OA,∠OAB =30°,12AD AB =, 在Rt AOD △中,3cos 2AD OA OAB =⋅∠== , ∴AB =3,即这个正三角形的边长是3.故选:B【点睛】本题主要考查了锐角三角函数,三角形的外接圆,熟练掌握锐角三角函数,三角形的外接圆性质是解题的关键.二、填空题1、12米##12m【解析】【分析】根据坡度的概念可得AA AA =16,求得CD ,即可求解.【详解】解:根据坡度的概念可得AA AA =16, AA =6AA =36m ,AA =AA −AA =12m ,故答案为:12m【点睛】此题考查了坡度的概念,掌握坡度的概念是解题的关键,坡面的垂直高度和水平方向的距离的比叫做坡度.2、60°或120°【解析】【分析】如下图所示,分两种情况考虑:D 点在优弧CDB 上或E 点在劣弧BC 上时,根据三角函数可求出∠OCF 的大小,进而求出∠BOC 的大小,再由圆周角定理可求出∠D 、∠E 大小,进而得到弦BC 所对的圆周角.【详解】解:分两种情况考虑:D 在优弧CDB 上或E 在劣弧BC 上时,可得弦BC 所对的圆周角为∠D 或∠E ,如下图所示,作OF ⊥BC ,由垂径定理可知,F 为BC 的中点,∵BC =∴CF =BF =12BC =12×又因为半径为3,∵OC =3,在Rt△FOC 中,cos∠OCF =CF CO ∴∠OCF =30°,∵OC =OB ,∴∠OCF =∠OBF =30°,∴∠COB =120°,∴∠D =12∠COB =12×120°=60°,又圆内接四边形的对角互补,∴∠E =120°,则弦BC 所对的圆周角为60°或120°.故答案为:60°或120°.【点睛】此题考查了圆周角定理,圆内接四边形的性质,锐角三角函数定义,以及特殊角的三角函数值,熟练掌握圆周角定理是解本题的关键.3、 8√3 30°##30度【解析】【分析】如图,由题意得:AA ⊥AA ,AA =12,AA :AA =1:√3,再利用坡度的含义求解∠A =30°, 再利用∠A 的余弦函数值求解AB 即可.【详解】解:如图,由题意得:AA ⊥AA ,AA =12,AA :AA =1:√3,又∵tan A=AAAA =√3=√33,∴∠A=30°,而cos A=AAAA,∴AA=12cos30°=12×√3=8√3,故答案为:8√3,30°【点睛】本题考查的是解直角三角形的应用,坡度,坡角的含义,由坡度求解出坡角为30是解本题的关键.4、12##0.5【解析】【分析】过C作CD垂直于AB的延长线于点D,则ADC为直角三角形,解直角三角形即可求解.【详解】如图:过C作CD垂直于AB的延长线于点D,∴ADC 为直角三角形∴在Rt ADC 中1tan 2CD A AD ∠== 1tan 2CAB ∴∠= 故答案为:12【点睛】本题考查的是解直角三角形,解题关键是结合网格的特点构造直角三角形,利用锐角三角形函数解答.5、30°,60°或120°【解析】【分析】根据题意得,可分三种情况讨论:当旋转后的圆A '与正方形ABCD 的边AB 相切时,与边CD 也相切;当旋转后的圆A ''与正方形ABCD 的边AD 相切时,与边BC 也相切;当旋转后的圆A ''' 与正方形ABCD 的边BC 相切时,即可求解.【详解】∵正方形ABCD 中AB =2,圆A 是以A 为圆心,1为半径的圆,∴当圆A 绕点B 顺时针旋转α(0°<α<180°)过程中,圆A 与正方形ABCD 的边相切时,可分三种情况讨论:如图1,当旋转后的圆A '与正方形ABCD 的边AB 相切时,与边CD 也相切,设圆A ' 与正方形ABCD 的边AB 相切于点E ,连接A 'E ,A 'B ,则在Rt △A 'EB 中,A 'E =1,A 'B =2, ∴1sin 2A E A BE AB ''∠==' , ∴∠A 'BE =30°,即∠α=30°;如图2,当旋转后的圆A ''与正方形ABCD 的边AD 相切时,与边BC 也相切,设圆A ''与正方形ABCD 的边BC 相切于点F ,连接A ''F ,A ''B ,则1,2A F A B ''''== , ∴在Rt A BF '' 中,1sin 2A F A BF AB ''''∠=='' , ∴∠A ''BF =30°,∴∠α=∠A ''BA =∠ABC -∠A ''BF =60°;如图3,当旋转后的圆A ''' 与正方形ABCD 的边BC 相切时,设切点为G ,连接,A G A B '''''' ,则1,2A G A B ''''''== ,∴在Rt A BG ''' 中,1sin 2A G A BG A B ''''''∠==''' ,∴∠A '''BG =30°,∴∠α=∠A '''BA =∠ABC +∠A '''BG =120°综上,旋转角α=30°,60°或120°.故答案为:30°,60°或120°【点睛】本题主要考查了切线的性质,图形的旋转,解直角三角形,熟练掌握相关知识点,并利用分类讨论的思想解答是解题的关键.三、解答题1、(1)2y x=,1y x =+;(2)(2,1)B --,2x <-或01x <<.【解析】【分析】(1)先根据正切函数的定义可得点A 的坐标,再利用待定系数法即可得;(2)联立反比例函数和一次函数的解析式可得点B 的坐标,再利用函数图象法即可得.【详解】解:(1)设点A 的坐标为(,)A m n ,则,OC m AC n ==, OAC 的面积为1,且tan 2AOC ∠=,11,22n mn m ∴==, 解得1,2m n ==或10,20m n =-<=-<(不符题意,舍去),(1,2)A ∴,将点(1,2)A 代入1k y x=得:1122k =⨯=, 则反比例函数的解析式为2y x =;将点(1,2)A 代入21y k x =+得:212k +=,解得21k =,则一次函数的解析式为1y x =+;(2)联立21y x y x ⎧=⎪⎨⎪=+⎩, 解得12x y =⎧⎨=⎩或21x y =-⎧⎨=-⎩, 则点B 的坐标是(2,1)B --,12(1)0k k x x-+>表示的是反比例函数的图象位于一次函数的图象的上方, 则2x <-或01x <<.【点睛】本题考查了反比例函数与一次函数的综合、正切,熟练掌握待定系数法是解题关键.2、0【解析】【分析】根据化简绝对值,负整数指数幂,特殊角的三角函数值,进行混合运算即可【详解】解:()1112cos30---︒原式()112=---11=+0=【点睛】本题考查了化简绝对值,负整数指数幂,特殊角的三角函数值,牢记特殊角的三角函数值并正确的进行实数的混合运算是解题的关键.3、11a +【解析】【分析】由题意根据分式的运算规则进行化简后,进而代入特殊锐角三角函数值进行计算即可.【详解】 解:21()(1)11a a a a -⋅--+ 221()(1)11a a a a a -=-⋅--- 1(1)(1)(1)a a a =⋅-+⋅- 11a =+tan 602sin 312201a ︒︒=-=⨯=,把31a 代入11a ==+【点睛】本题考查分式的化简求值以及特殊锐角三角函数值,熟练掌握分式的运算规则以及特殊锐角三角函数值是解题的关键.4、 2.5CD ≈米【解析】【分析】首先分析图形:根据题意构造两个直角三角形DEB ∆、CEB ∆,再利用其公共边BE 求得DE 、CE ,再根据CD DE CE =-计算即可求出答案.【详解】解:在Rt DEB 中, 3.5 5.95tan 30BE DE ==≈︒米, 在Rt CEB 中,tan 45 3.5CE BE =︒=米,则 5.95 3.5 2.45 2.5CD DE CE =-=-=≈米.故塑像CD 的高度大约为 2.5CD ≈米.【点睛】本题考查解直角三角形的知识,解题的关键是要先将实际问题抽象成数学模型.分别在两个不同的三角形中,借助三角函数的知识,研究角和边的关系.5、(1)见解析;(2)①y =1x 2.②245或185.③1或2 【解析】【分析】(1)由直径所对的圆周角是直角,得∠ADB =∠DGC =90°,证明AD∥CG ;根据∠1=∠2=∠ACD ,证明AG∥CD ;根据平行四边形的定义判定即可;(2)①如图1,过点A 作AP ⊥CF 于点P ,根据AD ∥CF ,得AF =DC ,四边形APGD 是矩形,△APF ≌△DGC ,从而得到CG =GP =PF =AD ,设CG =GP =PF =AD =a ,DE =EG =b ,则GF =2a ,GD =2b ,BG =CG GF GD=2a b ,在Rt △BGC 中,tan∠3=y =CG GB ,在Rt △APF 中,tan F =x =AP PF , 消去a ,b 即可; ②运用勾股定理,确定a ,b 的值,显然DE 与AF 是不平行的,故分DH∥AF 和EH∥AF 两种情形计算即可.③过点O 作OM ⊥CF 于点M ,过点O 作ON ⊥BD 于点N ,根据OG 平分∠DGF ,OM =ON ,于是BD =CF ,从而确定a ,b 之间的数量关系,代入计算即可.【详解】(1)∵AB 是⊙O 的直径,弦CF ⊥BD 于点G ,∴∠ADB=∠DGC=90°,∴AD∥CG;∵∠1=∠2=∠ACD,∴AG∥CD;∴四边形AGCD为平行四边形;(2)①如图1,过点A作AP⊥CF于点P,则四边形ADGP是矩形∵四边形AGCD为平行四边形∴AD∥CF,AD=CG,DE=EG,∠DAC=∠ACF∴AF=DC,AP=DG,∴△APF≌△DGC,∴CG=GP=PF=AD,设CG=GP=PF=AD=a,DE=EG=b,则GF=2a,CF=3a,GD=2b,∵BG GD CG GF⋅=⋅,∴BG =CG GF GD =2a b, 在Rt △BGC 中,tan∠3=y =CG GB =2b a a ⨯=b a, 在Rt △APF 中,tan F =x =AP PF =2b a, 消去a ,b 即可; ∴x =2y , ∴y 关于x 的函数表达式为y =1x 2; ②∵tan∠3=y =CG GB =2b a a ⨯=b a ,y =34, ∴ba =34, ∴b =34a ,∴GD =2b =32a , ∴BG =2a b =43a , ∴BD =DG +BG =43a +32a =176a ,∵AB 222AD BD AB +=,∴22217()6a a +=, 解得a =125; 显然DE 与AF 是不平行的,如图2,当DH ∥AF 时,∵AD ∥FH ,∴四边形ADHF是平行四边形,∴AD=FH=a,∴CH=2a=245;如图3,当EH∥AF时,∵四边形AGCD是平行四边形,∴AE=EC,∴H是CF的中点,∵CF=3a=365,∴CH=185;故CH的长为245或185;③如图4,过点O作OM⊥CF于点M,过点O作ON⊥BD于点N,∵OG平分∠DGF,∴OM=ON,∴BD=CF,∴3a=2b+2ab,整理,得2232a ab b-+=0,解得a=b或a=2b,∵tan F=x=APPF=2ba,当a=b时,x=2ba=2,当a=2b时,x=2ba=1,故答案为:1或2.【点睛】本题考查了圆的基本性质,圆心角,弦,弦心距之间的关系,圆周角的性质,勾股定理,平行四边形的判定和性质,三角形函数,因式分解,熟练掌握圆的基本性质,灵活掌握三角函数的计算,分类思想是解题的关键.。
人教版九年级数学下册第28章《锐角三角函数》单元测试一.选择题(共10小题,满分30分)1.在Rt△ABC中,∠C=90°,若cos A=( )A.B.C.D.2.在边长相等的小正方形组成的网格中,点A,B,C都在格点上( )A.B.C.D.3.在Rt△ABC中,∠C=90°,BC=1,那么tan B的值是( )A.B.C.D.4.∠β为锐角,且2cosβ﹣1=0,则∠β=( )A.30°B.60°C.45°D.37.5°5.在Rt△ABC中,∠C=90°,AB=5,则tan A的值是( )A.B.C.D.6.如图,在Rt△ABC中,∠C=90°,则sin B=( )A.B.2C.D.7.若用我们数学课本上采用的科学计算器计算sin42°16′,按键顺序正确的是( )A.B.C.D.8.如图,AD是△ABC的高,AB=4,tan∠CAD=,则BC的长为( )A. +1B.2+2C.2+1D. +49.如图,半径为3的⊙O内有一点A,OA=,当∠OPA最大时,S△OPA等于( )A.B.C.D.110.如图,一辆自行车竖直摆放在水平地面上,右边是它的部分示意图,∠C=42°,AB=60( )A.60sin50°B.C.60cos50°D.60tan50°二.填空题(共10小题,满分30分)11.在Rt△ABC中,∠C=90°,sin A= .12.用科学计算器计算: tan16°15′≈ (结果精确到0.01)13.在△ABC中,若,∠A,∠B都是锐角 三角形.14.在Rt△ABC中,∠C=90°,AC=6,那么AB的长为 .15.比较大小:sin80° tan50°(填“>”或“<”).16.在Rt△ABC中,∠C=90°,cos A= .17.在△ABC中,若|sin A﹣|+(﹣cos B)2=0,则∠C的度数是 .18.如图,在Rt△ABC中,CD是斜边AB上的中线,AC=6,则tan A的值为 .19.如图,在Rt△ABC中,∠ACB=90°,连接CD,过点B作CD的垂线,tan A=,则cos∠DBE的值为 .20.如图,河坝横断面迎水坡AB的坡比是1:(坡比是坡面的铅直高度BC与水平宽度AC之比),水平宽度AC=m 米.三.解答题(共7小题,满分6021.已知cos45°=,求cos21°+cos22°+…+cos289°的值.22.如图,在Rt△ABC中,∠C=90°,BC=5.求sin A,cos A和tan A.23.如图,在Rt△ABC中,∠C=90˚,BC=6,求AC的长和sin A的值.24.计算:cos60°﹣2sin245°+tan230°﹣sin30°.25.计算:(1);(2)sin245°+cos245°+tan30°tan60°﹣cos30°.26.2022年8月21日,重庆市北碚区缙云山突发山火,山火无情,各地消防迅速出动,冲锋在前,然后沿着坡比为5:12的斜坡前进104米到达B处平台,继续前进到达C,沿斜坡CD前行800米到达着火点D.(1)求着火点D距离山脚的垂直高度;(2)已知消防员在平地的平均速度为4m/s,求消防员通过平台BC的时间.(保留一位小数)(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈,≈1.732)27.如图,已知∠ABC和射线BD P(点P与点B不重合),且点P到BA、BC的距离为PE、PF.(1)若∠EBP=40°,∠FBP=20°,PB=m;(2)若∠EBP=α,∠FBP=β,α,β都是锐角,并给出证明.参考答案与试题解析一.选择题(共10小题,满分30分)1.解:如图,∵∠C=90°,∴设AC=5k,AB=13k,根据勾股定理得,BC==,所以,sin A===.故选:D.2.解:设点C到AB的距离为h,由勾股定理可知:AC==2=,由于S△ABC=32﹣×6×2﹣×7×3=9﹣8﹣3=4.∴AB•h=4,∴h=,∴sin∠BAC==,∴cos∠BAC=,故选:A.3.解:∵∠C=90°,∴tan B===.故选:D.4.解:∵∠β为锐角,且2cosβ﹣1=8,∴cosβ=,∴∠β=60°.故选:B.5.解:∵∠C=90°,AB=5,∴AC===4,∴tan A==,故选:D.6.解:∵∠C=90°,tan A=2,∴BC=2AC,∴,∴,故C正确.故选:C.7.解:若用我们数学课本上采用的科学计算器计算sin42°16′,按键顺序正确的是.故选:C.8.解:∵AD是△ABC的高,∴∠ADB=∠ADC=90°,在Rt△ABD中,cos∠BAD=,∴cos60°=,sin60°=,∴AD=4cos60°=7×=5=4,在Rt△ADC中,tan∠CAD=,∴=,解得CD=1,∴BC=BD+CD=2+1.故选:C.9.解:如图所示:∵OA、OP是定值,∴PA⊥OA时,∠OPA最大,在直角三角形OPA中,OA=,∴PA==,∴S△OPA=OA•AP=××=.故选:B.10.解:过点A作AD⊥BC于点D,如图所示:∵∠BAC=88°,∠C=42°,∴∠B=180°﹣88°﹣42°=50°,在Rt△ABD中,AD=AB×sin60×sin50°,∴点A到BC的距离为60sin50°,故A正确.故选:A.二.填空题(共10小题,满分30分)11.解:由sin A=知,可设a=6x,b=3x.∴tan A=.故答案为:.12.解: tan16°15′≈0.71,故答案为:4.71.13.解:∵,∴sin A=,cos B=,∴∠A=60°,∠B=60°,∴△ABC是等边三角形.故答案为:等边.14.解:∵cos A==,AC=7,∴AB==8,故答案为:8.15.解:∵tan50°>tan45°,tan45°=1,∴tan50°>1,又sin80°<2,∴sin80°<tan50°;故答案为:<.16.解:∵在△ABC中,∠C=90°,∴∠A+∠B=90°,∴sin B=cos A=.故答案为:.17.解:∵|sin A﹣|+(2=2,∴sin A﹣=4,,即sin A=,cos B=,∴∠A=30°,∠B=45°,∴∠C=180°﹣∠A﹣∠B=105°.故答案为:105°.18.解:在Rt△ABC中,CD是斜边AB上的中线,∴AB=2CD=10,∵AC=6,∴BC===8,∴tan A===,故答案为:.19.解:过点C作CF⊥AB,垂足为F,在Rt△ABC中,AC=3a=,∴BC=4a,AB=5a,∵D是AB的中点,∴CD=AB=a,∵△ABC的面积=AB•CF=,∴AB•CF=AC•CB,∴5aCF=3a×4a,∴CF=a,∴cos∠DCF==,∵BE⊥CD,∴∠E=90°,∴∠EDB+∠EBD=90°,∵∠FCD+∠CDF=90°,∠CDF=∠BDE,∴∠EBD=∠DCF,∴cos∠DBE=cos∠DCF=,故答案为:.20.解:∵河坝横断面迎水坡AB的坡比是1:,AC=m,∴=,∴BC=AC==3(m),在Rt△ABC中,由勾股定理得:AB==,故答案为:6.三.解答题(共7小题,满分60分)21.解:原式=(cos21°+cos289°)+(cos22°+cos588°)+…+(cos244°+cos246°)+cos445=(sin21°+cos51°)+(sin22°+cos22°)+…+(sin844°+cos244°)+cos245=44+()2=44.22.解:在Rt△ABC中,∠C=90°,BC=5.∴AB===13,∴sin A==,cos A==,tan A==.23.解:∵△ABC中,tan A=,∴=,∴AC=8,∴AB===10,∴sin A==24.解:原式=﹣4×()6+×()2﹣=﹣2×+×﹣=﹣2+﹣=﹣.25.解:(1)=﹣4﹣7+1=﹣4;(2)sin645°+cos245°+tan30°tan60°﹣cos30°===.26.(1)如图所示,过点B,C,D分别作水平线的垂线,F,G,延长BC交AG于点H,BHGE是矩形,依题意,,AB=104米,CD=800米,在Rt△ABE中,,设BE=8k米,∴AB=13k,∵AB=104米,∴k=8,∴BE=5×2=40(米),AE=12×8=96(米),在Rt△DCH中,CD=800米,∴DG=DH+HG=DH+BE=480+40=520(米),即着火点D距离山脚的垂直高度为520米;(2)依题意,∠DAG=30°,∴米,∵Rt△DCH中,CH=cos37°×CD=≈0.8×800=640(米),又AE=96米,∴(米),∵消防员在平地的平均速度为4m/s,∴消防员通过平台BC的时间为(秒).27.解:(1)在Rt△BPE中,sin∠EBP=在Rt△BPF中,sin∠FBP=又sin40°>sin20°∴PE>PF;(2)根据(1)得sin∠EBP==sinα=sinβ又∵α>β∴sinα>sinβ∴PE>PF.。
最新人教版九年级数学下册第28章同步测试题及答案28.1 锐角三角函数一、选择题(每小题只有一个正确答案)1. cos30°的相反数是( )A. -B. -C. -D. -2. 在Rt△ABC中,∠C=90°,如果sin A=,那么sin B的值是()A. B. C. D.3. 已知在△ABC中,∠C=90°且△ABC不是等腰直角三角形,设sin B=n,当∠B是最小的内角时,n的取值范围是()A. B. C. D.4.在Rt△ABC中,∠C=90°,则是∠A的()A. 正弦B. 余弦C. 正切D. 以上都不对5. 点(-sin 30°,cos 30°)关于y轴对称的点的坐标是()A. (,)B. (,-)C. (-,-)D. (-,)6. 在中,,各边都扩大2倍,则锐角A的正弦值A. 扩大2倍B. 缩小C. 不变D. 无法确定7. 如图,是的外接圆,AD是的直径,若的半径为则的值是A. B. C. D.二、填空题8. 计算:sin 45°+tan 60°•tan 30°﹣cos 60°=_____.9. 在锐角△ABC中,如果∠A,∠B满足|tan A-1|+=0,那么∠C=________.10. 如图,若点A的坐标为,则sin∠1=_____.11. 观察下列等式根据上述规律,计算 ______ .12. 如图,在等边三角形ABC中,D,E分别为AB,BC边上的点,AD=BE,AE与CD交于点F,AG⊥CD于点G,则sin∠AFG的值是________.三、解答题13. 计算+|-2|-2tan 60°+()-1.14. 计算:(1)﹣2sin 45°+(2﹣π)0﹣tan 30°;(2)2cos 60°﹣()﹣1+tan 600+|﹣2|.15. 先化简,再求值:,其中.参考答案1.C 【解析】∵cos30°=,∴cos30°的相反数是-.故选C.2.A 【解析】∵在Rt△ABC中,∠C=90°,sin A=,∴cos A=,∴∠A+∠B=90°,∴sin B=cos A=.故选A.3.A 【解析】根据直角三角形的性质可知最小的内角的度数为0°至45°之间,则,即,故选A.4.B 【解析】根据直角三角形的三角函数可得:sin A=,cos A=,tan A=,故选B.5.A 【解析】点即为关于y轴对称的点的坐标是故选A.6.C7.B 【解析】如图,连接CD.∵AD是⊙O的直径,∴∠ACD=90°,且∠B=∠D.在Rt△ACD中,AD=5×2=10,AC=8,∴CD=6,∴cos D===,∴cos B=cos D=.故选B.8.【解析】原式==1+1-=.9.75°【解析】∵|tan A-1|+2=0,∴tanA=1,cosB= .∴∠A=45°,∠B=60°,∴∠C=75°.10.故答案:.11. 1 【解析】∵根据已知的式子可以得到sin (90°-α)=cos α,∴sin 2α+sin 2(90°-α)=1. 12. 【解析】∵等边△ABC ,∴AC =AB ,∠B =∠CAD =60°.∵在△ADC 和△BEA 中,,∴△ADC ≌△BEA ,∴∠CDA =∠AEB ,∴∠CEA =∠CDB ,∴∠CFE =∠B =60°,∴∠AFG =60°,∴sin ∠AFG =. 13.解:+|-2|-2tan 60°+()-1=2=5-.14.解:(1)原式=2﹣+1﹣1=.(2)原式=1﹣2+1+2﹣=2﹣.15.解:-=-==-.当x =tan 60°-1即x =-1时,原式=-=-=-.28.2.1 解直角三角形知识点 1 解直角三角形1.在Rt △ABC 中,∠C =90°,sin A =35,BC =6,则AB 的长为( )A .4B .6C .8D .102.在Rt △ABC 中,已知∠C =90°,∠A =40°,BC =3,则AC 的长为( ) A.3sin40° B .3sin50°C.3tan40° D .3tan50°3.在Rt △ABC 中,∠C =90°,a ,b ,c 分别为∠A ,∠B ,∠C 的对边,a =6,b =2 3,则∠B 的度数为________.4.已知在Rt △ABC 中,∠C =90°,a ,b ,c 分别为∠A ,∠B ,∠C 的对边,c =8 3,∠A =60°,则a =________,b =________.5.在Rt △ABC 中,∠C =90°,a ,b ,c 分别为∠A ,∠B ,∠C 的对边,由下列条件解直角三角形. (1)已知∠A =60°,b =4; (2)已知a =13,c =23;(3)已知c =28 2,∠B =30°.6.如图,在△ABC 中,∠C =90°,sin A =23,AB =6,求BC 的长.知识点 2 解直角三角形的应用7.如图,为了测量一河岸相对的两电线杆A ,B 间的距离,在距A 点15米的C 处(AC ⊥AB )测得∠ACB =50°,则A ,B 间的距离应为( )A.15sin50° 米 B .15tan50° 米 C.15tan40° 米 D .15cos50° 米8.某楼梯的示意图如图,BC 是铅垂线,CA 是水平线,BA 与CA 的夹角为θ.现要在楼梯上铺一条地毯,已知CA =4米,楼梯宽为1米,则地毯的面积至少为( )A.4sin θ平方米B.4cos θ平方米C.(4+4tan θ)平方米 D .(4+4tan θ)平方米9.如图,已知在菱形ABCD 中,AE ⊥BC 于点E .若sin B =23,AD =6,则菱形ABCD 的面积为( )A.12 B .12 5 C .24 D .5410.如图,在矩形ABCD 中,DE ⊥AC 于点E .设∠ADE =α,且cos α=35,AB =4,则AD 的长为( )A.3B.163C.203D.22311.数学拓展课程《玩转学具》课堂中,小陆同学发现:一副三角尺中,含45°角的三角尺的斜边与含30°角的三角尺的长直角边相等,于是,小陆同学提出一个问题:如图,将一副三角尺的直角顶点重合放在一起,点B ,C ,E 在同一直线上,若BC =2,求AF 的长.请你运用所学的数学知识解决这个问题.能力提升12.如图,⊙O 是正五边形ABCDE 的外接圆,这个正五边形的边长为a ,半径为R ,边心距为r ,则下列关系式错误的是( )A.R 2-r 2=a 2B .a =2R sin36°C.a =2r tan36° D .r =R cos36°13.如图是以△ABC 的边AB 为直径的半圆O ,点C 恰好在半圆上,过点C 作CD ⊥AB 于点D .已知cos ∠ACD =35,BC =4,则AC 的长为( )A.1B.203 C .3 D.16314.如图,电线杆CD 的高度为h ,两根拉线AC 与BC 互相垂直,∠CAB =α,则拉线BC 的长度为(A ,D ,B 在同一条直线上)( )A.h sin αB.h cos αC.htan αD .h ·cos α 15.如图,在△ABC 中,AB =AC ,cos ∠ABC =45,点D 在BC 边上,BD =6,CD =AB ,则AD 的长为__________.16.如图,在Rt △ABC 中,∠ACB =90°,斜边AB 上的高CD =3,BD =1,解这个直角三角形.17.如图,在△ABC 中,∠A =30°,∠B =45°,AC =2 3,求△ABC 的面积.18.如图,在Rt △ABC 中,已知∠C =90°,sin B =45,AC =8,D 为线段BC 上一点,并且CD =2.(1)求BD 的长; (2)求cos ∠DAC 的值.参考答案1.D [解析] 在Rt △ABC 中,∠C =90°,sin A =BC AB =35,BC =6,∴AB =BC sin A =635=10.2.D [解析] 已知∠C =90°,∠A =40°,∴∠B =50°.∵tan B =AC BC ,即tan50°=AC3,∴AC =3tan50°.故选D.3.30° [解析] ∵tan B =b a ,b =2 3,a =6,∴tan B =2 36=33,∴∠B =30°.4.12 43 [解析] 本题是已知一锐角和斜边,解直角三角形,由sin A =ac ,得a =c ·sin A =8 3·sin60°=8 3×32=12,由勾股定理易知b =4 3. 5.解:(1)∵∠A =60°,∴∠B =30°. ∵tan A =ab,∴a =b tan A =4tan60°=4 3, ∴c =a 2+b 2=8.即∠B =30°,a =4 3,c =8. (2)由勾股定理,知b =c 2-a 2=(23)2-(13)2=13,∴a =b , ∴∠A =∠B =45°. 即∠A =∠B =45°,b =13.(3)∵∠B =30°,∴∠A =60°,b =12c =12×28 2=14 2.又∵cos B =ac,∴a =c ·cos B =28 2×cos30°=14 6. 即∠A =60°,a =14 6,b =14 2.6.解:∵在Rt △ABC 中,∠C =90°,∴sin A =BCAB .∵AB =6,sin A =23,∴BC 6=23,∴BC =4.7.B [解析] 由tan ∠ACB =ABAC 知AB =AC ·tan ∠ACB =15tan50°.故选B.8.D9.C [解析]∵四边形ABCD 是菱形,AD =6,∴AB =BC =6.在Rt △ABE 中,sin B =AEAB.∵sin B =23,∴AE 6=23,解得AE =4,∴菱形ABCD 的面积是6×4=24.故选C.10.B [解析] 由已知可得AB =CD =4,∠ADE =∠ACD =α.在Rt △DEC 中,cos α=CE CD =35,即CE4=35,∴CE =125.根据勾股定理,得DE =165.在Rt △AED 中,cos α=DE AD =35,即165AD =35,∴AD =163.故选B. 11.解:∵在Rt △ABC 中,BC =2,∠A =30°, ∴AC =BCtan A =2 3,则EF =AC =2 3.∵∠E =45°,∴FC =EF ·sin E =6, ∴AF =AC -FC =23- 6.12.A[解析]∵⊙O 是正五边形ABCDE 的外接圆,∴∠BOC =15×360°=72°.∵OB =OC ,OH ⊥BC ,∴∠BOH =12∠BOC =36°,BH =12BC =12a .在Rt △BOH 中,OB 2-OH 2=BH 2,∴R 2-r 2=(12a )2=14a 2,则选项A 错误.∵sin36°=BH OB ,∴BH =OB ·sin36°,即12a =R sin36°,∴a =2R sin36°,则选项B 正确.∵tan36°=BH OH ,∴BH =OH ·tan36°,即12a =r tan36°,∴a =2r tan36°,则选项C 正确.∵cos36°=OHOB ,∴OH =OB ·cos36°,∴r =R cos36°,则选项D 正确.故选A.13. D [解析]∵AB 是半圆O 的直径,∴∠ACB =90°,∴∠A+∠B =90°.∵CD ⊥AB ,∴∠ADC =90°,∴∠A +∠ACD =90°,∴∠ACD =∠B .在Rt △ABC 中,∵cos B = cos ∠ACD =BC AB =35,BC =4,∴AB =203,∴AC =AB 2-BC 2=(203)2-42=163.故选D. 14.B [解析] 根据同角的余角相等,得∠CAD =∠BCD ,由cos ∠BCD =CD BC ,知BC =CD cos ∠BCD =hcos α.故选B.15.2 10 [解析] 如图,过点A 作AE ⊥BC 于点E .∵AB =AC ,∴BE =CE .设DE =x ,则BE =6+x ,CD =6+2x .∵cos ∠ABC =45,AB =CD =6+2x ,∴BE AB =6+x 6+2x =45,解得x =2.∴AB =10,BE =8,∴AE =AB 2-BE 2=6.∴在Rt △ADE 中,AD =AE 2+DE 2=210.16.解:在Rt △BCD 中,BC =BD 2+CD 2=12+(3)2=2, ∴sin B =CD BC =32,∴∠B =60°,∴∠A =90°-∠B =90°-60°=30°. 在Rt △ABC 中,AB =BC cos B =2cos60°=212=4,∴AC =AB 2-BC 2=42-22=16-4=12=2 3. 即∠A =30°,∠B =60°,AB =4,BC =2,AC =2 3. 17.解:过点C 作CD ⊥AB 于点D ,则∠ADC =∠BDC =90°. ∵∠B =45°, ∴∠BCD =∠B =45°, ∴CD =BD .∵∠A =30°,AC =2 3, ∴CD =12AC =3,∴BD =CD = 3.在Rt △ACD 中,由勾股定理,得 AD =AC 2-CD 2=12-3=3, ∴AB =AD +BD =3+3,∴△ABC 的面积为12CD ·AB =12×3×(3+3)=3+3 32.18.解:(1)在Rt △ABC 中,sin B =AC AB =45.∵AC =8,∴AB =10,BC =AB 2-AC 2=102-82=6, ∴BD =BC -CD =6-2=4. (2)在Rt △ACD 中,∵AD =AC 2+CD 2=82+22=217, ∴cos ∠DAC =AC AD =8217=41717.28.2.2 第1课时 仰角、俯角与解直角三角形知识点1利用直角三角形解决一般的实际问题1.如图,A,B两地之间有一座山,汽车原来从A地到B地需经C地沿折线ACB行驶,现开通隧道后,汽车直接沿直线AB行驶即可到达B地.已知AC=120 km,∠A=30°,∠B=135°,求隧道开通后汽车从A地到B地需行驶多少千米.2.如图,某中学课外活动小组的同学利用所学知识去测量釜溪河沙湾段的宽度.小宇同学在A处观测对岸点C,测得∠CAD=45°,小英同学在距A处50米远的B处测得∠CBD=30°,请你根据这些数据求出河宽.(精确到0.01米,参考数据:2≈1.414,3≈1.732)知识点2利用仰角、俯角解决实际问题3.如图,某地修建高速公路,要从B地向C地修一条隧道(B,C在同一水平面上),为了测量B,C两地之间的距离,某工程师乘坐热气球从C地出发,垂直上升100 m到达A处,在A处观察B地的俯角为30°,则B,C两地之间的距离为()A.100 3m B.50 2mC.50 3m D.100 33m4.如图,热气球的探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C处的俯角为60°,热气球A处与楼的水平距离为120 m,则这栋楼的高度为()A.160 3m B.120 3mC.300 m D.160 2m5.孔明同学在距某电视塔塔底水平距离500米处,看塔顶的仰角为20°(不考虑身高因素),则此塔高约为__________米.(结果保留整数,参考数据:sin20°≈0.3420,sin70°≈0.9397,tan20°≈0.3640,tan70°≈2.7475)6.如图,线段AB,CD分别表示甲、乙两建筑物的高,BA⊥AD,CD⊥DA,垂足分别为A,D.从D点测得B点的仰角α为60°,从C点测得B点的仰角β为30°,甲建筑物的高AB=30米.(1)求甲、乙两建筑物之间的距离AD;(2)求乙建筑物的高CD.7.如图,某人为了测量小山顶上的塔ED的高,他在山下的点A处测得塔尖点D的仰角为45°,再沿AC方向前进60 m到达山脚点B,测得塔尖点D的仰角为60°,塔底点E的仰角为30°,求塔ED的高度.(结果保留根号)能力提升8.为解决停车难的问题,在如图的一段长56米的路段开辟停车位,每个车位是长5米、宽2.2米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出________个这样的停车位(2≈1.4).9.如图,A为某旅游景区的最佳观景点,游客可从B处乘坐缆车先到达小观景平台DE观景,然后在E 处继续乘坐缆车到达A处,返程时从A处乘坐升降电梯直接到达C处.已知AC⊥BC于点C,DE∥BC,BC=110 m,DE=9 m,BD=60 m,α=32°,β=68°,求AC的高度.(参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62,sin68°≈0.93,cos68°≈0.37,tan68°≈2.48)10.如图,某无人机于空中A处探测到目标B,D的俯角分别是30°,60°,此时无人机的飞行高度AC为60 m,随后无人机从A处继续水平飞行30 3m到达A′处.(1)求A,B之间的距离;(2)求从无人机A′上看目标D的俯角的正切值.11.如图,在大楼AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.(1)求斜坡CD的高度DE;(2)求大楼AB的高度(结果保留根号).参考答案1.解:如图,过点C 作CE ⊥AB 交AB 的延长线于点E .∵∠A =30°,AC =120 km ,∴EC =60 km ,AE =120×cos30°=60 3(km). ∵∠ABC =135°, ∴∠CBE =45°, ∴BE =EC =60 km ,∴AB =AE -BE =60 3-60=60(3-1)km.答:隧道开通后汽车从A 地到B 地需行驶60(3-1)km. 2.解:如图,过点C 作CE ⊥AB 于点E ,设CE =x 米.在Rt △AEC 中,∠CAE =45°,AE =CE =x 米. 在Rt △BEC 中,∠CBE =30°,BE =3CE =3x (米). ∴3x =x +50,解得x =253+25≈68.30. 答:河宽约为68.30米.3.A [解析] 因为tan ∠ABC =tan30°=AC BC =100BC =33,所以BC =100 3m .故选A.4.A5.182 [解析] 如图,仰角∠A =20°,AC =500米.在Rt △ABC 中,tan A =BCAC ,所以塔高BC =AC ·tan A≈500×0.3640=182(米).故答案为182.6.解:(1)根据题意,在Rt △ABD 中,∠BDA =α=60°,AB =30米, ∴AD =AB tan60°=303=10 3(米).答:甲、乙两建筑物之间的距离AD 为10 3米.(2)过点C 作CE ⊥AB 于点E .根据题意,得∠BCE =β=30°,CE =AD =10 3米,CD =AE . 在Rt △BEC 中,tan ∠BCE =BECE, 即tan30°=BE10 3,∴BE =10(米),∴CD =AE =AB -BE =30-10=20(米). 答:乙建筑物的高CD 为20米.7.解:由题知,∠DBC =60°,∠EBC =30°, ∴∠DBE =∠DBC -∠EBC =60°-30°=30°. ∵∠BCD =90°,∴∠BDC =90°-∠DBC =90°-60°=30°, ∴∠DBE =∠BDC , ∴BE =DE .设EC =x m ,则ED =BE =2EC =2x (m),DC =EC +ED =x +2x =3x (m), ∴BC =BE 2-EC 2=3x (m).由题意可知∠DAC =45°,∠DCA =90°,AB =60 m , ∴△ACD 为等腰直角三角形, ∴AC =DC , 即3x +60=3x , 解得x =30+10 3. ∴ED =2x =(60+20 3)m. 答:塔ED 的高度为(60+20 3)m.8. 17 [解析] 设这个路段可以划出x 个这样的停车位,根据题意,水平距离为2.22+2.2×2(x -1)+52≤56,解得x 的最大整数值为17.故答案为17.9.过点D 作DH ⊥BC 于点H ,延长DE 交AC 于点F ,则DF =CH ,DH =CF .∵在Rt △BDH 中,α=32°, ∴DH =BD ·sin32°≈60×0.53=31.8, BH =BD ·cos32°≈60×0.85=51,∴CF =DH ≈31.8,CH =BC -BH ≈110-51=59, ∴DF =CH ≈59,∴EF =DF -DE ≈59-9=50. ∵在Rt △AEF 中,β=68°, ∴AF =EF ·tan68°≈50×2.48=124, ∴AC =AF +CF ≈124+31.8=155.8(m). 答:AC 的高度约为155.8 m.10.(1)∵∠BAC =90°-30°=60°,AC =60 m , ∴在Rt △ABC 中,AB =AC cos ∠BAC =60cos60°=120(m).(2)过点D 作DE ⊥AA ′于点E ,连接A ′D .∵∠DAC =90°-60°=30°,AC =60 m , ∴在Rt △ADC 中,CD =AC ·tan ∠DAC =60×tan30°=20 3(m). ∵∠AED =∠EAC =∠C =90°, ∴四边形ACDE 是矩形.∵ED =AC =60 m ,EA =CD =20 3 m ,∴在Rt △A ′ED 中,tan ∠EA ′D =ED EA ′=ED EA +AA ′=6020 3+30 3=2 35.即从无人机A ′上看目标D 的俯角的正切值为2 35.11.(1)在Rt △DCE 中,∠DCE =30°, sin ∠DCE =DECD ,∴DE =CD ·sin ∠DCE , ∴DE =4×12=2(米).(2)如图,延长BD 交AE 的延长线于点F .由题意知∠BDG =45°, ∴∠F =∠BDG =45°. ∵∠DEF =90°, ∴∠EDF =∠F =45°, ∴EF =DE =2米.设AC =x 米,则AB =AC ·tan ∠ACB , ∴AB =x ·tan60°=3x 米.在Rt △DCE 中,CE =CD 2-DE 2=2 3(米), ∴AF =EF +CE +AC =(2+2 3+x )米. 在Rt △ABF 中,tan F =ABAF ,即tan45°=3x2+2 3+x ,解得x =(3+1)2=4+2 3, ∴AB =3x =(6+4 3)米. 答:大楼AB 的高度为(6+4 3)米.第2课时 坡角、方向角与解直角三角形知识点 1 方向角问题1.如图,一艘海轮位于灯塔P 的北偏东55°方向,距离灯塔2海里的点A 处,如果海轮沿正南方向航行到灯塔的正东方向,那么海轮航行的距离AB 是( )A.2海里 B .2sin55°海里C.2cos55°海里 D .2tan55°海里2.如图,轮船沿正南方向以30海里/时的速度匀速航行,在M 处观测到灯塔P 在西偏南68°方向上.航行2小时后到达N 处,观测到灯塔P 在西偏南46°方向上,若该船继续向南航行至离灯塔最近的位置,则此时轮船离灯塔的距离约为(由科学计算器得到sin68°≈0.9272,sin46°≈0.7193,sin22°≈0.3746,sin44°≈0.6947)()A.22.48海里B.41.68海里C.43.16海里D.55.63海里3.如图,港口A在观测站O的正东方向,OA=4 km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为()A.4 km B.2 3kmC.2 2km D.(3+1)km4.如图,海中有一小岛A,它周围8海里内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A 在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方向上.如果渔船不改变航线继续向东航行,有没有触礁的危险?知识点2坡角问题5.如图,一山坡的坡度为i=1∶3,小辰从山脚A出发,沿山坡向上走了200米到达点B,则小辰上升了________米.6.如图,小明爬一土坡,他从A处爬到B处所走的直线距离AB=4米,此时,他距离地面的高度h =2米,则这个土坡的坡角∠A=________°.7.如图,小华站在河岸上的点G ,看见河里有一小船沿垂直于岸边的方向划过来.此时,测得小船C 的俯角是∠FDC =30°,若小华的眼睛与地面的距离是1.6 m ,BG =0.7 m ,BG 平行于AC 所在的直线,迎水坡的坡度i =4∶3,坡长AB =8 m ,点A ,B ,C ,D ,F ,G 在同一个平面上,则此时小船C 到岸边的距离CA 的长为________m .(结果保留根号)8.如图,一堤坝的坡角∠ABC =62°,坡面长度AB =25米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得坡面的坡角∠ADB =50°,则此时应将坝底向外拓宽多少米?(结果精确到0.1米,参考数据:sin62°≈0.88,cos62°≈0.47,tan50°≈1.19)9.某地一天桥如图所示,天桥高6米,坡面BC 的坡度为1∶1.为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面AC 的坡度为1∶ 3.(1)求新坡面的坡角α;(2)原天桥底部正前方8米处(PB 的长)的文化墙PM 是否需要拆除?请说明理由.10. 如图,为了测量出楼房AC 的高度,从距离楼底C 处60 3米的点D (点D 与楼底C 在同一水平面上)出发,沿斜面坡度为i =1∶3的斜坡DB 前进30米到达点B ,在点B 处测得楼顶A 的仰角为53°,求楼房AC 的高度.(参考数据:sin53°≈0.8,cos53°≈0.6, tan53°≈43,计算结果用根号表示)11.如图,一架水平飞行的无人机AB的尾端点A测得正前方的桥的左端点P的俯角为α,其中tanα=2 3,无人机的飞行高度AH=500 3米,桥的长为1255米.(1)求H到桥的左端点P的距离;(2)无人机前端点B测得正前方的桥的右端点Q的俯角为30°,求这架无人机的长度.参考答案1.C [解析] 由题意可知∠NP A =55°,AP =2海里,∠ABP =90°.∵AB ∥NP ,∴∠A =∠NP A =55°.在Rt △ABP 中,∵∠ABP =90°,∠A =55°,AP =2海里,∴AB =AP ·cos A =2cos55°(海里).故选C.2.B [解析] 如图,过点P 作P A ⊥MN 于点A .由题意,得MN =30×2=60(海里).∵∠MNC =90°,∠CNP =46°,∴∠MNP =∠MNC +∠CNP =136°.∵∠BMP =68°,∴∠PMN =90°-∠BMP =22°,∴∠MPN =180°-∠PMN -∠MNP =22°,∴∠PMN =∠MPN ,∴MN =PN =60海里.∵∠CNP =46°,∴∠PNA =44°,∴P A =PN ·sin ∠PNA ≈60×0.6947≈41.68(海里).3.C [解析] 由题意知OA =4 km ,∠AOB =30°,∠BAC =75°,则∠B =45°.过点A 作AH ⊥OB ,垂足为H .在Rt △OAH 中,∠AHO =90°,OA =4 km ,∠AOB =30°,∴AH =12OA =2(km ).在Rt △BAH 中,∠AHB =90°,∠B =45°,AH =2 km ,∴AB =2AH =2 2(km ).故选C.4.解:如图,作AC ⊥BD 于点C .由题意知∠ABC =30°,∠ADC =60°.设AC =x 海里,则BC =3x 海里,DC =33x 海里.因为BC -DC =3x -33x =12,所以x =6 3.因为6 3=108>64=8,所以渔船不改变航线继续向东航行,没有触礁的危险.5.100 [解析] 根据题意,得tan A =BC AC =13=33,所以∠A =30°,所以BC =12AB =12×200=100(米). 6.30 [解析] 因为sin A =h AB =24=12,所以∠A =30°.7.(8 3-112) [解析] 如图所示,延长DG 交CA 的延长线于点H ,则DH ⊥CH ,过点B 作BE ⊥AH ,垂足为E .在Rt △ABE 中,i AB =4∶3,即BE AE =43.设BE =4x ,AE =3x (x >0).由勾股定理,得AB =5x .由AB =8,得x =85,从而BE =325=GH ,AE =245.∴DH =DG +GH =1.6+325=8,AH =245+0.7=112.∵∠FDC =30°,∴∠C =30°.在Rt △CDH 中,DH CH =tan30°,即8CH =33,∴CH =8 3,∴CA =CH -AH =8 3-112(m ).8.解:如图,过点A 作AE ⊥BC 于点E .在Rt △ABE 中,AB =25米,∠ABC =62°,∴AE =AB ·sin ∠ABC =25sin62°≈25×0.88=22(米),BE =AB ·cos ∠ABC =25cos62°≈25×0.47=11.75(米).在Rt △ADE 中,AE ≈22米,tan50°≈1.19,∴DE =AE tan50°≈221.19≈18.49(米), ∴DB =DE -BE ≈18.49-11.75=6.74≈6.7(米).答:应将坝底向外拓宽约6.7米.9.解:(1)由tan α=13=33,得α=30°. (2)文化墙PM 不需要拆除.理由:作CD ⊥AB ,垂足为D ,则CD =6米,∴AD =CD tan α=6 3(米),BD =6米, ∴AB =AD -BD =6 3-6(米)<8米,∴文化墙PM 不需要拆除.10.解:过点B 作BE ⊥CD 于点E ,BF ⊥AC 于点F ,则四边形CEBF 是矩形.∵斜坡的斜面DB 的坡度i =1∶3,∴∠BDE =30°.在Rt △BDE 中,BD =30米,∴BE =BD ·sin30°=15(米),ED =BD ·cos30°=15 3(米),∴BF =CE =CD -ED =45 3(米).在Rt △AFB 中,∠ABF =53°,∵tan ∠ABF =AF BF, ∴AF =BF ·tan53°≈45 3×43=60 3(米), ∴AC =AF +CF =AF +BE ≈60 3+15(米).答:楼房AC 的高度约是(60 3+15)米.11.解:(1)在Rt △AHP 中,∵∠APH =α,AH =500 3米,∴tan ∠APH =AH HP=tan α, 即500 3HP=2 3,解得HP =250(米). 答:H 到桥的左端点P 的距离为250米.(2)过点Q 作QM ⊥AB 交AB 的延长线于点M ,则可得AM =HQ =HP +PQ =1255+250=1505(米),QM =AH =500 3米.∵在Rt △QMB 中,∠QMB =90°,∠QBM =30°,QM =500 3米,∴BM =QM tan ∠QBM =500 333=1500(米), ∴AB =AM -BM =1505-1500=5(米).答:这架无人机的长度为5米.。
人教版九年级下册数学第二十八章锐角三角函数含答案一、单选题(共15题,共计45分)1、如图,在⊙O中,E是直径AB延长线上一点,CE切⊙O于点E,若CE=2BE,则∠E的余弦值为()A. B. C. D.2、如图,在Rt△ABC中,CD是斜边AB上的高,则下列线段的比中不等于sinA 的是( )A. B. C. D.3、如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知斜坡CD的长度为20m,DE的长为10m,则树AB的高度是()m.A.20B.30C.30D.404、如图所示,已知:点A(0,0),B(,0),C(0,1).在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…,则第n个等边三角形的边长等于()A. B. C. D.5、已知Rt△ABC中,∠A=90°,则是∠B的()A.正切;B.余切;C.正弦;D.余弦6、如图,在的正方形网格中,每个小正方形的边长都是1,的顶点都在这些小正方形的顶点上,那么的值为().A. B. C. D.7、如图,在△ABC中,AC=3,BC=4,AB=5,则tanB的值是()A. B. C. D.8、如图,已知Rt△ABC中,∠C=90°,BC=3, AC=4,则sinA的值为()..A. B. C. D.9、定义:在等腰三角形中,底边与腰的比叫做顶角的正对,顶角A的正对记作sadA,即sadA=底边:腰.如图,在△ABC中,AB=AC,∠A=4∠B.则cosB•sadA=()A.1B.C.D.10、Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,且a:b=3:4,斜边c=15,则b的值是()A.12B.9C.4D.311、已知tanα=0.3249,则α约为()A.17°B.18°C.19°D.20°12、如图,在Rt△ABC中,∠C=90°,∠B=22.5°,DE垂直平分AB交BC于E,若BE=2 ,则AC=( )A.1B.2C.3D.413、如图,在一块矩形ABCD区域内,正好划出5个全等的矩形停车位,其中EF=a米,FG=b米,∠AEF=30°,则AD等于()A.(a+ b)米B.(a+ b)米C.(a+ b)米D.(a+ b)米14、如图,平面直角坐标系中,A(8,0),B(0,6),∠BAO,∠ABO的平分线相交于点C,过点C作CD∥x轴交AB于点D,则点D的坐标为()A.(,2)B.(,1)C.(,2)D.(,1)15、如图,已知A,B,C,D是⊙O上的点,AB⊥CD,OA=2,CD=2 ,则∠D 等于()A. B. C. D.二、填空题(共10题,共计30分)16、图1是一种矩形时钟,图2是时钟示意图,时钟数字2的刻度在矩形ABCD 的对角线BD上,时钟中心在矩形ABCD对角线的交点O上.若,则BC长为________cm(结果保留根号).17、在三角形ABC中,AB=2,AC= ,∠B=45°,则BC的长________.18、如图,射线OC与x轴正半轴的夹角为30°,点A是OC上一点,AH⊥x轴于H,将△AOH绕着点O逆时针旋转90°后,到达△DOB的位置,再将△DOB沿着y轴翻折到达△GOB的位置,若点G恰好在抛物线y=x2(x>0)上,则点A 的坐标为________.19、如图,在△ABC中,∠C=90°,∠A=30°,BC=3,点D、E分别在AB、AC 上,将△ABC沿DE折叠,点A落在AC边的点F处.若F为CE的中点,则DF 的长为________.20、如图,在Rt△ABC中,∠C=90°,BC=4 ,AC=4,点D是BC的中点,点E是边AB上一动点,沿DE所在直线把△BDE翻折到△B′DE的位置,B′D交AB于点F.若∠AB′F为直角,则AE的长为________.21、小华从斜坡底端沿斜坡走了100米后,他的垂直高度升高了50米,那么该斜坡的坡角为________度22、在Rt△ABC中,∠C=90°,sinA=,则cosA=________.23、如图,ABCD中,E是AD边上一点,AD=4 ,CD=3,ED= ,∠A=45.点P,Q分别是BC,CD边上的动点,且始终保持∠EPQ=45°.将CPQ沿它的一条边翻折,当翻折前后两个三角形组成的四边形为菱形时,线段BP的长为________.24、把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm,则圆形螺母的外直径是________.25、已知:正方形ABCD的边长为3,点P是直线CD上一点,若DP=1,则tan∠BPC的值是________.三、解答题(共5题,共计25分)26、计算:+(tan60﹣1)0+| ﹣1|﹣2cos30°.27、教育部布的《基础教育课程改革纲要》要求每位学生每学年都要参加社会实践活动,某学校组织了一次测量探究活动,如图,某大楼的顶部竖有一块广告牌CD,小明与同学们在山坡的坡脚A处测得广告牌底部D的仰角为53°,沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度1:,AB=10米,AE=21米,求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米,参考数据:≈1.41,≈1.73,tan53°≈,cos53°≈0.60)28、如图,B位于A南偏西37°方向,港口C位于A南偏东35°方向,B位于C正西方向. 轮船甲从A出发沿正南方向行驶40海里到达点D处,此时轮船乙从B出发沿正东方向行驶20海里至E处,E位于D南偏西45°方向.这时,E 处距离港口C有多远?(参考数据:tan37°≈0.75,tan35°≈0.70)29、周末,小亮一家在东昌湖游玩,妈妈在湖心岛岸边P处观看小亮与爸爸在湖中划船(如图).小船从P处出发,沿北偏东60°划行200米到达A处,接着向正南方向划行一段时间到达B处.在B处小亮观测妈妈所在的P处在北偏西37°方向上,这时小亮与妈妈相距多少米(精确到米)?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈1.73)30、每年的6至8月份是台风多发季节,某次台风来袭时,一棵大树树干AB (假定树干AB垂直于地面)被刮倾斜15°后折断倒在地上,树的项部恰好接触到地面D(如图所示),量得树干的倾斜角为∠BAC=15°,大树被折断部分和地面所成的角∠ADC=60°,AD=4米,求这棵大树AB原来的高度是多少米?(结果精确到个位,参考数据:)参考答案一、单选题(共15题,共计45分)1、B2、D3、B4、A5、A6、D7、A8、C9、B10、A11、B12、B13、A14、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、。
人教版九年级数学下册 第28章基础训练题(含答案)28.1《正弦》一.选择题(本大题共10小题,每小题3分,共30分)1.如图,在Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,则下列结论中不正确的是( ) A .sin B =AD AB B .sin B =ACBCC .sin B =AD AC D .sin B =CDAC2.在Rt △ABC 中,∠C =90°,AB =13,AC =5,则sin A 的值为( ) A.513 B.1213 C.512 D.1253.如图,在下列网格中,小正方形的边长均为1,点A ,B ,O 都在格点上,则∠OAB 的正弦值是( ) A.55 B.12C.13D.10104.如图,在平面直角坐标系中,点A 的坐标为(3,4),那么sinα的值是( ) A.35 B.34 C.45 D.435.在Rt △ABC 中,∠C =90°,BC =6,sinA =35,则AB 的值为( )A .8B .9C .10D .126. 在Rt △ABC 中,∠C =90°,若AB =4,sin A =35,则斜边上的高等于( )A.6425B.4825C.165D.1257.已知锐角A 满足关系式2sin 2A -7sinA +3=0,则sinA 的值为( ) A.12B .3 C.12或3 D .4 8.如图,在直角坐标系中AB 垂直于y 轴,垂足为A ,CD 垂直于y 轴,垂足为D ,且点D 的坐标为(0,-1),sinB =13,则点C 的坐标为( )A .(-1,-3)B .(-3,-1)C .(-22,-1)D .(-1,-22)9.如图,四边形ABCD 内接于⊙O ,AB 为直径,AD =CD ,过点D 作DE ⊥AB 于点E.连接AC 交DE 于点F.若sin ∠CAB =35,DF =5,则BC 的长为( )A .8B .10C .12D .1610.如图,已知⊙O 的半径为1,锐角△ABC 内接于⊙O ,BD ⊥AC 于点D ,OM ⊥AB 于点M ,则sin ∠CBD 的值等于( ) A .OM 的长 B .2OM 的长 C .CD 的长 D .2CD 的长二.填空题(共8小题,3*8=24)11.在Rt △ABC 中,∠C =90°,AC =9,sin B =35,则AB 的长等于________.12. 如图,在Rt △ABC 中,∠C =90°,AB =10,AC =8,则sin A 等于_______-.13. 在△ABC 中,AB =AC =5,sin ∠ABC =0.8,则BC =______.14.如图,在⊙O 中,过直径AB 延长线上的点C 作⊙O 的一条切线,切点为D ,若AC =7,AB =4,则sinC 的值为______.15.如图,已知AB 是⊙O 的直径,CD 是弦,且CD ⊥AB ,BC =6,AC =8,则sin ∠ABD 的值为______.16.如图,已知直线l 1∥l 2∥l 3∥l 4,相邻两条平行直线间的距离都是1,如果正方形ABCD 的四个顶点分别在四条直线上,那么sinα=______.17. 如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC 的顶点都在这些小正方形的顶点上,则sin ∠BAC 的值为________.18. 如图,一把梯子靠在垂直水平地面的墙上,梯子AB 的长是3 m ,若梯子与地面的夹角为α,则梯子顶端到地面的距离BC 为_________.三.解答题(共7小题,46分)19.(6分) 如图,在△ABC 中,∠C =90°,sinA =14,BC =2,求AC ,AB 的长.20.(6分)如图所示,在Rt △ABC 中,∠ACB =90°,a ∶c =2∶3,求sinA 和sinB 的值.21.(6分)如图,菱形ABCD 的边长为10 cm ,DE ⊥AB ,sinA =35,求DE 的长和菱形ABCD 的面积.22.(6分)在Rt △ABC 中,有两条边5,12,求两锐角的正弦值.23.(6分) 网格中的每个小正方形的边长都是1,△ABC 每个顶点在网格的交点处,求sinA 的值.24.(8分)已知:如图,在△ABC 中,∠C =90°,点D ,E 分别在边AB ,AC 上,DE ∥BC ,DE =3,BC =9.(1)求ADAB 的值;(2)若BD =10,求sin A 的值.25.(8分) 如图,在矩形ABCD 中,点E 是BC 边上的点,AE =BC ,DF ⊥AE ,垂足为点F ,连接DE.(1)求证:△ABE ≌△DFA ;(2)如果AD =10,AB =6,求sin ∠EDF 的值.参考答案:1-5CBACC 6-10BACCA 11.15 12.35 13. 45 14. 25 15.6 16. 55 17 .45 18.3sin α m19. 解:∵sinA =14,∴BC AB =14,∴AB =4BC =4×2=8,∴AC =AB 2-BC 2=82-22=60=21520. 解:在Rt △ABC 中,∠ACB =90°,a ∶c =2∶3, 设a =2k ,c =3k ,∴b =c 2-a 2=5k , ∴sinA =a c =2k 3k =23,sinB =b c =5k 3k =5320. 解:∵DE ⊥AB ,∴∠AED =90°. 在Rt △AED 中,sinA =DE AD ,即35=DE10,解得DE =6(cm), ∴菱形ABCD 的面积为10×6=60(cm 2)22. 解:①当5,12为直角边时,则斜边为13.两锐角的正弦值分别为1213,513;②当5为直角边,12为斜边时,则另一直角边为119,两锐角的正弦值分别为512,1191223. 解:作AD ⊥BC 于点D ,CE ⊥AB 于点E , 由勾股定理得AB =AC =25,BC =22,AD =3 2. 由BC ·AD =AB ·CE ,得CE =22×3225=655,sinA =CE AC =65525=3524. 解:(1)∵DE ∥BC ,∴△ADE ∽△ABC , ∴AD AB =DE BC. 又∵DE =3,BC =9, ∴AD AB =39=13. (2)根据(1)中AD AB =DE BC ,得AD AD +BD =DEBC .∵BD =10,DE =3,BC =9, ∴AD AD +10=39,解得AD =5,∴AB =15.∴sin A =BC AB =915=35.25. 解:(1)证明:在矩形ABCD 中,BC =AD ,AD ∥BC ,∠B =90°, ∴∠DAF =∠AEB. ∵DF ⊥AE ,AE =BC ,∴∠AFD =90°=∠B ,AE =AD , ∴△ABE ≌△DFA(2)由(1)知△ABE ≌△DFA ,∴AB =DF =6. 在Rt △ADF 中,AF =AD 2-DF 2=102-62=8, ∴EF =AE -AF =AD -AF =2.在Rt △DFE 中,DE =DF 2+EF 2=62+22=210, ∴sin ∠EDF =EF DE =2210=101028.2解直角三角形及其应用一、选择题1、如图,在等腰△ABC 中,∠C =90°,AC =6,D是AC 上一点,若,则AD 的长为( )A. B.2 C.1 D.2、如图,在平地上种植树时,要求株距(相邻两树间的水平距离)为4m.如果在坡度为0.5的山坡上种植树,也要求株距为4m,那么相邻两树间的坡面距离约为()A.4.5m B.4.6m C.6m D.8m3、在Rt△ABC中,∠C=90°,AC=,AB=2,则∠A等于( )A.30°B.45°C.60°D.90°4、在Rt△ABC中,∠C=90°,∠A=45°,点D在AC上,∠BDC=60°,若AD=1,则BD等于( ) A.B.C.D.5、已知△ABC中,AD是高,AD=2,DB=2,CD=,则∠BAC=( )A.105°B.15°C.105°或15° D.60°6、在Rt△ABC中,∠C=90°,,则的值为()A.2 B. C.D.7、如图,路灯距地面8米,身高1.6米的小明从距离灯的底部(点O)20米的点A处,沿OA所在的直线行走14米到点B时,人影的长度()A.增大1.5米 B.减小1.5米C.增大3.5米 D.减小3.5米8、如图,为了测量小河的宽度,小明先在河岸边任意取一点A,再在河岸另一边取两点B、C,测得∠ABC =45°,∠ACB=30°,量得BC为20米,根据以上数据,请帮小明算出河的宽度为结果保留根号()A 10B 20C D9、如图,P为⊙O外一点,PA切⊙O于点A,且OP=5,PA=4,则sin∠APO等于()A.B.C.D.10、如图,小雅家(图中点O处)门前有一条东西走向的公路,经测得有一水塔(图中点A处)在她家北偏东60度500m处,那么水塔所在的位置到公路的距离AB是()A.250mB.mC.mD.m11、如图是小明设计用手电来测量某古城墙高度的示意图.点P处放一水平的平面镜, 光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD, 且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是()A. 6米B. 8米C. 18米D.24米12、直角三角形纸片的两直角边长分别为6,8,现将如图那样折叠,使点与点重合,折痕为,则的值是()A.B.C.D.二、填空题13、一个人沿坡度比为1:2的斜坡向上走了10m,那么它的垂直高度上升了 m.14、在Rt△ABC中,∠C=90°,3a=,则sinA= .15、如下图,在△ABD中,∠D=90°,AC是角平分线,CD=2cm,则△ABC的AB边上的高等于cm。
第28章 锐角三角函数 专项训练专训1 “化斜为直”构造直角三角形的方法名师点金:锐角三角函数是在直角三角形中定义的,解直角三角形的前提是在直角三角形中进行,对于非直角三角形问题,要注意观察图形特点,恰当作辅助线,将其转化为直角三角形来解.无直角、无等角的三角形作高1.如图,在△ABC 中,已知BC =1+3,∠B =60°,∠C =45°,求AB 的长.(第1题)有直角、无三角形的图形延长某些边2.如图,在四边形ABCD 中,AB =2,CD =1,∠A =60°,∠D =∠B =90°,求四边形ABCD 的面积.(第2题)有三角函数值不能直接利用时作垂线3.如图,在△ABC 中,点D 为AB 的中点,DC ⊥AC ,sin ∠BCD =13,求tan A的值.(第3题)求非直角三角形中角的三角函数值时构造直角三角形4.如图,在△ABC中,AB=AC=5,BC=8.若∠BPC=12∠BAC,求tan∠BPC的值.(第4题)专训2巧用构造法求几种特殊角的三角函数值名师点金:对于30°、45°、60°角的三角函数值,我们都可通过定义利用特殊直角三角形三边的关系进行计算;而在实际应用中,我们常常碰到像15°、22.5°、67.5°等一些特殊角的三角函数值的计算,同样我们也可以构造相关图形,利用数形结合思想进行巧算.巧构造15°与30°角的关系的图形计算15°角的三角函数值1.求sin15°,cos15°,tan15°的值.巧构造22.5°与45°角的关系的图形计算22.5°角的三角函数值2.求tan22.5°的值.巧用折叠法求67.5°角的三角函数值3.小明在学习“锐角三角函数”中发现,将如图所示的矩形纸片ABCD沿过点B的直线折叠,使点A落在BC边上的点E处,还原后,再沿过点E的直线折叠,使点A落在BC边上的点F处,求出67.5°角的正切值.(第3题)巧用含36°角的等腰三角形中的相似关系求18°、72°角的三角函数值4.求sin18°,cos72°的值.巧用75°与30°角的关系构图求75°角的三角函数值5.求sin75°,cos75°,tan75°的值.专训3应用三角函数解实际问题的四种常见问题名师点金:在运用解直角三角形的知识解决实际问题时,要学会将千变万化的实际问题转化为数学问题,要善于将某些实际问题中的数量关系归结为直角三角形中的元素(边、角)之间的关系,若不是直角三角形,应尝试添加辅助线,构造出直角三角形进行解答,这样才能更好地运用解直角三角形的方法求解.其中仰角、俯角的应用问题,方向角的应用问题,坡度、坡角的应用问题要熟练掌握其解题思路,把握解题关键.定位问题1.某校兴趣小组从游轮拍摄海河两岸美景.如图,游轮出发点A与望海楼B的距离为300 m,在A处测得望海楼B位于A的北偏东30°方向,游轮沿正北方向行驶一段时间后到达C,在C处测得望海楼B位于C的北偏东60°方向,求此时游轮与望海楼之间的距离BC.(3取1.73,结果保留整数)(第1题)坡坝问题2.如图,水坝的横断面是梯形,背水坡AB的坡角∠BAE=45°,坝高BE=20米.汛期来临,为加大水坝的防洪强度,将坝底从A处向后水平延伸到F处,使新的背水坡BF的坡角∠F=30°,求AF的长度 .(结果精确到1米,参考数据:2≈1.414,3≈1.732)(第2题)测距问题3.一条东西走向的高速公路上有两个加油站A,B,在A的北偏东45°方向上还有一个加油站C,C到高速公路的最短距离是30千米,B,C间的距离是60千米,想要经过C修一条笔直的公路与高速公路相交,使两路交叉口P到B,C 的距离相等,请求出交叉口P到加油站A的距离.(结果保留根号)测高问题4.如图,在大楼AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D处测得楼顶B 的仰角为45°,其中点A,C,E在同一直线上.(1)求斜坡CD的高度DE;(2)求大楼AB的高度.(结果保留根号)(第4题)专训4利用三角函数解判断说理问题名师点金:利用三角函数解答实际中的“判断说理”问题:其关键是将实际问题抽象成数学问题,建立解直角三角形的数学模型,运用解直角三角形的知识来解决实际问题.航行路线问题1.如图,某货船以24海里/时的速度将一批重要物资从A处运往正东方向的M处,在点A处测得某岛C在北偏东60°的方向上.该货船航行30分钟后到达B处,此时再测得该岛在北偏东30°的方向上,已知在C岛周围9海里的区域内有暗礁.若继续向正东方向航行,该货船有无触礁危险?试说明理由.(第1题)工程规划问题2.A,B两市相距150千米,分别从A,B处测得国家级风景区中心C处的方位角如图所示,风景区区域是以C为圆心、45千米为半径的圆,tanα=1.627,tanβ=1.373.为了开发旅游,有关部门设计修建连接A,B两市的高速公路.问连接A,B两市的高速公路会穿过风景区吗?请说明理由.(第2题)拦截问题3.如图,在一次军事演习中,蓝方在一条东西走向的公路上的A处朝正南方向撤退,红方在公路上的B处沿南偏西60°方向前进实施拦截,红方行驶1 000米到达C处后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同的距离,刚好在D处成功拦截蓝方,求拦截点D处到公路的距离.(结果不取近似值)(第3题)台风影响问题4.如图所示,在某海滨城市O附近海面有一股强台风,据监测,当前台风中心位于该城市的南偏东20°方向200 km的海面P处,并以20 km/h的速度向北偏西65°的PQ方向移动,台风侵袭的范围是一个圆形区域,当前半径为60 km,且圆的半径以10 km/h的速度不断扩大.(1)当台风中心移动4 h时,受台风侵袭的圆形区域半径增大到________km;当台风中心移动t(h)时,受台风侵袭的圆形区域半径增大到____________km.(2)当台风中心移动到与城市O距离最近时,这股台风是否会侵袭这座海滨城市?请说明理由.(参考数据:2≈1.41,3≈1.73)(第4题)专训5三角函数在学科内的综合应用名师点金:1.三角函数与其他函数的综合应用:此类问题常常利用函数图象与坐标轴的交点构造直角三角形,再结合锐角三角函数求线段的长,最后可转化为求函数图象上的点的坐标.2.三角函数与方程的综合应用:主要是与一元二次方程之间的联系,利用方程根的情况,最终转化为三角形三边之间的关系求解.3.三角函数与圆的综合应用:主要利用圆中的垂径定理、直径所对的圆周角是直角等,将圆中的边角关系转化为同一直角三角形的边角关系求解.4.三角函数与相似三角形的综合应用:此类问题常常是由相似得成比例线段,再转化成所求锐角的三角函数.三角函数与一次函数的综合应用1.如图,直线y=kx-1与x轴、y轴分别交于B,C两点,tan∠OCB=1 2 .(1)求点B的坐标和k的值;(2)若点A(x,y)是直线y=kx-1上的一个动点(且在第一象限内),在点A 的运动过程中,试写出△AOB的面积S与x的函数关系式.(第1题)三角函数与二次函数的综合应用2.如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴直线x=1交x轴于点B,连接EC,AC,点P,Q为动点,设运动时间为t秒.(1)求点A的坐标及抛物线对应的函数解析式;(第2题)(2)如图,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?三角函数与反比例函数的综合应用3.如图,反比例函数y=kx(x>0)的图象经过线段OA的端点A,O为原点,作AB⊥x轴于点B,点B的坐标为(2,0),tan∠AOB=3 2 .(1)求k的值;(2)将线段AB沿x轴正方向平移到线段DC的位置,反比例函数y=kx(x>0)的图象恰好经过DC的中点E,求直线AE对应的函数解析式;(3)若直线AE与x轴交于点M,与y轴交于点N,请你探索线段AN与线段ME的大小关系,写出你的结论,并说明理由.(第3题)三角函数与方程的综合应用4.在△ABC中,∠A,∠B,∠C的对边分别是a,b,c.已知a,b是关于x 的一元二次方程x2-(c+4)x+4c+8=0的两个根,且9c=25a sin A.(1)试判断△ABC的形状;(2)△ABC的三边长分别是多少?5.已知关于x的方程5x2-10x cosα-7cosα+6=0有两个相等的实数根,求边长为10 cm且两边所夹的锐角为α的菱形的面积.三角函数与圆的综合应用6.如图,AD是△ABC的角平分线,以点C为圆心、CD为半径作圆交BC的延长线于点E,交AD于点F,交AE于点M,且∠B=∠CAE,EF FD=4 3.(1)求证:点F是AD的中点;(2)求cos∠AED的值;(3)如果BD=10,求半径CD的长.(第6题)7.如图,AB为⊙O的直径,直线CD切⊙O于点D,AM⊥CD于点M,BN⊥CD 于N.(1)求证:∠ADC=∠ABD;(2)求证:AD2=AM·AB;(3)若AM=185,sin∠ABD=35,求线段BN的长.(第7题)三角函数与相似三角形的综合应用8.如图,在矩形ABCD中,点E是CD的中点,点F是边AD上一点,连接FE并延长交BC的延长线于点G,连接BF,BE,且BE⊥FG.(1)求证:BF=BG;(2)若tan∠BFG=3,S△CGE=63,求AD的长.(第8题)专训6全章热门考点整合应用名师点金:本章主要学习锐角三角函数的定义,锐角三角函数值,解直角三角形,以及解直角三角形的实际应用,重点考查运用解直角三角形的知识解决一些几何图形中的应用和实际应用,是中考的必考内容.其主要考点可概括为:2个概念,1个运算,2个应用,2个技巧.2个概念概念1:锐角三角函数1.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,CD⊥AB于点D,求∠BCD的三个三角函数值.(第1题)概念2:解直角三角形2.如图,在Rt△ABC中,∠ACB=90°,sin B=35,D是BC上一点,DE⊥AB于点E,CD=DE,AC+CD=9,求BE,CE的长.(第2题)1个运算——特殊角的三角函数值与实数运算3.计算:(1)tan30°sin60°+cos230°-sin245°tan45°;(2)14tan245°+1sin230°-3cos230°+tan45°cos60°-sin40°cos50°.2个应用应用1:解直角三角形在学科内应用4.如图,在矩形ABCD中,AB=4,AD=5,P是射线BC上的一个动点,过点P作PE⊥AP,交射线DC于点E,射线AE交射线BC于点F,设BP=a.(1)当点P在线段BC上时(点P与点B,C都不重合),试用含a的代数式表示CE的长;(2)当a=3时,连接DF,试判断四边形APFD的形状,并说明理由;(3)当tan∠PAE=12时,求a的值.(第4题)应用2:解直角三角形的实际应用5.如图,自来水厂A和村庄B在小河l的两侧,现要在A,B间铺设一条输水管道.为了搞好工程预算,需测算出A,B间的距离.一小船在点P处测得A 在正北方向,B位于南偏东24.5°方向,前行1 200 m,到达点Q处,测得A位于北偏西49°方向,B位于南偏西41°方向.(1)线段BQ与PQ是否相等?请说明理由.(2)求A,B间的距离(参考数据cos41°≈0.75).(第5题)6.如图,为了测量山顶铁塔AE的高,小明在27 m高的楼CD底部D测得塔顶A的仰角为45°,在楼顶C测得塔顶A的仰角为36°52′.已知山高BE为56 m,楼的底部D与山脚在同一水平线上,求该铁塔的高AE.(参考数据:sin 36°52′≈0.60,tan36°52′≈0.75)(第6题)2个技巧技巧1:“化斜为直”构造直角三角形解三角形的技巧7.如图,在△ABC中,∠A=30°,tan B=32,AC=23,求AB的长.(第7题)技巧2:“割补法”构造直角三角形求解的技巧8.如图所示,已知四边形ABCD,∠ABC=120°,AD⊥AB,CD⊥BC,AB=303,BC=503,求四边形ABCD的面积.(要求:用分割法和补形法两种方法求解)(第8题)答案专训11.解:如图,过点A作AD⊥BC,垂足为点D.设BD=x,在Rt△ABD中,AD=BD·tan B=x·tan60°=3x. 在Rt△ACD中,∵∠C=45°,∴∠CAD=90°-∠C=45°,∴∠C=∠CAD,∴CD=AD=3x.∵BC=1+3,∴3x+x=1+3,解得x=1,即BD=1.在Rt△ABD中,∵cos B=BD AB ,∴AB=BDcos B=1cos60°=2.(第1题)(第2题) 2.解:如图,延长BC,AD交于点E.∵∠A=60°,∠B=90°,∴∠E=30°.在Rt△ABE中,BE=ABtan E=2tan30°=23,在Rt△CDE中,EC=2CD=2,∴DE=EC·cos30°=2×32= 3.∴S四边形ABCD =S Rt△ABE-S Rt△ECD=12AB·BE-12CD·ED=12×2×23-12×1×3=332.点拨:本题看似是四边形问题,但注意到∠B=90°,∠A=60°,不难想到延长BC,AD交于点E,构造出直角三角形,将所求问题转化为直角三角形问题来解决.3.解:如图,过点B作BE⊥CD,交CD的延长线于点E.∵点D是AB的中点,∴AD=DB.又∵∠ACD=∠BED=90°,∠ADC=∠BDE,∴△ACD≌△BED,∴CD=DE,AC=BE.在Rt△CBE中,sin∠BCE=BEBC=13,∴BC=3BE.∴CE=BC2-BE2=22BE,∴CD=12CE=2BE=2AC.∴tan A=CDAC=2ACAC= 2.方法点拨:构造直角三角形,把所要求的量与已知量建立关系是解题的关键.(第3题)(第4题)4.解:如图,过点A作AE⊥BC于点E,∵AB=AC=5,∴BE=12BC=12×8=4,∠BAE=12∠BAC.∵∠BPC=12∠BAC,∴∠BPC=∠BAE.在Rt△BAE中,由勾股定理得AE=AB2-BE2=52-42=3,∴tan∠BPC=tan∠BAE=BEAE=43.专训21.解:如图,在Rt△ABC中,∠BAC=30°,∠C=90°,延长CA到D,使AD=AB,则∠D=15°,设BC=a,则AB=2a,AC=3a,∴AD=2a,CD=(2+3)a.在Rt△BCD中,BD=BC2+CD2=a2+(7+43)a2=(6+2)a.∴sin15°=sin D=BCBD=a(6+2)a=6-24;cos15°=cos D=CDBD=(2+3)a(6+2)a=6+24;tan15°=tan D=BCCD=a(2+3)a=2- 3.(第1题)(第2题)2.解:如图,在Rt△ABC中,∠C=90°,AC=BC,延长CA到D,使DA=AB,则∠D=22.5°,设AC=BC=a,则AB=2a,∴AD=2a,DC=(2+1)a,∴tan22.5°=tan D=BCCD=a(2+1)a=2-1.3.解:∵将矩形纸片ABCD沿过点B的直线折叠,使点A落在BC边上的点E处,∴AB=BE,∠AEB=∠EAB=45°,还原后,再沿过点E的直线折叠,使点A落在BC边上的点F处,∴AE=EF,∠EAF=∠EFA=45°÷2=22.5°,∴∠FAB=67.5°.设AB=x,则AE=EF=2x,∴tan∠FAB=tan67.5°=FBAB=2x+xx=2+1.4.解:如图,作△ABC,使∠BAC=36°,AB=AC,∠ABC的平分线BD交AC于D 点,过点A 作AE ⊥BC 于E 点,设BC =a ,则BD =AD =a ,易得△ABC ∽△BCD ,∴AB BC =BC CD ,∴AB a =a AB -a, 即AB 2-a·AB-a 2=0,∴AB =5+12a(负根舍去), ∴sin 18°=sin ∠BAE =BE AB =5-14, cos 72°=cos ∠ABE =BE AB=5-14.(第4题)(第5题)5.解:方法1:利用第1题的图形求解.易知∠CBD =75°, ∴sin 75°=CD BD =(2+3)a (6+2)a =6+24,cos 75°=BC BD=a (6+2)a =6-24,tan 75°=CD BC=(2+3)aa=2+ 3. 方法2:如图,作△ABD ,使∠ADB =90°,∠DAB =30°,延长BD 到C ,使DC =DA ,过B 作BE ⊥AC 于E ,则∠BAE =75°,设AD =DC =a ,则AC =2a ,BD =33a ,AB =233a ,∴BC =BD +CD =⎝ ⎛⎭⎪⎫33+1a.则CE =BE =BC·sin 45°=6+326a,∴AE=AC-CE=32-66a,∴sin75°=sin∠BAE=BEAB=32+66a233a=6+24,cos75°=cos∠BAE=AEAB=6-24,tan75°=tan∠BAE=BEAE=2+ 3.专训3(第1题)1.解:根据题意可知AB=300 m.如图所示,过点B作BD⊥AC,交AC的延长线于点D.在Rt△ADB中,因为∠BAD=30°,所以BD=12AB=12×300=150(m).在Rt△CDB中,因为sin∠DCB=BDBC,所以BC=BDsin∠DCB=150sin60°=3003≈173(m).答:此时游轮与望海楼之间的距离BC约为173 m.点拨:本题也可过C作CD⊥AB于D,由已知得BC=AC,则AD=12AB=150 m,所以在Rt△ACD中,AC=ADcos30°=15032≈173(m).所以BC=AC≈173 m.2.解:在Rt△ABE中,∠BEA=90°,∠BAE=45°,BE=20米,∴AE=20米.在Rt△BEF中,∠BEF=90°,∠F=30°,BE=20米,∴EF=BEtan30°=2033=203(米).∴AF=EF-AE=203-20≈20×1.732-20=14.64≈15(米).AF的长度约是15米.3.解:分两种情况:(1)如图①,在Rt△BDC中,CD=30千米,BC=60千米.∴sin B=CDBC=12,∴∠B=30°.∵PB=PC,∴∠BCP=∠B=30°.∴在Rt△CDP中,∠CPD=∠B+∠BCP=60°,∴DP=CDtan∠CPD=30tan60°=103(千米).在Rt△ADC中,∵∠A=45°,∴AD=DC=30千米.∴AP=AD+DP=(30+103)千米.(第3题)(2)如图②,同理可求得DP=103千米,AD=30千米.∴AP=AD-DP=(30-103)千米.故交叉口P到加油站A的距离为(30±103)千米.点拨:本题运用了分类讨论思想,针对P点位置分两种情况讨论,即P可能在线段AB上,也可能在BA的延长线上.4.解:(1)在Rt△DCE中,DC=4米,∠DCE=30°,∠DEC=90°,∴DE=12DC=2米;(第4题)(2)如图,过点D作DF⊥AB,交AB于点F,则∠BFD=90°,∠BDF=45°,∴∠DBF=45°,即△BFD为等腰直角三角形,设BF=DF=x米,∵四边形DEAF为矩形,∴AF=DE=2米,即AB=(x+2)米,在Rt△ABC中,∠ABC=30°,∴BC=ABcos30°=x+232=2x+43=3(2x+4)3(米),∵∠DCE=30°,∠ACB=60°,∴∠DCB=90°,在Rt△BCD中,BD=2BF=2x米,DC=4米,根据勾股定理得:2x2=(2x+4)23+16,解得:x=4+43或x=4-43(舍去),则大楼AB的高度为(6+43)米.专训41.解:若继续向正东方向航行,该货船无触礁危险.理由如下:如图,过点C作CD⊥AM于点D.依题意,知AB=24×3060=12(海里),∠CAB=90°-60°=30°,∠CBD=90°-30°=60°.在Rt△DBC中,tan∠CBD=tan60°=CD BD ,∴BD=33CD.在Rt△ADC中,tan∠CAD=tan30°=CDAD,∴AD=3CD.又∵AD=AB+BD,∴3CD=12+33CD,解得CD=63海里.∵63>9,∴若继续向正东方向航行,该货船无触礁危险.技巧点拨:将这道航海问题抽象成数学问题,建立解直角三角形的数学模型.该货船有无触礁危险取决于岛C到航线AB的距离与9海里的大小关系,因此解决本题的关键在于求岛C到航线AB的距离.(第1题)(第2题)2.解:不会穿过风景区.理由如下:如图,过C作CD⊥AB于点D,根据题意得:∠ACD=α,∠BCD=β,则在Rt△ACD中,AD=CD·tanα,在Rt△BCD 中,BD=CD·tanβ.∵AD+DB=AB,∴CD·tanα+CD·tanβ=AB,∴CD=ABtanα+tanβ=1501.627+1.373=1503=50(千米).∵50>45,∴连接A,B两市的高速公路不会穿过风景区.3.解:如图,过B作AB的垂线,过C作AB的平行线,两线交于点E;过C 作AB的垂线,过D作AB的平行线,两线交于点F,则∠E=∠F=90°,拦截点D处到公路的距离DA=BE+CF.在Rt△BCE中,∵∠E=90°,∠CBE=60°,∴∠BCE=30°,∴BE=12BC=12×1 000=500(米);在Rt△CDF中,∵∠F=90°,∠DCF=45°,CD=1 000米,∴CF=22CD=5002(米).∴DA =BE +CF =(500+5002)米,即拦截点D 处到公路的距离是(500+5002)米.(第3题)(第4题)4.解:(1)100;(60+10t)(2)不会,理由如下:过点O 作OH ⊥PQ 于点H ,如图.在Rt △POH 中,∠OHP =90°,∠OPH =65°-20°=45°,OP =200 km ,∴OH =PH =OP·sin ∠OPH =200×sin 45°=1002≈141(km ). 设经过x h 时,台风中心从P 移动到H ,台风中心移动速度为20 km /h , 则20x =1002,∴x =5 2.此时,受台风侵袭的圆形区域半径应为60+10×52≈130.5(km ). 台风中心在整个移动过程中与城市O 的最近距离OH ≈141 km ,而台风中心从P 移动到H 时受侵袭的圆形区域半径约为130.5 km ,130.5 km <141 km ,因此,当台风中心移动到与城市O 距离最近时,城市O 不会受到台风侵袭.专训51.解:(1)把x =0代入y =kx -1,得y =-1,∴点C 的坐标是(0,-1),∴OC =1.在Rt △OBC 中,∵tan ∠OCB =OB OC =12,∴OB =12.∴点B 的坐标是⎝ ⎛⎭⎪⎫12,0.把B ⎝ ⎛⎭⎪⎫12,0的坐标代入y =kx -1,得12k -1=0.解得k =2.(2)由(1)知直线AB 对应的函数关系式为y =2x -1,所以△AOB 的面积S 与x 的函数关系式是S =12OB·y=12×12(2x -1)=12x -14.2.解:(1)∵抛物线的对称轴为直线x =1,矩形OCDE 的三个顶点分别是C(3,0),D(3,4),E(0,4),点A 在DE 上,∴点A 坐标为(1,4),设抛物线对应的函数解析式为y =a(x -1)2+4,把C(3,0)的坐标代入抛物线对应的函数解析式,可得a(3-1)2+4=0,解得a =-1.故抛物线对应的函数解析式为y =-(x -1)2+4,即y =-x 2+2x +3. (2)依题意有OC =3,OE =4,∴CE =OC 2+OE 2=32+42=5, 当∠QPC =90°时,∵cos ∠QCP =PC CQ =OCCE, ∴3-t 2t =35,解得t =1511; 当∠PQC =90°时,∵cos ∠QCP =CQ PC =OCCE ,∴2t 3-t =35,解得t =913.∴当t =1511或t =913时,△PCQ 为直角三角形. 3.解:(1)先求出A 点的坐标为(2,3),∴k =6.(2)易知点E 纵坐标为32,由点E 在反比例函数y =6x 的图象上,求出点E 的坐标为⎝ ⎛⎭⎪⎫4,32,结合A 点坐标为(2,3),求出直线AE 对应的函数解析式为y =-34x +92. (3)结论:AN =ME.理由:在解析式y =-34x +92中,令y =0可得x =6,令x=0可得y =92.∴点M(6,0),N ⎝ ⎛⎭⎪⎫0,92.(第3题)方法一:如图,延长DA 交y 轴于点F ,则AF ⊥ON ,且AF =2,OF =3, ∴NF =ON -OF =32.根据勾股定理可得AN =52.∵CM =6-4=2,EC =32,∴根据勾股定理可得EM =52,∴AN =ME.方法二:如图,连接OE ,延长DA 交y 轴于点F ,则AF ⊥ON ,且AF =2, ∵S △EOM =12OM·EC=12×6×32=92,S △AON =12ON·AF=12×92×2=92,∴S △EOM =S △AON .∵AN 和ME 边上的高相等,∴AN =ME.4.解:(1)∵a ,b 是关于x 的方程x 2-(c +4)x +4c +8=0的两个根,∴a +b =c +4,ab =4c +8.∴a 2+b 2=(a +b)2-2ab =(c +4)2-2(4c +8)=c 2. ∴△ABC 为直角三角形. 又∵(a -b)2=(a +b)2-4ab =(c +4)2-4(4c +8) =c 2-8c -16,∴不能确定(a -b)2的值是否为0,∴不能确定a 是否等于b ,∴△ABC 的形状为直角三角形.(2)∵△ABC 是直角三角形,∠C =90°,∴sin A =ac .将其代入9c =25a sin A ,得9c =25a·ac,9c 2=25a 2,3c =5a.∴c=53a.∴b=c2-a2=⎝⎛⎭⎪⎫53a2-a2=43a.将b=43a,c=53a代入a+b=c+4,解得a=6.∴b=43×6=8,c=53×6=10,即△ABC的三边长分别是6,8,10.5.解:∵一元二次方程有两个相等的实数根,∴(-10cosα)2-20(-7cosα+6)=0,解得cosα=-2(舍去)或cosα=35 .设在一内角为α的直角三角形中,α的邻边长为3k(k>0),∴斜边长为5k,则α的对边长为(5k)2-(3k)2=4k,∴sinα=4 5,则菱形一边上的高为10sinα=8 cm,∴S菱形=10×8=80 cm2.6.(1)证明:∵AD是△ABC的角平分线,∴∠BAD=∠DAC.∵∠ADE=∠BAD+∠B,∠DAE=∠CAD+∠CAE,且∠B=∠CAE,∴∠ADE=∠DAE,∴ED=EA.∵ED为⊙O的直径,∴∠DFE=90°,∴EF⊥AD,∴点F是AD的中点.(2)解:如图,连接DM,则DM⊥AE.设EF=4k,DF=3k,则ED=EF2+DF2=5k.∵12AD·EF=12AE·DM,∴DM=AD·EFAE=6k·4k5k=245k,∴ME=DE2-DM2=75k,∴cos∠AED=MEDE=725.(3)解:∵∠CAE=∠B,∠AEC为公共角,∴△AEC∽△BEA,∴AE BE=CE AE,∴AE2=CE·BE,∴(5k)2=52k·(10+5k).∵k>0,∴k=2,∴CD=52k=5.(第6题)(第7题)7.(1)证明:如图,连接OD,∵直线CD切⊙O于点D,∴∠CDO=90°,∵AB为⊙O的直径,∴∠ADB=90°,∴∠1+∠2=∠2+∠3=90°,∴∠1=∠3,∵OB=OD,∴∠3=∠4,∴∠ADC=∠ABD.(2)证明:∵AM⊥CD,∴∠AMD=∠ADB=90°,∵∠1=∠4,∴△ADM∽△ABD,∴AMAD=ADAB,∴AD2=AM·AB.(3)解:∵sin∠ABD=35,∴sin∠1=35,∵AM=185,∴AD=6,∴AB=10,∴BD=AB2-AD2=8,∵BN⊥CD,∴∠BND=90°,∴∠DBN+∠BDN=∠1+∠BDN=90°,∴∠DBN=∠1,∴sin∠NBD=35,∴DN=245,∴BN=BD2-DN2=325.8.(1)证明:∵四边形ABCD是矩形,∴∠D=∠DCG=90°,∵点E是CD的中点,∴DE=CE.∵∠DEF=∠CEG,∴△EDF≌△ECG,∴EF=EG.又∵BE⊥FG,∴BE是FG的中垂线,∴BF=BG.(2)解:∵BF=BG,∴∠BFG=∠G,∴tan∠BFG=tan G=3,设CG=x,则CE=3x,∴S△CGE =32x2=63,解得x=23(负值舍去),∴CG=23,CE=6,又易通过三角形相似得出EC2=BC·CG,∴BC=63,∴AD=6 3.专训61.思路导引:求∠BCD的三个三角函数值,关键要弄清它们的定义.由于∠BCD是Rt△BCD中的一个内角,根据定义,仅一边BC是已知的,此时有两条路可走,一是设法求出BD或CD,二是把∠BCD转化成∠A,显然走第二条路较方便,因为在Rt△ABC中,三边均可得出,利用三角函数的定义即可求出答案.解:在Rt△ABC中,∵∠ACB=90°,∴∠BCD+∠ACD=90°.∵CD⊥AB,∴∠ACD+∠A=90°,∴∠BCD=∠A.在Rt△ABC中,由勾股定理,得AB=AC2+BC2=10,∴sin∠BCD=sin A=BCAB=45,cos∠BCD=cos A=ACAB=35,tan∠BCD=tan A=BCAC=43.2.思路导引:由sin B=DEDB=ACAB=35,可设DE=CD=3k,则DB=5k,求得BC=8k,AC=6k,AB=10k.再由AC+CD=9,可列出以k为未知数的方程,进而求出各边的长.在Rt△BDE中,由勾股定理求BE的长,过C作CF⊥AB于点F,再用勾股定理求出CE的长.解:∵sin B=35,∠ACB=90°,DE⊥AB,∴sin B=DEDB=ACAB=35.设DE=CD=3k,则DB=5k,∴CB=8k,AC=6k,AB=10k.∵AC+CD=9,∴6k+3k=9,∴k=1,∴DE=3,DB=5,∴BE=52-32=4.过点C作CF⊥AB于点F,如图,则CF∥DE,∴DECF=BEBF=BDBC=58,求得CF=245,BF=325,∴EF=12 5.在Rt△CEF中,CE=CF2+EF2=1255.(第2题)点拨:方程思想是一种重要的思想方法,运用方程思想可以建立已知量和待求量之间的关系式,平时学习时,应该不断积累用方程思想解题的方法.3.解:(1)原式=33×32+⎝⎛⎭⎪⎫322-⎝⎛⎭⎪⎫222×1=12+34-12=34.(2)原式=14×12+1⎝⎛⎭⎪⎫122-3×⎝⎛⎭⎪⎫322+112-1=14+4-3×34+2-1=3.4.解:设CE=y,(1)∵四边形ABCD是矩形,∴AB=CD=4,BC=AD=5,∠B=∠BCD=∠D=90°.∵BP=a,CE=y,∴PC=5-a,DE=4-y,∵AP⊥PE,∴∠APE=90°,∴∠APB+∠CPE=90°,∵∠APB+∠BAP=90°,∴∠CPE=∠BAP,∴△ABP∽△PCE,∴BPCE=ABPC,∴y=-a2+5a4,即CE=-a2+5a4.(2)四边形APFD是菱形,理由如下:当a=3时,y=-32+5×34=32,即CE =32,∵四边形ABCD是矩形,∴AD∥BF,∴△AED∽△FEC,∴ADCF=DECE,∴CF=3,易求PC=2,∴PF=PC+CF=5.∴PF=AD,∴四边形APFD是平行四边形,在Rt△APB中,AB=4,BP=3,∠B=90°,∴AP=5=PF,∴四边形APFD是菱形.(3)根据tan∠PAE=12可得APPE=2,易得△ABP ∽△PCE ,∴BP CE =AB PC =AP PE =2,得a y =45-a =2或a y =4a -5=2,解得a =3,y =1.5或a =7,y =3.5.∴a =3或7.5.解:(1)相等.理由如下:由已知条件易知,∠QPB =90°-24.5°=65.5°,∠PQB =90°-41°=49°,∴∠PBQ =180°-65.5°-49°=65.5°. ∴∠PBQ =∠BPQ.∴BQ =PQ.(2)由(1),得BQ =PQ =1 200 m .由已知条件易知∠AQP =90°-49°=41°.在Rt △APQ 中,AQ =PQ cos ∠AQP ≈1 2000.75=1 600(m ).又∵∠AQB =∠AQP +∠PQB =90°, ∴在Rt △AQB 中,AB =AQ 2+BQ 2≈ 1 6002+1 2002=2 000(m ).∴A ,B 间的距离约是2 000 m .点拨:证明线段相等常利用全等三角形的对应边相等或等角对等边;计算线段的长度常利用锐角三角函数或勾股定理.6.解:如图,过点C 作CF ⊥AB 于点F.(第6题)设铁塔高AE =x m ,由题意得EF =BE -CD =56-27=29(m ), AF =AE +EF =(x +29)m .在Rt △AFC 中,∠ACF =36°52′,AF =(x +29)m , 则CF =AF tan 36°52′≈x +290.75=⎝ ⎛⎭⎪⎫43x +1163(m ),在Rt △ABD 中,∠ADB =45°,AB =(x +56)m ,则BD =AB =(x +56)m , ∵CF =BD ,∴x +56≈43x +1163,解得x ≈52.答:该铁塔的高AE 约为52 m .7.解:如图,过点C作CD⊥AB,垂足为D.在Rt△ACD中,∵AC=23,∠A=30°,∴CD=12AC=3,AD=AC·cos30°=23×32=3.在Rt△BCD中,CDDB=tan B=32,∴DB=2CD3=233=2,∴AB=AD+DB=3+2=5.(第7题)方法总结:在不含直角三角形的图形中,如果求与三角形有关的线段长、非特殊角的某个三角函数、面积等问题,一般可通过分割图形、作高等方法,把问题转化为解直角三角形得以解决,引辅助线的技巧是解此类题的关键.8.解法1:如图①所示,过点B作BE∥AD交DC于点E,过点E作EF∥AB 交AD于点F,则BE⊥AB,EF⊥AD.∴四边形ABEF是矩形.∴EF=AB,AF=BE.∵∠ABC=120°,∴∠CBE=120°-90°=30°,∠D=180°-120°=60°.在Rt△BCE中,BE=BCcos∠CBE=503cos30°=50332=100,EC=BC·tan∠CBE=503×tan30°=503×33=50.在Rt△DEF中,DF=EFtan D=ABtan60°=3033=30.∴AD=AF+DF=BE+DF=100+30=130.∴S四边形ABCD=S梯形ABED+S△BCE=12(AD+BE)·AB+12BC·EC=12×(130+100)×303+12×503×50=4 700 3.知识像烛光,能照亮一个人,也能照亮无数的人。
人教版九年级数学下册第28章锐角三角函数全章训练题含答案1. 在Rt △ABC 中,∠C =90°,假定将各边长度都扩展为原来的2倍,那么∠A 的正弦值( D )A .扩展2倍B .增加2倍C .扩展4倍D .不变2. 如图,在△ABC 中,∠C =90°,cosB =45,那么AC ∶BC ∶AB =( A )A .3∶4∶5B .4∶3∶5C .3∶5∶4D .5∶3∶43. 如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为点D ,假定AC =5,BC =2,那么sin ∠ACD 的值为( A ) A.53 B.255 C.52 D.234.如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,那么tan A =( D )A.35B.45C.34D.435.计算sin30°·tan45°的结果是( A )A.12B.32C.36D.246.如图,在Rt △ABC 中,∠ACB =90°,BC =1,AB =2,那么以下结论正确的选项是( D )A .sin A =32B .tan A =12C .cos B =32D .tan B = 3 7.如图,AC 是电杆的一根拉线,测得BC =6米,∠ACB =52°,那么拉线AC 的长为( D )A.6sin52°米B.6tan52°米 C .6·cos52°米 D.6cos52°米 8.如图是拦水坝的横断面,斜坡AB 的水平宽度为12米,斜面坡度为1∶2,那么斜坡AB 的长为( B )A .43米B .65米C .125米D .24米9.在△ABC 中,∠C =90°,tan A =34,那么cos B 的值是( C ) A.45 B.34 C.35 D.4310.如图,渔船在A 处看到灯塔C 在北偏东60°方向上,渔船向正西方向飞行了12海里抵达B 处,在B 处看到灯塔C 在正南方向上,这时渔船与灯塔C 的距离是( D )A .123海里B .63海里C .6海里D .43海里11.如图,为测量B 点到河岸AD 的距离,在A 点测得∠BAD =30°,在C 点测得∠BCD =60°,又测得AC =100米,那么B 点到河岸AD 的距离为( B )A .100米B .503米 C.20033米 D .50米 12.小明去爬山,在山脚看山顶角度为30°,小明在坡比为5∶12的山坡上走1300米,此时小明看山顶的角度为60°,求山高( B )A .(600-2503)米B .(6003-250)米C .(350+3503)米D .5003米13.在Rt △ABC 中,∠C =90°,假设AC =3,AB =5,那么cos B 的值是 __45__. 14.在△ABC 中,∠C =90°,BC =2,sin A =23,那么AC 的长是__5__. 15.如图,在空中上的点A 处测得树顶B 的仰角为α度,AC =7米,那么树高BC 为__7tan α__米.(用含α的代数式表示),第13题图) ,第14题图) ,第16题图) ,第17题图)16.如图,△ABC 中,∠C =90°,BC =4 cm ,tan B =32,那么△ABC 的面积是__12__cm 2.17.在△ABC 中,假定∠A ,∠B 满足|cos A -12|+(sin B -22)2=0,那么∠C =__75°__.18.长为4 m 的梯子搭在墙上与空中成45°角,作业时调整为60°角(如下图),那么梯子的顶端沿墙面降低了__(23-22)__m.19.如图,在修建平台CD 的顶部C 处,测得大树AB 的顶部A 的仰角为45°,测得大树AB 的底部B 的俯角为30°,平台CD 的高度为5 m ,那么大树的高度为3)__m .(结果保管根号)20.规则:sin (-x)=-sin x ,cos (-x)=cos x ,sin (x +y)=sin x ·cos y +cos x ·sin y.据此判别以上等式成立的是__②③④__.(写出一切正确的序号)①cos(-60°)=-12;②sin75°=6+24;③sin2x =2sin x ·cos x ; ④sin(x -y )=sin x ·cos y -cos x ·sin y . 21.计算:(1)sin 230°+cos 245°+3sin60°·tan45°;解:94(2)cos 230°+cos 260°tan60°·tan30°+sin 245°. 解:3222.在Rt △ABC 中,∠C =90°,a =10,c =20,解这个直角三角形. 解:∠A =30°,∠B =60°,b =10 323.假设是我国某海域内的一个小岛,其平面图如图甲所示,小明据此结构出该岛的一个数学模型如图乙所示,其中∠B =∠D =90°,AB =BC =15千米,CD =32千米.求∠ACD 的余弦值.解:衔接AC ,在Rt △ABC 中,AC =AB 2+BC 2=152千米,在Rt △ACD 中,cos ∠ACD =CD AC =32152=15,∴∠ACD 的余弦值为1524.如图,在Rt △ABC 中,∠C =90°,BC =8,tan B =12,点D 在BC 上,且BD =AD .求AC 的长和cos ∠ADC 的值.解:∵在Rt △ABC 中,BC =8,tanB =12,∴AC =4.设AD =x ,那么BD =x ,CD =8-x ,由勾股定理,得(8-x)2+42=x 2.解得x =5.∴cos ∠ADC =DC AD=3525.如图,A ,B ,C 表示修建在一座山上的三个缆车站的位置,AB ,BC 表示衔接缆车站的钢缆.A ,B ,C 所处位置的海拔AA 1,BB 1,CC 1区分为160米,400米,1000米,钢缆AB ,BC 区分与水平线AA 2,BB 2所成的夹角为30°,45°,求钢缆AB 和BC 的总长度.(结果准确到1米)解:依据题意知BD =400-160=240米,CB 2=1000-400=600米,在Rt△ADB 中,sin30°=BD AB ,∴AB =BD sin30°=480米,在Rt △BB 2C 中,sin45°=CB 2BC ,∴BC =CB 2sin45°=6002米,AB +BC =(480+6002)米≈1329米 26.如图,某高速公路树立中需求确定隧道AB 的长度.在离空中1500 m 的高度C 处的飞机上,测量人员测得正前方A ,B 两点处的俯角区分为60°和45°.求隧道AB 的长.(3≈1.73) 解:∵OA =1500×tan30°=5003,OB =OC =1500,∴AB =1500-5003≈1500-865=635(m)。