卓越周期与特征周期
- 格式:doc
- 大小:25.50 KB
- 文档页数:2
场地卓越周期和特征周期是两个不同的概念它们的区别在于:1)研究途径不同.卓越周期是通过场地地震动记录的分析得到,而特征周期是通过场地地面运动反应谱的分析得到.2)研究意义或用途不尽相同.除了可用于土层动力反应分析的研究外,场地卓越周期还可以防止特殊的地震效应发生,避免拟建建筑物自振周期与场地脉动卓越周期一致或接近,在地震发生时,地基与建筑物产生共振或类共振;对某一特定场址,特征周期可以根据实测强震记录计算,并综合场地安全性评价的结果确定该场址的设计特征周期用于抗震设计.3)两者在取值上的差异.从取值大小上考虑,场地特征周期一般大于卓越周期;从取值特点上考虑,某一特定场地可以存在2个或多个地震动卓越周期[ ,而其特征周期只有1个,是反应谱的下降段的起始周期;此外,两者的取值不具有可比性,前者研究的是地面运动的频度较大的周期,后者研究的是在场地运动各频率激励的综合作用下结构的反应中满足某一特征关系的周期,因此,卓越周期大的场地,并不意味着其特征周期~定大,反之,也并不意味着特征周期就小.4)场地卓越周期更多的是场地地震动特性的客观反映,即它是地震动记录上客观的存在1个或多个特别卓越的周期;而特征周期更多的体现了人们的主观性,即在考虑我国经济发展和人们对地震灾害的可接受程度的基础上,对其规定相应的计算公式,并根据此公式在反应谱上确定特征周期,供抗震设计使用.卓越周期是指随机振动过程中出现概率最多的周期,常用以描述地震动或场地特性。
地震波在土层中传播,由于土层的过滤特性与选择放大作用(过滤与放大通过不同性质界面的多次反射来实现),周期与场地土固有周期接近的地震波得到增强(通过共振作用放大),此周期称为场地(地震动)卓越周期。
设计特征周期也可称为设计反应谱特征周期,是指地震影响系数曲线下降段起始点对应的周期值,与地震震级、震中距和场地类别等因素有关,规范通过设计地震分组和场地类别反映,场地越软,震级、震中距越大,值越大。
1.卓越周期的定义地震发生时,由震源发出的地震波传至地表岩土体,迫使其振动,由于表层岩土体对不同周期的地震波有选择放大作用,某种岩土体总是以某种周期的波选择放大得尤为明显而突出,使地震记录图上的这种波记录得多而好.这种周期即为该岩土体的特征周期,也叫做卓越周期.由多层土组成的厚度很大的沉积层,当深部传来的剪切波通过它向地面传播时就会发生多次反射,由于波的叠加而增强,使长周期的波尤为卓越.卓越周期的实质是波的共振,即当地震波的振动周期与地表岩土体的自振周期相同时,由于共振作用而使地表振动加强.巨厚冲积层上低加速度的远震,可以使自振周期较长的高层建筑物遭受破坏的主要原因就是共振.2. 几种周期及相关概念自振周期T:结构按某一振型完成一次自由振动所需的时间,是结构本身的动力特性,与结构的高度H、宽度B有关.基本周期T1:是指结构按基本振型完成一次自由振动所需的时间.基本振型:单质点体系在谐波的作用下的振型称为基本振型:任一地震波都可以分解为若干谐波的叠加,多质点体系按振型分解法计算地震作用时,可以简化为具有基本振型的等效单质点体系进行分析.而对建筑结构而言,有时又称为主振型,一般是指每个主轴方向以平动为主的第一振型.高阶振型:相对于低阶振型而言.一般来说,低阶振型对结构振动的影响要大于高阶振型的影响.对一般较规则的建筑物,选择的振型个数可以取其地震作用计算时的质点数(大多数情况下为楼层数),若质点数较多时,根据计算结果可以只取前几个振型(即低阶振型)进行叠加. 特征周期Tg:即建筑场地自身的周期,是建筑物场地的地震动参数,在地震影响系数曲线中,水平段与下降段交点的横坐标,反映了地震震级,震源机制(包括震源深度)、震中距等地震本身方面的影响,同时也反映了场地的特性;如软弱土层的厚度,类型等场地类别等.在抗震设计规范中,设计特征周期Tg与场地类别有关:场地类别越高(场地越软),T g越大;地震震级越大、震中距离越远,T g越大.T g越大,地震影响系数α的平台越宽,对于高层建筑或大跨度结构,基本周期较大,计算的地震作用越大.图地震影响系数曲线场地卓越周期Ts:地震波在某场地土中传播时,由于不同性质界面多次反射的结果,某一周期的地震波强度得到增强,而其余周期的地震波则被削弱.这一被加强的地震波的周期称为该场地土的卓越周期.场地卓越周期只反映场地的固有特征,不等同于设计特征周期.其由场地的覆盖土层厚度和土层剪切波速计算求的.场地脉动周期Tm:应用微震对场地的脉动、又称为“常时微动”进行观测所得到的振动周期.测试应在环境十分安静的情况下进行,场地的震动类似人体的脉搏,所以称为“脉动”.场地脉动周期反映了微震动情况下场地的动力特征,与强地震作用下场地的动力特性既有关联,又不完全相同.3.几种周期的计算方法3.1特征周期的计算特征周期值Tg是根据设计地震分组及场地类别据建筑抗震设计规范中表5.1.4-2查取值.3.2场地卓越周期的计算根据日本学者对土层剪切波速vs与地脉动测试对比研究,提出对于单一土层的地基,场地卓越周期可由表土层剪切波速计算得出:其计算公式如下:T= ∑4hi/vsi,式中:hi——第i层土的厚度(m);vsi第i层土的剪切波速(m/s);n ——土层数对于多层土的卓越周期根据国外有关规范按下式计算:Ts= 32∑(hi(Hi-1+Hi))/vsi式中:Hi——天然地面至第i层土地面的深度,计算地基卓越周期时,从基础底面算起. vsi——第i层实测剪切波速Hi-1——建筑物基地至i-1层底面的距离hi——第i层的厚度显然,表土层愈厚,其剪切波速度愈低(即土层愈松软),则卓越周期愈长.3.3场地脉动周期Tm的计算是地脉动测试所获得的波群波形,通过傅里叶谱分析,在频谱图中幅值最大的那一根谱线所对应的频率即为所测场地微振动信号的卓越频率,并由此计算出卓越周期即脉动卓越周期.地脉动是由随机振源(包括自然因素,如地震、风振、火山活动、海洋波浪等;人为因素,如交通、动力机器、工程施工等)激发并经场地不同性质的岩土层界面多次反射和折射后传播到场地地面的振动川,是地面的一种稳定的非重复性随机波动.同时,地脉动不同的频幅变化和作用历程,会引起岩土体的不同响应.地脉动测试场地卓越周期计算公式如下:T=1/f式中:Tm——场地卓越周期(s)ƒ——卓越频率(HZ).国内的相关研究表明:地脉动是一种以剪切波为主的体波,剪切波在覆盖层中的传播时间与地脉动卓越周期密切相关,能够较的反应地脉动卓越周期大小,覆盖层厚度,剪切波在覆盖层中的等效剪切波速,剪切波在软土层中的等效剪切波速和软土层的厚度是影响地脉动卓越周期的重要因素,其中最主要的影响因素是剪切波在覆盖层中的等效剪切波速.在场地条件条件较好,波速测试较为理想的情况下脉动卓越周期与通过剪切波速数据计算的场地卓越周期基本一致,但在场地条件较差,覆盖层土质不均的及其它因素的影响,脉动卓越周期与通过剪切波速计算的场地卓越周期存在较大差异.一般认为对于重要工程,最好通过地脉动测试来确定场地脉动卓越周期.4.场地卓越周期、特征周期对构(建)筑物的影响自振周期避开特征周期可以减小地震作用.当结构的自振周期超过设计特征周期时,地震作用就会随其自振周期的增大而减小.当结构的自振周期小于0.1s时,地震作用会随其自振周期的增大而急剧增大.实际的建筑结构的自振周期大都会大于设计特征周期,但一般不大于6.0s. 自振周期与场地的卓越周期相等或接近时地震时可能发生共振,震害比较严重,反之震害就小,国内外根据震害研究表明,在大地震时,由于土壤发生大变形或液化,土的应力——应变关系为非线性,导致土层剪切波速Vs发生变化.因此,在同一地点,地震时场地的卓越周期将因震级大小、震源机制、震中距离的变化而变化.如果仅从数值上比较,场地脉动周期Tm最短,卓越周期Ts其次,特征周期Tg最长。
1.卓越周期的定义地震发生时,由震源发出的地震波传至地表岩土体,迫使其振动,由于表层岩土体对不同周期的地震波有选择放大作用,某种岩土体总是以某种周期的波选择放大得尤为明显而突出,使地震记录图上的这种波记录得多而好。
这种周期即为该岩土体的特征周期,也叫做卓越周期。
由多层土组成的厚度很大的沉积层,当深部传来的剪切波通过它向地面传播时就会发生多次反射,由于波的叠加而增强,使长周期的波尤为卓越。
卓越周期的实质是波的共振,即当地震波的振动周期与地表岩土体的自振周期相同时,由于共振作用而使地表振动加强。
巨厚冲积层上低加速度的远震,可以使自振周期较长的高层建筑物遭受破坏的主要原因就是共振。
2. 几种周期及相关概念自振周期T:结构按某一振型完成一次自由振动所需的时间,是结构本身的动力特性,与结构的高度H、宽度B有关。
基本周期T1:是指结构按基本振型完成一次自由振动所需的时间。
基本振型:单质点体系在谐波的作用下的振型称为基本振型:任一地震波都可以分解为若干谐波的叠加,多质点体系按振型分解法计算地震作用时,可以简化为具有基本振型的等效单质点体系进行分析。
而对建筑结构而言,有时又称为主振型,一般是指每个主轴方向以平动为主的第一振型。
高阶振型:相对于低阶振型而言。
一般来说,低阶振型对结构振动的影响要大于高阶振型的影响。
对一般较规则的建筑物,选择的振型个数可以取其地震作用计算时的质点数(大多数情况下为楼层数),若质点数较多时,根据计算结果可以只取前几个振型(即低阶振型)进行叠加。
特征周期Tg:即建筑场地自身的周期,是建筑物场地的地震动参数,在地震影响系数曲线中,水平段与下降段交点的横坐标,反映了地震震级,震源机制(包括震源深度)、震中距等地震本身方面的影响,同时也反映了场地的特性;如软弱土层的厚度,类型等场地类别等。
在抗震设计规范中,设计特征周期Tg与场地类别有关:场地类别越高(场地越软),Tg越大;地震震级越大、震中距离越远,Tg越大。
第30卷第6期V ol .30N o .62009青岛理工大学学报Journal of Qingdao Technological University关于场地卓越周期和特征周期的若干讨论陈 鹏,刘文锋*,付兴潘(青岛理工大学土木工程学院,青岛266033)摘 要:场地卓越周期和特征周期是反映场地动力特性的重要参数,两者均基于频谱分析理论.对卓越周期和特征周期的概念、研究意义及两者之间的关系进行了论述,分析对比了两者在计算原理、研究意义、工程应用及取值等方面的不同,界定了两者的概念.对目前较为常用的计算卓越周期和特征周期的方法,分别进行了分析比较,指出了卓越周期各计算方法的优缺点及适用条件,同时以144条地震波为例分析了特征周期各计算方法的特点及其差异,对场地动力特性的测定具有一定指导意义.关键词:卓越周期;特征周期;概念界定;计算方法;适用条件中图分类号:T U 315.9 文献标志码:A 文章编号:1673—4602(2009)06—0030—06Discussions on Site Predominant Period and Characteristic PeriodCH EN Peng ,LIU Wen -feng *,FU Xin -pan(Scho ol of Civil Engineering ,Qing dao T echno lo gical U niver sity ,Qing dao 266033,China )Abstract :Site predominant pe riod and desig n characteristic period are the mo st two impor -tant param eters in reflecting the dy namic prope rty of the site .Bo th are based on spectrum a -naly sis theory .This pape r introduces the concept and the sig nificance of site predominant pe -riod and design cha racteristic period and analy ses the main differences between the tw o pa -rameters o n the m ethod o f calculation and the numerical value in engineering design .Be -sides ,three com mon methods w hich are usually used in the determination of site predomi -nant period and design characteristic period are proposed ,and the adv antages and disadvanta -ges of each method are analyzed .144g round reco rds a re employed to analy ze characteristicand diffe rence o f calculatio n methods of desig n characteristic period .T he results offer refer -ences in the determinatio n of site predominant period .Key words :predominant period ;characteristic period ;delimitatio n ;calculation metho ds ;ap -plicable conditio n收稿日期:2008-09-12基金项目:山东省教育厅科技计划项目(J07YA09-2)作者简介:陈 鹏(1982- ),男,山东费县人.硕士,研究方向为混凝土结构及其抗震.E -mail :pan20040@ .*通讯作者(Corres ponding author ):刘文锋,男,博士,教授.E -m ail :lw f6688@sohu .com .目前,国家规范、标准和工程设计手册[1-6]虽对场地卓越周期T 和设计特征周期T g 作出了各自的定义,但由于两者在研究途径、影响因素、工程应用以至取值等方面存在诸多相似之处,在研究过程中往往容易混淆概念,不能对两者作出准确的区分和正确的使用,以致在学术交流和工程实践中产生认识误区.对场地卓越周期和设计特征周期的不同认识,文献[7]认为“两者都是场地固有周期T 0的不同预测值,因预测方法不同而冠以不同的名称”;文献[8]的划分标准取为“当涉及到傅里叶谱时称卓越周期,当涉及到反应谱时称为特征周期”.也有一部分学者认为,在场地性能测试时称卓越周期,在抗震设计中称特征第6期 陈 鹏,等:关于场地卓越周期和特征周期的若干讨论周期.这些划分方法都只是从两者的应用角度或研究方法来考虑卓越周期与特征周期的区别,并没有从本质上指出两者的根本不同,不能达到准确的认识和区分卓越周期和特征周期的目的.在1990年发行的国家标准[9]的条文说明中提到“有关场地的特征周期,过去许多勘察单位都是根据土层实测的横波波速按经验公式计算场地`卓越周期',但鉴于该公式是一近似公式,且在深度上看法不一致,以至计算结果有较大差别,因而一般情况下,不需再按该近似经验公式计算场地`卓越周期',以避免所计算`卓越周期'与`特征周期'不一致而发生矛盾”,可见,其中对“卓越周期”和“特征周期”的使用存在一定程度的混乱,容易使读者混淆两者的概念.1 场地卓越周期与特征周期1.1 概念及影响因素场地卓越周期和特征周期均是工程抗震中的概念.场地卓越周期是描述场地特性的重要指标.对于卓越周期,文献[4]定义为“随机振动过程中出现概率最多的周期,常用以描述地震震动或场地特性”.工程抗震中研究的是地震波经过场地过滤作用(震源、传播途径和工程场地相互作用)后的特性,即地面运动的特性,以此来分析结构在地震作用中的响应.文献[2]对卓越周期基本概念的描述为“地震波在土层中传播时,经过不同性质界面的多次反射,将出现不同周期的地震波.若某一周期的地震波与地表土层固有周期相近时,由于共振的作用,这种地震波的振幅将得到放大,此周期称为卓越周期”.文献[3]对此的描述为“地表土层对不同周期的地震波有选择放大作用,致使在地震记录图上某些周期的波形特别多而好,也显得`卓越',这个周期称为卓越周期”.场地卓越周期是地面运动的重要特征量,它与覆盖土层的厚度、构成、物理力学性质以及场地的背景振动等有密切关系.文献[10]研究表明,卓越周期还随震中距、震级等因素而变化.特征周期是抗震设计中的概念.基于大量的强震观测记录的分析,《建筑抗震设计规范》规定设计地震动用弹性加速度反应谱表示,设计特征周期则定义为“抗震设计用的地震影响系数曲线中,反映地震震级、震中距和场地类别等因素的下降段起始点对应的周期值”.《工程抗震术语标准》[4]中没有设计特征周期的定义,它采用的是“反应谱特征周期”,定义为与设计反应谱曲线下降段起点对应的周期,因此它和《建筑抗震设计规范》中的设计特征周期是一致的.《建筑抗震设计规范》把设计特征周期T g 简称为特征周期,并根据设计地震分组和场地类别的不同给出了相应的T g 值,如表1.表1 GB 5001—2001规定的特征周期值s 设计地震分组场地类别ⅠⅡⅢⅣ第一组0.250.350.450.65第二组0.300.400.550.75第三组0.350.450.650.90根据《建筑抗震设计规范》,特征周期是由地震分组与场地类别共同决定的,通过场地类别和设计地震分组就可以确定场地的特征周期.反过来,如果能根据场地实测地震动记录求出特征周期,则可以由此大致判断该场地所属的场地类别.此外,根据地震动记录求出的特征周期,不但可以反映场地类别和地震分组的影响,还可以反映震源特性、震级大小以及传播途径的影响.因此,根据地震动记录计算特征周期,不仅可以用于场地动力特性的分析[11],还可以作为设计特征周期指导抗震设计.《建筑抗震设计规范》中定义的特征周期与通过地震动记录计算的特征周期在概念上是一致的,都是反应谱下降段的起始周期,不同之处在于前者是基于大量的强震观测记录的分析的基础上得到的规准化后的反应谱(水平地震作用影响系数曲线)的下降段起始周期,具有一定的概率保证(50年超越概率为10%[12]),而后者通过单个地震动记录的计算得到,不存在概率保证的概念.文献[13]研究后认为特征周期物理意义不明确、涉及因素多、结果离散,且研究成果相对较少.1.2 场地卓越周期和特征周期的关系场地卓越周期和特征周期均基于对地面运动的研究,所有影响地面运动的因素,如场地条件、地震震级、震中距等因素,均会对两者产生影响,这属于客观的影响因素.基于此,两者均为场地动力响应分析的重要参数.场地卓越周期可以作为工程抗震中场地土类型划分、场地类别划分的标准(见表2[3])以及估算31青岛理工大学学报第30卷地震动峰值加速度及其分布规律,依据场地特征周期,由表1也可以大致判断场地类别.至于两者之间在数值上是否可以建立统计关系,需要做研究工作.文献[14]在这方面做了初步的探索,文中根据广东省珠江三角洲地区和潮汕地区380个工程项目的地震安全性评价结果,对这些工程项目的设计特征周期和场地脉动卓越周期进行了统计分析,得到式(1)所示的关系:表2 地基土的卓越周期类别土的名称卓越周期/s Ⅰ稳定岩石0.1~0.2Ⅱ~Ⅲ一般土层0.15~0.4Ⅳ松软土层0.3~0.7T g =T (1+k I a )(1)式中:T g ,T ,I 分别为特征周期、卓越周期和地震烈度;k 和a 为与场地周围地址环境有关的常数.将所收集的资料带入式(1)对珠江三角洲地区进行回归分析,得到以下统计关系:T g =T (1+0.0038I2.25964)(2)场地卓越周期和特征周期的区别在于:1)研究途径不同.卓越周期是通过场地地震动记录的分析得到,而特征周期是通过场地地面运动反应谱的分析得到.2)研究意义或用途不尽相同.除了可用于土层动力反应分析的研究外,场地卓越周期还可以防止特殊的地震效应发生,避免拟建建筑物自振周期与场地脉动卓越周期一致或接近,在地震发生时,地基与建筑物产生共振或类共振;对某一特定场址,特征周期可以根据实测强震记录计算,并综合场地安全性评价的结果确定该场址的设计特征周期用于抗震设计.3)两者在取值上的差异.从取值大小上考虑,由统计关系式(2)可以看出,场地特征周期一般大于卓越周期;从取值特点上考虑,某一特定场地可以存在2个或多个地震动卓越周期[6,10],而其特征周期只有1个,是反应谱的下降段的起始周期;此外,两者的取值不具有可比性,前者研究的是地面运动的频度较大的周期,后者研究的是在场地运动各频率激励的综合作用下结构的反应中满足某一特征关系的周期,因此,卓越周期大的场地,并不意味着其特征周期一定大,反之,也并不意味着特征周期就小.4)场地卓越周期更多的是场地地震动特性的客观反映,即它是地震动记录上客观的存在1个或多个特别卓越的周期;而特征周期更多的体现了人们的主观性,即在考虑我国经济发展和人们对地震灾害的可接受程度的基础上,对其规定相应的计算公式,并根据此公式在反应谱上确定特征周期,供抗震设计使用.2 卓越周期的计算方法及比较2.1 计算方法根据研究对象的不同,场地卓越周期T 的计算方法可以划分为3种:1)根据场地卓越周期的定义,利用场地的实测强震记录进行Fourier 分析,确定场地卓越周期.相对于后两种方法,此方法可以称为直接计算法.2)应用高灵敏的地震仪观测地面脉动,将所得记录进行Fo urier 分析,确定卓越周期.有时为了简单起见,也可通过绘制地面脉动记录的频度-周期曲线来确定卓越周期.可以看到,以上两种计算方法均基于频谱分析理论,计算过程中对数据的处理方法,文献[6]做了如下规定:①当场地为单一土层时,三分量记录曲线的周期彼此重合或接近,场地只有一个卓越周期;②当场地为多层土且层厚较大、出现多个谱峰时,可将主峰(最高的谱峰)定为本场地的卓越周期,必要时,一个场地可给出两个或两个以上的卓越周期供工程设计部门选定;③三分量的卓越周期不相同时,应以水平的卓越周期为主,必要时可分别提出水平和竖直的卓越周期.3)根据场地分层剪切波速测试结果由相应公式计算该场地的卓越周期.文献[10]给出了如下计算公式:T =∑ni =14h i /V s i (3)式中:T 是根据剪切波速计算的场地卓越周期,s ;h i 为各分层土的厚度,m ;V s i 为各分层土的剪切波速,m /s ;n 为土层层数.文献[2-3]采用了此计算公式,并规定式(3)覆盖土层的计算深度一般应计算至基岩面,当基岩面较深时,可计算至30~50m [2](50~100m [3]).3233第6期 陈 鹏,等:关于场地卓越周期和特征周期的若干讨论对于以上3种计算方法,文献[7]对其计算结果分别定义为记录卓越周期T r、测试卓越周期T m以及波速卓越周期T v,笔者沿用这种定义.2.2 计算方法的分析比较及其适用条件对于以上3种方法,文献[7]认为:T r是真实反映场地地震动的卓越周期,即T r=T;T m是接近T的卓越周期;T v是与T相比有一定误差(有时相当大)的卓越周期.1)T r是场地条件和震源特性、震级大小、震中距离、传播途径及方位等因素共同作用的体现,它真实地反映了场地在强震时地面运动情况的周期.但是,用T r确定场地卓越周期仍是一种近似,因为严格来讲,它只对测得地震动记录的场点才是精确的,即用T r确定场地卓越周期实质上是一点对附近一区域的预测和近似.如果某场地地层条件及地形地貌变化比较剧烈,则很显然,用T r确定的场地卓越周期就会产生大的偏差.所以此时就不宜再用T r预测场地卓越周期.2)根据文献[10]的研究,常时微动测定的场地卓越周期与地震动的特性(地震动的频谱)大体相同.因此,只要根据地脉动确定的卓越周期,就可确定地震时地基土的振动特性.大量理论研究和工程实践表明,场地常时微动的卓越周期与地震动的特性(频谱)相关,利用场地常时微动卓越周期(测试卓越周期T m)可以较好的预测场地卓越周期.但是,T m仅是某地场地土层在常时微动时场地震动特性的精确描述,它并不能反映震源特性、震级大小、震中距离、传播途径及方位等因素的影响,因此,T m同样是对场地卓越周期的近似,它是某一特定场地常时微动下的振动特性对强震下振动特性的近似.3)式(3)是日本学者金井清按多重反射理论所得近似公式.他通过对东京的本乡、青山(居民区)及九之内等地所得的地震图分析地震震级和地震动的卓越周期之间的关系,得到的结论:当震级高于某值时,对于某一地点来说,地震动的卓越周期几乎为一常值,即T v.由于假定地基土层为均匀平行,故有一定误差,其误差与剪切波速的观测精度、地基的均匀性和场地覆盖层的厚度等密切相关.此外,式(3)除是一个近似公式外,最大的问题是计算深度不统一,以致计算结果缺乏可比性.由此可见,场地卓越周期的确定需要根据场地特性的不同而采用适当的方法,而且必要时还需要采取多种方法进行综合分析.总体来说,当工程场地范围内有适宜的强震记录,且场地的地层结构及局部地形地貌变化不甚剧烈时,抗震设计应优先选用T r,其次可选用T m;当工程场地附近虽有强震记录,但该场地地层结构及局部地形地貌变化十分剧烈时,应考虑优先选用T m;由于式(3)是一近似公式,故应尽量避免选用T v,若地基土层基本满足均匀平行的条件,则可考虑使用.工程实践中,适宜的强震记录不易获得,而且地层结构及局部地形地貌的改变都会有较大的变化,所以工程应用中多用常时微动的测试分析来确定场地卓越周期.3 特征周期的计算方法及比较3.1 计算方法文献[11]推荐了3种计算特征周期的方法:1)如果认为由场址反应分析得的一个场地的地面震动的主峰波可用正弦函数表示,则它的周期为:T g=2πV max/A max(4)式中:V max为与主峰波相应的地面最大速度;A max为与主峰波相应的地面最大加速度.2)用加速度反应谱的最大值和加速度反应谱最大值来确定:T g=2πS v/S a(5)式中:S v为速度反应谱最大值;S a为加速度反应谱最大值.3)在我国《建筑抗震设计规范》中实际隐含着规准设计谱的最大值为β=2.25,因此,对于给定场地的反应谱曲线,可以根据规准设计谱确定特征周期.此外,美国A TC3—06规范中对特征周期作了如下规定:(6)T g=2πEP VEP A式中:EP V为有效峰值速度,取T=[0.1,0.5]区间拟速度反应谱均值除以2.5;EP A为有效峰值加速度,青岛理工大学学报第30卷取T =[0.5,2.0]区间绝对加速度反应谱均值除以2.5.《中国地震动参数区划图》(GB 18306—2001)对EP V 和EP A 的定义作了修改,即求取时不将频段固定,而具体分析每条反应谱以确定相应的平台频段,在对数坐标系中同时作出绝对加速度反应谱S a 和拟速度反应谱S v ,找出绝对加速度反应谱平台段的起始周期T 0和结束周期T 1,再在拟速度反应谱上选定平台段,其起始周期应该为T 1,结束周期为T 2,则有:T g =2πEP V *EP A *(7)式中:EP V *取T =[T 0,T 1]区间拟速度反应谱均值除以2.5;EP A *取T =[T 1,T 2]区间绝对加速度反应谱均值除以2.5.3.2 计算结果及分析笔者采用了144条常用地震波,Elcentro 、Kobe 、Traft 、Beijing H otel (EW )、Beijing Ho tel (NS )、Qianan (EW )、Qianan (NS )、Tianjin Hospital (EW )、Tianjin H ospital (NS )、集集地震(62条)、唐山地震(15条)、墨西哥地震(22条)、美国北岭地震(36条),分别用式(4)—式(7)4种方法进行计算,共分4组,见图1.图1 特征周期计算结果比较通过对图1计算结果的比较分析,发现以下特点:1)当反应谱谱值较大的点对应的周期普遍较大时,按式(6)确定的特征周期严重失真;2)按式(7)计算时,平台段的选择需要对S a 谱和S v 谱综合分析,当地震动反应谱有多个峰值周期,或S a 与S v 的平台段由于重叠而难以确定时,此时式(7)便不再适用;3)总体来看,式(4)—式(7)相对地震动真实特征周期的偏差依次减小,式(6)、式(7)能够较好的确定特征周期值;3435第6期 陈 鹏,等:关于场地卓越周期和特征周期的若干讨论4)特征周期取值普遍大于卓越周期,但也存在前者小于后者的情况.通过对计算数据的特点的分析,可以看到,式(6)和式(7)的计算结果总体来说相对准确,但两者产生矛盾的时候仍需要直接根据反应谱或参考式(4)、式(5)及卓越周期的计算结果进行进一步分析,从而判断特征周期的取值.仅仅通过某一种特定的计算方法的计算结果较难确定特征周期.4 结论场地卓越周期和特征周期虽然在研究途径、影响因素甚至取值等方面存在诸多相似之处,但是它们却有本质的区别,应予以明确地区分和认识,准确地把握两者的概念并正确使用.目前确定场地卓越周期较为常见的三种方法各有利弊,应当视场地条件的不同而采取适合的方法,必要时要综合分析以得到相对较为合理的结果.场地特征周期的确定包含了更多的人为因素,在考虑我国经济发展和人们对地震灾害的可接受程度的基础上,规定相应的计算方法,特征周期可根据多种方法综合确定.需要指出的是,场地卓越周期和特征周期不具有可比性,两者之间是否可以建立统计关系需要进一步研究.参考文献(References):[1] GB5001—2001,建筑抗震设计规范[S].GB5001—2001,Code for Seismic Design of Buildings[S].[2] 工程地质手册编写委员会.工程地质手册[K].3版.北京:中国建筑工业出版社,1992.E ngineering Geological M anu als Committee.Engineering Geological H andb ook[K].3rd ed.Beij ing:China A rchitectu re&BuildingPress,1992.[3] 岩土工程手册编写委员会.岩土工程手册[K].北京:中国建筑工业出版社,1994.Geotechnical Engineering M anuals C ommittee.Geotech nical Engin eering H andb ook[K].Beijing:China Architectu re&Building Press,1994.[4] JG J/T97—95,工程抗震术语标准[S].JG J/T97—95,Term S tandard in Earthquake E ngineering[S].[5] GB/T50269—97,地基动力特性测试规范[S].GB/T50269—97,Code for M easuremen t M eth od of Dynamic Properties of S ubsoil[S].[6] C EC S74:95,场地微振动测量技术规程[S].C EC S74:95,Technical Specification for S urveying of Site M ocro-S eisms[S].[7] 高广运,刘奋勇.场地卓越周期的讨论与测定[J].工程勘察,2000(5):29-31.GAO Guang-yun,LIU Fen-yong.Discus sion and Determ ination on Site Predominant Period[J].Geotechnical Investigation&Su rvey-ing,2000(5):29-31.[8] 陈贡联.基于性能目标的反应谱研究[D].青岛:青岛理工大学,2006.C HEN Gong-lian.S tu dy on Performance Target Based Res ponse Spectrum[D].Qingdao:Qingdao Tech nological University,2006.[9] JG J72—90,高层建筑岩土工程勘察规程[S].JG J72—90,S pecification for Geotech nical In vestigation of Tall Buildings[S].[10] 金井清.工程地震学[M].常宝琦,张虎男,译.北京:地震出版社,1987.Kiyos hi kanai.Engin eering S eis mology[M].T ran slator:CH ANG Bao-qi,ZH ANG H u-nan.Beijing:Earthquake Press,1987. [11] 龚思礼.建筑抗震设计手册[K].2版.北京:中国建筑工业出版社,2003.GONG Si-li.S eismic Design for Building s H andbook[K].2nd ed.Beijing:China Architectu re&Building Pres s,2003.[12] GB18306—2001,中国地震动参数区划图[S].GB18306—2001,Seismic Ground M otion Param eter Zonation M ap of C hina[S].[13] 刘文锋,付兴潘,于振兴,等.反应谱特征周期的统计分析[J].青岛理工大学学报.2009,30(5):1-7.LI U W en-feng,FU Xing-pan,YU Zh en-xing,et al.Empirical Statistical Analysis of Characteristic Period of Acceleration Respons e S pectru m[J].Jou rnal of Qingdao Technological University,2009,30(5):1-7.[14] 蒋维强,欧阳立胜.场地卓越周期与设计特征周期的关系研究[J].工程抗震,2004(2):46-49.J IANG Wei-qiang,OUYANG Li-sh eng.An Investigation on the Application of S ite Dominant Period in E arthquake Fortification[J].E arthquake Res istan t Engineering,2004(2):46-49.(英文校审 高 嵩)。
振型分解反应谱法振型分解反应谱法是用来计算多自由度体系地震作用的一种方法。
该法是利用单自由度体系的加速度设计反应谱和振型分解的原理,求解各阶振型对应的等效地震作用,然后按照一定的组合原则对各阶振型的地震作用效应进行组合,从而得到多自由度体系的地震作用效应。
振型分解反应谱法一般可考虑为计算两种类型的地震作用:不考虑扭转影响的水平地震作用和考虑平扭藕联效应的地震作用。
适用条件(1)高度不超过40米,以剪切变形为主且质量和刚度沿高度分布比较均匀的结构,以及近似于单质点体系的结构,可采用底部剪力法计算。
(此为底部剪力法的适用范围)(2)除上述结构以外的建筑结构,宜采用“振型分解反应谱法”。
(3)特别不规则的建筑、甲类建筑和规范规定的高层建筑,应采用时程分析法进行补充计算。
刚重比刚重比是指结构的侧向刚度和重力荷载设计值之比,是影响重力二阶效应的主要参数刚重比=Di*Hi/GiDi-第i楼层的弹性等效刚度,可取该层剪力与层间位移的比值Hi-第i楼层层高Gi-第i楼层重力荷载设计值刚重比与结构的侧移刚度成正比关系;周期比的调整将导致结构侧移刚度的变化,从而影响到刚重比。
因此调整周期比时应注意,当某主轴方向的刚重比小于或接近规范限值时,应采用加强刚度的方法;当某主轴方向刚重比大于规范限值较多时,可采用削弱刚度的方法。
同样,对刚重比的调整也可能影响周期比。
特别是当结构的周期比接近规范限值时,应采用加强结构外围刚度的方法规范上限主要用于确定重力荷载在水平作用位移效应引起的二阶效应是否可以忽略不计。
见高规5.4.1和5.4.2及相应的条文说明。
刚重比不满足规范上限要求,说明重力二阶效应的影响较大,应该予以考虑。
规范下限主要是控制重力荷载在水平作用位移效应引起的二阶效应不致过大,避免结构的失稳倒塌。
见高规5.4.4及相应的条文说明。
刚重比不满足规范下限要求,说明结构的刚度相对于重力荷载过小。
但刚重比过分大,则说明结构的经济技术指标较差,宜适当减少墙、柱等竖向构件的截面面积。
场地卓越周期和特征周期是两个不同的概念它们的区别在于:1)研究途径不同.卓越周期是通过场地地震动记录的分析得到,而特征周期是通过场地地面运动反应谱的分析得到.2)研究意义或用途不尽相同.除了可用于土层动力反应分析的研究外,场地卓越周期还可以防止特殊的地震效应发生,避免拟建建筑物自振周期与场地脉动卓越周期一致或接近,在地震发生时,地基与建筑物产生共振或类共振;对某一特定场址,特征周期可以根据实测强震记录计算,并综合场地安全性评价的结果确定该场址的设计特征周期用于抗震设计.3)两者在取值上的差异.从取值大小上考虑,场地特征周期一般大于卓越周期;从取值特点上考虑,某一特定场地可以存在2个或多个地震动卓越周期[ ,而其特征周期只有1个,是反应谱的下降段的起始周期;此外,两者的取值不具有可比性,前者研究的是地面运动的频度较大的周期,后者研究的是在场地运动各频率激励的综合作用下结构的反应中满足某一特征关系的周期,因此,卓越周期大的场地,并不意味着其特征周期~定大,反之,也并不意味着特征周期就小.4)场地卓越周期更多的是场地地震动特性的客观反映,即它是地震动记录上客观的存在1个或多个特别卓越的周期;而特征周期更多的体现了人们的主观性,即在考虑我国经济发展和人们对地震灾害的可接受程度的基础上,对其规定相应的计算公式,并根据此公式在反应谱上确定特征周期,供抗震设计使用.卓越周期是指随机振动过程中出现概率最多的周期,常用以描述地震动或场地特性。
地震波在土层中传播,由于土层的过滤特性与选择放大作用(过滤与放大通过不同性质界面的多次反射来实现),周期与场地土固有周期接近的地震波得到增强(通过共振作用放大),此周期称为场地(地震动)卓越周期。
设计特征周期也可称为设计反应谱特征周期,是指地震影响系数曲线下降段起始点对应的周期值,与地震震级、震中距和场地类别等因素有关,规范通过设计地震分组和场地类别反映,场地越软,震级、震中距越大,值越大。
结构自振周期是结构自由振动的周期;结构基本周期是结构自振周期中最长(数值最大)的那个;场地卓越周期是场地自振周期中最容易被(地震)激励起的周期;场地特征周期(设计特征周期)是设计地震反应谱曲线上平台段结束(最右端)的同期值.产生了疑问:场地卓越周期和场地特征周期有关系吗?知道一个不相干的,地震动的卓越周期:再振幅谱幅值最大的频率分量所对应的周期,在地震波通过覆盖土层传向地表的过程中,由于土层的过滤性与选择放大作用,地表地震动的卓越周期在很大程度上取决于场地的固有周期。
各条地震波的特征周期很难确定,规范反应谱上的特征周期是根据若干条平均后再进行削平处理而得到的拐点。
对地震波进行傅立叶变换,得到其傅立叶谱,观察其地震波峰值对应的周期,此周期便是地震波的特征周期。
可以在ansys,sap等程序中轻松实现。
傅立叶谱幅值最大点对应的周期为地震动的卓越周期,不是特征周期!特征周期是抗震规范中用到的概念,目的是确定规范谱的形状。
它描述了结构所处的地震环境。
实际上,规范谱不应看作真实的地震反应谱,这一点在其他帖子中已有论述。
我个人的观点,规范是结构抗震理论应用方法的体现,如果研究抗震理论,似乎不应以抗震规范为准绳。
因为规范是为使用者提供的标准,它必须为了工程的安全性和经济性做出一些折中,并不是完全意义上的理论或技术方法。
1、卓越周期是老早以前的提法,原意指的是引起建筑场地振动最显著的某条或某类地震波的一个谐波分量的周期,该周期与场地覆土厚度及土的剪切波速有关。
对同一个场地而言,不同类型的地震波会得出不同的卓越周期,因此概念上存在矛盾。
现在地震工程界已彻底摒弃这种提法;2、场地与场地土是两个完全不同的概念,你所说的应是场地;3、现在确定地震影响系数用的是场地特征周期。
即首先根据场地覆土厚度及土的剪切波速确定建筑物的场地类别,并据此查表得场地特征周期,最后有设计地震分组和场地特征周期确定抗震设计所用的地震影响系数。
[笔记]结构自振周期是结构自由振动的周期predominant period 地震时,从震源发出的地震波在土层中传播时,经过不同性质地质界面的多次反射,将出现不同周期的地震波。
若某一周期的地震波与地基土层固有周期相近,由于共振的作用,这种地震波的振幅将得到放大,此周期称为卓越周期。
由多层土组成的厚度很大的沉积层,当深部传来的剪切波通过它向地面传播时就会发生多次反射,由于波的叠加而增强,使长周期的波尤为卓越。
卓越周期的实质是波的共振,即当地震波的振动周期与地表岩土体的自振周期相同时,由于共振作用而使地表振动加强。
巨厚冲积层上低加速度的远震,可以使自振周期较长的高层建筑物遭受破坏的主要原因就是共振。
卓越周期分级卓越周期按地震记录统计得到,地基土随软硬程度的不同有不同的卓越周期,可划分为四级:一级——稳定基岩,卓越周期是0.1-0.2s,平均为0.15s。
二级——一般土层,卓越周期为0.21-0.4s,平均为0.27s。
三级为松软土层,卓越周期在二级和四级之间。
四级——为异常松软的土层,卓越周期为0.3-0.7s,平均为0.5s.几种周期及相关概念自振周期T:结构按某一振型完成一次自由振动所需的时间,是结构本身的动力特性,与结构的高度H、宽度B有关。
基本周期T1:是指结构按基本振型完成一次自由振动所需的时间。
基本振型:单质点体系在谐波的作用下的振型称为基本振型:任一地震波都可以分解为若干谐波的叠加,多质点体系按振型分解法计算地震作用时,可以简化为具有基本振型的等效单质点体系进行分析。
而对建筑结构而言,有时又称为主振型,一般是指每个主轴方向以平动为主的第一振型。
高阶振型:相对于低阶振型而言。
一般来说,低阶振型对结构振动的影响要大于高阶振型的影响。
对一般较规则的建筑物,选择的振型个数可以取其地震作用计算时的质点数(大多数情况下为楼层数),若质点数较多时,根据计算结果可以只取前几个振型(即低阶振型)进行叠加。
建筑结构抗震试题库2 名词解释(每题3分1、震源:地球内部断层错动并辐射出地震波的部位。
震源不是一个点,是有一定的深度和范围);2 震中:震源在地面上的投影点。
震中周围的地区称为震中区(极震区)。
3 等震线:把地面上破坏程度相近的点连成的曲线。
4地震系数:表示地震时地面运动最大加速度与重力加速度的比值。
5 地震动力系数:地震时体系最大加速度反应与地面最大加速度之比。
6抗震设防标准:衡量抗震设防要求高低的尺度,由抗震设防烈度或设计地震动参数及建筑抗震设防类别确定。
7 覆盖土层厚度:地下基岩岩面或剪切波速>500 m/s的土层到地表面的距离8地震反应谱:单自由度体系的地震最大绝对加速度反应Sa与其自振周期T的关系,记为Sa(T)为便于求地震作用,将单自由度体系的地震最大绝对加速度、速度和位移与其自振周期T的关系定义为地震反应谱。
结构抗震设计反应谱:是在某地区某类场地上,经过对历史记录的地震动与其反应谱关联性研究,拟合后得出的用于结构抗震设计的反应谱。
9 地震震级:反应一次地震释放能量多少的度量。
一次地震只有一个震级,震级用M表示,国际通用的是里氏震级。
10地震烈度:某一地点地面受地震影响的震动强烈程度,由地面建筑的破坏程度,人的感觉,物体的振动及运动强烈程度而定。
主要由地面震动的速度和加速度确定。
11 地震区划:是指根据历史地震、地震地质构造和地震观测资料,在地图上按基本烈度划分为不同的区,做为抗震设计的依据。
12 抗震设计特征周期:抗震设计时采用的地震影响系数曲线中,反映地震震级、震中距和场地类别等因素的下降段起始点对应的周期值,简称特征周期。
结构的自振周期:结构在无外加强迫输入时的自由振动周期,是结构固有的特性;结构基本周期:结构自振周期中最长(数值最大)的那个周期,对结构的振动效应最显著;地震时场地的卓越周期:地震时,场地土自振周期中对某地震波最敏感的周期,是最容易被地震波激发的周期;(卓越周期:随机震动过程中出现概率最多的周期。
结构基本周期、结构自振周期与设计特征周期、场地卓越周期之间的区别和联系。
结构基本周期:是指结构按基本振型完成一次自由振动所需的时间。
自振周期T:结构按某一振型完成一次自由振动所需的时间,是结构本身的动力特性,仅与结构的质量m、刚度系数k有关。
设计特征周期:是在抗震设计用的地震影响系数曲线中,反映地震震级、震中距和场地类别等因素的下降段起始点对应的周期值;场地卓越周期:是根据覆盖层厚度H和土层剪切波速VS按公式T0=4H/VS计算的周期,表示场地土最主要的振动特性。
卓越周期按地震记录统计得到,地基土随软硬程度的不同有不同的卓越周期,可划分为四级:一级——稳定基岩,卓越周期是0.1-0.2s,平均为0.15s。
二级——一般土层,卓越周期为0.21-0.4s,平均为0.27s。
三级为松软土层,卓越周期在二级和四级之间。
四级——为异常松软的土层,卓越周期为0.3-0.7s,平均为0.5s.特征周期Tg:即建筑场地自身的周期,是建筑物场地的地震动参数,在地震影响系数曲线中,水平段与下降段交点的横坐标,反映了地震震级,震源机制(包括震源深度)、震中距等地震本身方面的影响,同时也反映了场地的特性;如软弱土层的厚度,类型等场地类别等。
在抗震设计规范中,设计特征周期Tg与场地类别有关:场地类别越高(场地越软),Tg越大;地震震级越大、震中距离越远,Tg越大。
Tg越大,地震影响系数α的平台越宽,对于高层建筑或大跨度结构,基本周期较大,计算的地震作用越大。
剪切波速是指震动横波在土内的传播速度,单位是m/s。
可通过人为激震的方法产生震动波,在相隔一定距离处记录振动信号到达时间,以确定横波在土内的传播速度。
测试方法一般有单孔法、跨孔法等。
剪切波速是抗震区确定场地土类别的主要依据。
地震时,从震源发出的地震波在土层中传播时,经过不同性质地质界面的多次反射,将出现不同周期的地震波。
若某一周期的地震波与地基土层固有周期相近,由于共振的作用,这种地震波的振幅将得到放大,此周期称为卓越周期。
1. 结构基本周期、结构自振周期与设计特征周期、场地卓越周期之间的区别和联系:自振周期是结构按某一振型完成一次自由振动所需的时间;基本周期是指结构按基本振型完成一次自由振动所需的时间;设计特征周期是在抗震设计用的地震影响系数曲线中,反映地震震级、震中距和场地类别等因素的下降段起始点对应的周期值;场地卓越周期是根据覆盖层厚度H和土层剪切波速VS按公式T0=4H/VS计算的周期,表示场地土最主要的振动特性。
结构在地震作用下的反应与建筑物的动力特性密切相关,建筑物的自振周期是主要的动力特征,与结构的质量和刚度相关。
经验表明,当建筑物的自振周期与场地的卓越周期相等或接近时,建筑物的震害较为严重。
2.经验公式一般情况下,高层钢筋混凝土结构的基本自振周期T1为T1=(0.05~1.10)n(4.3-27)其中:钢筋混凝土框架结构:T1=(0.06~0.09)n(4.3-28)框架-剪力墙结构:T1=(0.06~0.08)n(4.3-29)高层钢结构的基本自振周期T1为T1=(0.10~0.15)n(4.3-30)式中:n——建筑层数。
结构基本周期、结构自振周期与设计特征周期、场地卓越周期之间的区别和联系:结构基本周期、结构自振周期与设计特征周期、场地卓越周期之间的区别和联系:自振周期是结构按某一振型完成一次自由振动所需的时间;基本周期是指结构按基本振型完成一次自由振动所需的时间;设计特征周期是在抗震设计用的地震影响系数曲线中,反映地震震级、震中距和场地类别等因素的下降段起始点对应的周期值;场地卓越周期是根据覆盖层厚度H和土层剪切波速VS按公式T0=4H/VS计算的周期,表示场地土最主要的振动特性。
结构在地震作用下的反应与建筑物的动力特性密切相关,建筑物的自振周期是主要的动力特征,与结构的质量和刚度相关。
经验表明,当建筑物的自振周期与场地的卓越周期相等或接近时,建筑物的震害较为严重。
用顶点位移法求自振周期:T=1.7*周期折减系数*(层间侧移开方)折减系数:框架结构取0.6~0.7框剪结构取0.7~0.8抗剪墙取1.0按照行业标准《工程抗震术语标准》(JGJ/97)的有关条文,自振周期:结构按某一振型完成一次自由振动所需的时间。
设计特征周期与反应谱特征周期的区别1. 定义设计特征周期:(design characteristic period of ground motion)抗震设计用的地震影响系数曲线中,反映地震震级、震中距和场地类别等因素的下降段起始点对应的周期值,简称特征周期。
设计特征周期是用于结构设计计算的周期。
地震动反应谱特征周期(characteristic period of the seismic response spectrum)地震动加速度反应谱开始下降点的周期。
也称特征周期、卓越周期,是建筑场地自身的周期。
2.区别《抗震规范》中的设计特征周期,考虑了震源机制、震级大小和震中距远近,相对于旧版《中国地震动加速度反应谱特征周期区划图》中的地震动反应谱特征周期略有降低。
而根据《抗震规范》中图5.1.5的“地震影响系数曲线”,周期越小,地震影响系数越大,地震力也就越大。
也就是说,《抗震规范》中的设计特征周期取值相对于旧版《中国地震动加速度反应谱特征周期区划图》较为保守。
可能是考虑到二者的冲突,2015年的新版《中国地震动加速度反应谱特征周期区划图》中,将地震动反应谱特征周期调小,与《抗震规范》中的设计特征周期较为接近。
而2015年的新版《中国地震动峰值加速度区划图》将全国大部分地区的地震动峰值加速度调大,从而增大了地震力,也增加了结构的安全度。
3.一般知识。
地震反应谱英文名称:earthquake response spectrum由于地震的作用,建筑物产生位移、速度和加速度。
人们把不同周期下建筑物反应值的大小画成曲线,这些曲线称为反应谱。
一般来说,随周期的延长,位移反应谱为上升的曲线;速度反应谱比较恒定;而加速度的反应谱则大体为下降的曲线(下图)。
一般说来,设计的直接依据是加速度反应谱。
加速度反应谱在周期很短时有一个上升段(高层建筑的基本自振周期一般不在这一区段),当建筑物周期与场地的特征周期接近时,出现峰值,随后逐渐下降。
高层建筑结构设计思考题答案(2)第二章2.1钢筋混凝土房屋建筑和钢结构房屋建筑各有哪些抗侧力结构体系?钢筋混凝土房屋建筑和钢结构房屋建筑各有哪些抗侧力结构体系?每种结构体系举1~2例。
答:钢筋混凝土房屋建筑的抗侧力结构体系有:框架结构(如主体18层、局部22层的北京长城饭店);框架剪力墙结构(如26层的上海宾馆);剪力墙结构(包括全部落地剪力墙和部分框支剪力墙);筒体结构[如芝加哥Dewitt-Chestnut公寓大厦(框筒),芝加哥JohnHancock大厦(桁架筒),北京中国国际贸易大厦(筒中筒)];框架核心筒结构(如广州中信大厦);板柱-剪力墙结构。
钢结构房屋建筑的抗侧力体系有:框架结构(如北京的长富宫);框架-支撑(抗震墙板)结构(如京广中心主楼);筒体结构[芝加哥西尔斯大厦(束筒)];巨型结构(如香港中银大厦)。
2.2框架结构、剪力墙结构和框架----剪力墙结构在侧向力作用下的水平位移曲线各有什么特点?答:(1)框架结构在侧向力作用下,其侧移由两部分组成:梁和柱的弯曲变形产生的侧移,侧移曲线呈剪切型,自下而上层间位移减小;柱的轴向变形产生的侧移,侧移曲线为弯曲型,自下而上层间位移增大。
第一部分是主要的,所以框架在侧向力作用下的水平位移曲线以剪切型为主。
(2)剪力墙结构在侧向力作用下,其水平位移曲线呈弯曲型,即层间位移由下至上逐渐增大。
(3)框架-剪力墙在侧向力作用下,其水平位移曲线呈弯剪型,层间位移上下趋于均匀。
2.3框架结构和框筒结构的结构构件平面布置有什么区别?答:(1)框架结构是平面结构,主要由与水平力方向平行的框架抵抗层剪力及倾覆力矩,必须在两个正交的主轴方向设置框架,以抵抗各个方向的侧向力。
抗震设计的框架结构不宜采用单跨框架。
框筒结是由密柱深梁组成的空间结构,沿四周布置的框架都参与抵抗水平力,框筒结构的四榀框架位于建筑物的周边,形成抗侧、抗扭刚度及承载力都很大的外筒。
2.5中心支撑钢框架和偏心支撑钢框架的支撑斜杆是如何布置的?偏心支撑钢框架有哪些类型?为什么偏心支撑钢框架的抗震性能比中心支撑框架好?答:中心支撑框架的支撑斜杆的轴线交汇于框架梁柱轴线的交点。
卓越周期目录定义卓越周期分级几种周期及相关概念场地卓越周期、特征周期对建筑物的影响定义predominant period 地震时,从震源发出的地震波在土层中传播时,经过不同性质地质界面的多次反射,将出现不同周期的地震波。
若某一周期的地震波与地基土层固有周期相近,由于共振的作用,这种地震波的振幅将得到放大,此周期称为卓越周期。
由多层土组成的厚度很大的沉积层,当深部传来的剪切波通过它向地面传播时就会发生多次反射,由于波的叠加而增强,使长周期的波尤为卓越。
卓越周期的实质是波的共振,即当地震波的振动周期与地表岩土体的自振周期相同时,由于共振作用而使地表振动加强。
巨厚冲积层上低加速度的远震,可以使自振周期较长的高层建筑物遭受破坏的主要原因就是共振。
卓越周期分级卓越周期按地震记录统计得到,地基土随软硬程度的不同有不同的卓越周期,可划分为四级:一级——稳定基岩,卓越周期是0.1-0.2s,平均为0.15s。
二级——一般土层,卓越周期为0.21-0.4s,平均为0.27s。
三级为松软土层,卓越周期在二级和四级之间。
四级——为异常松软的土层,卓越周期为0.3-0.7s,平均为0.5s.几种周期及相关概念自振周期T:结构按某一振型完成一次自由振动所需的时间,是结构本身的动力特性,仅与结构的质量m、刚度系数k有关。
基本周期T1:是指结构按基本振型完成一次自由振动所需的时间。
基本振型:单质点体系在谐波的作用下的振型称为基本振型:任一地震波都可以分解为若干谐波的叠加,多质点体系按振型分解法计算地震作用时,可以简化为具有基本振型的等效单质点体系进行分析。
而对建筑结构而言,有时又称为主振型,一般是指每个主轴方向以平动为主的第一振型。
高阶振型:相对于低阶振型而言。
一般来说,低阶振型对结构振动的影响要大于高阶振型的影响。
对一般较规则的建筑物,选择的振型个数可以取其地震作用计算时的质点数(大多数情况下为楼层数),若质点数较多时,根据计算结果可以只取前几个振型(即低阶振型)进行叠加。
地震发生时,由震源发出的地震波传至地表岩土体,迫使其振动,由于表层岩土体对不同周期的地震波有选择放大作用,某种岩土体总是以某种周期的波选择放大得尤为明显而突出,使地震记录图上的这种波记录得多而好。
这种周期即为该岩土体的特征周期,也叫做卓越周期。
由多层土组成的厚度很大的沉积层,当深部传来的剪切波通过它向地面传播时就会发生多次反射,由于波的叠加而增强,使长周期的波尤为卓越。
卓越周期的实质是波的共振,即当地震波的振动周期与地表岩土体的自振周期相同时,由于共振作用而使地表振动加强。
巨厚冲积层上低加速度的远震,可以使自振周期较长的高层建筑物遭受破坏的主要原因就是共振。
2. 几种周期及相关概念自振周期T:结构按某一振型完成一次自由振动所需的时间,是结构本身的动力特性,与结构的高度H、宽度B有关。
基本周期T1:是指结构按基本振型完成一次自由振动所需的时间。
基本振型:单质点体系在谐波的作用下的振型称为基本振型:任一地震波都可以分解为若干谐波的叠加,多质点体系按振型分解法计算地震作用时,可以简化为具有基本振型的等效单质点体系进行分析。
而对建筑结构而言,有时又称为主振型,一般是指每个主轴方向以平动为主的第一振型。
高阶振型:相对于低阶振型而言。
一般来说,低阶振型对结构振动的影响要大于高阶振型的影响。
对一般较规则的建筑物,选择的振型个数可以取其地震作用计算时的质点数(大多数情况下为楼层数),若质点数较多时,根据计算结果可以只取前几个振型(即低阶振型)进行叠加。
特征周期Tg:即建筑场地自身的周期,是建筑物场地的地震动参数,在地震影响系数曲线中,水平段与下降段交点的横坐标,反映了地震震级,震源机制(包括震源深度)、震中距等地震本身方面的影响,同时也反映了场地的特性;如软弱土层的厚度,类型等场地类别等。
在抗震设计规范中,设计特征周期Tg与场地类别有关:场地类别越高(场地越软),Tg越大;地震震级越大、震中距离越远,Tg越大。
一、基本周期、结构自振周期与设计特征周期、场地卓越周期结构基本周期、结构自振周期与设计特征周期、场地卓越周期之间的区别和联系。
自振周期是结构按某一振型完成一次自由振动所需的时间;基本周期是指结构按基本振型完成一次自由振动所需的时间;设计特征周期是在抗震设计用的地震影响系数曲线中,反映地震震级、震中距和场地类别等因素的下降段起始点对应的周期值;场地卓越周期是根据覆盖层厚度H和土层剪切波速VS按公式T0=4H/VS计算的周期,表示场地土最主要的振动特性。
结构在地震作用下的反应与建筑物的动力特性密切相关,建筑物的自振周期是主要的动力特征,与结构的质量和刚度相关。
经验表明,当建筑物的自振周期与场地的卓越周期相等或接近时,建筑物的震害较为严重。
基本周期应该取决于建筑物的结构形式,各种结构形式都是定数。
结构自振周期是结构在水平作用下的震动周期,是变数。
结构的基本周期可采用结构力学方法计算,对于比较规则的结构,也可以采用近似方法计算:框架结构 T=(0.08-0.10)N框剪结构、框筒结构 T=(0.06-0.08)N剪力墙结构、筒中筒结构 T=(0.05-0.06)N其中N为结构层数。
也可采用结构分析得到的结构第1平动周期。
在抗震设计时,要注意将结构基本周期避开场地特征周期。
二、什么是轴压比轴压比:主要为控制结构的延性,规范对墙肢和柱均有相应限值要求,见抗规6.3.7和6.4.6。
u=N/A*fc,u—轴压比,对非抗震地区,u=0.9N—柱轴力设计值A—柱截面面积fc—砼抗压强度设计值三、什么是周期比?剪重比?位移比?楼层最小剪力系数?新的建筑结构设计规范在结构可靠度、设计计算、配筋构造方面均有重大更新和补充,特别是对抗震及结构的整体性,规则性作出了更高的要求,使结构设计不可能一次完成。
如何正确运用设计软件进行结构设计计算,以满足新规范的要求,是每个设计人员都非常关心的问题。
以SATWE软件为例,进行结构设计计算步骤的讨论,对一个典型工程而言,使用结构软件进行结构计算分四步较为科学。
predominant period 地震时,从震源发出的地震波在土层中传播时,经过不同性质地质界面的多次反射,将出现不同周期的地震波。
若某一周期的地震波与地基土层固有周期相近,由于共振的作用,这种地震波的振幅将得到放大,此周期称为卓越周期。
由多层土组成的厚度很大的沉积层,当深部传来的剪切波通过它向地面传播时就会发生多次反射,由于波的叠加而增强,使长周期的波尤为卓越。
卓越周期的实质是波的共振,即当地震波的振动周期与地表岩土体的自振周期相同时,由于共振作用而使地表振动加强。
巨厚冲积层上低加速度的远震,可以使自振周期较长的高层建筑物遭受破坏的主要原因就是共振。
卓越周期按地震记录统计得到,地基土随软硬程度的不同有不同的卓越周期,可划分为四级:一级——稳定基岩,卓越周期是0.1-0.2s,平均为0.15s。
二级——一般土层,卓越周期为0.21-0.4s,平均为0.27s。
三级为松软土层,卓越周期在二级和四级之间。
四级——为异常松软的土层,卓越周期为0.3-0.7s,平均为0.5s.自振周期T:结构按某一振型完成一次自由振动所需的时间,是结构本身的动力特性,与结构的高度H、宽度B有关。
基本周期T1:是指结构按基本振型完成一次自由振动所需的时间。
基本振型:单质点体系在谐波的作用下的振型称为基本振型:任一地震波都可以分解为若干谐波的叠加,多质点体系按振型分解法计算地震作用时,可以简化为具有基本振型的等效单质点体系进行分析。
而对建筑结构而言,有时又称为主振型,一般是指每个主轴方向以平动为主的第一振型。
高阶振型:相对于低阶振型而言。
一般来说,低阶振型对结构振动的影响要大于高阶振型的影响。
对一般较规则的建筑物,选择的振型个数可以取其地震作用计算时的质点数(大多数情况下为楼层数),若质点数较多时,根据计算结果可以只取前几个振型(即低阶振型)进行叠加。
特征周期Tg:即建筑场地自身的周期,是建筑物场地的地震动参数,在地震影响系数曲线中,水平段与下降段交点的横坐标,反映了地震震级,震源机制(包括震源深度)、震中距等地震本身方面的影响,同时也反映了场地的特性;如软弱土层的厚度,类型等场地类别等。
predominant period 地震时,从震源发出的地震波在土层中传播时,经过不同性质地质界面的多次反射,将出现不同周期的地震波。
若某一周期的地震波与地基土层固有周期相近,由于共振的作用,这种地震波的振幅将得到放大,此周期称为卓越周期。
由多层土组成的厚度很大的沉积层,当深部传来的剪切波通过它向地面传播时就会发生多次反射,由于波的叠加而增强,使长周期的波尤为卓越。
卓越周期的实质是波的共振,即当地震波的振动周期与地表岩土体的自振周期相同时,由于共振作用而使地表振动加强。
巨厚冲积层上低加速度的远震,可以使自振周期较长的高层建筑物遭受破坏的主要原因就是共振。
卓越周期分级卓越周期按地震记录统计得到,地基土随软硬程度的不同有不同的卓越周期,可划分为四级:一级--稳定基岩,卓越周期是0.1-0.2s,平均为0.15s。
二级--一般土层,卓越周期为0.21-0.4s,平均为0.27s。
三级为松软土层,卓越周期在二级和四级之间。
四级--为异常松软的土层,卓越周期为0.3-0.7s,平均为0.5s.几种周期及相关概念自振周期T:结构按某一振型完成一次自由振动所需的时间,是结构本身的动力特性,与结构的高度H、宽度B有关。
基本周期T1:是指结构按基本振型完成一次自由振动所需的时间。
基本振型:单质点体系在谐波的作用下的振型称为基本振型:任一地震波都可以分解为若干谐波的叠加,多质点体系按振型分解法计算地震作用时,可以简化为具有基本振型的等效单质点体系进行分析。
而对建筑结构而言,有时又称为主振型,一般是指每个主轴方向以平动为主的第一振型。
高阶振型:相对于低阶振型而言。
一般来说,低阶振型对结构振动的影响要大于高阶振型的影响。
对一般较规则的建筑物,选择的振型个数可以取其地震作用计算时的质点数(大多数情况下为楼层数),若质点数较多时,根据计算结果可以只取前几个振型(即低阶振型)进行叠加。
特征周期Tg:即建筑场地自身的周期,是建筑物场地的地震动参数,在地震影响系数曲线中,水平段与下降段交点的横坐标,反映了地震震级,震源机制(包括震源深度)、震中距等地震本身方面的影响,同时也反映了场地的特性;如软弱土层的厚度,类型等场地类别等。
特征周期
特征周期是指在某个系统或现象中出现的重复发生的一种规律性。
通过观察与
分析特征周期,我们可以更好地了解系统运行的规律,预测未来发展趋势,以及制定相应的应对措施。
特征周期的定义
特征周期是指在一段时间内重复出现的特征或现象,这种周期性的出现可能是
由系统内在的机制、外部影响或者其他因素所导致的。
在自然界和人类社会中,特征周期无处不在,比如天文现象中的日月相、季节变化、经济周期、生物钟等。
特征周期的出现通常可以被量化和分析,通过统计学方法可以找到周期性的规律,从而预测未来的发展趋势。
在金融、生物学、社会学等领域,特征周期的研究具有重要的意义。
特征周期的分类
特征周期可以根据周期的长度、频率和影响因素等进行分类。
按照周期的长度
可以分为短期周期、中期周期和长期周期;按照频率可以分为高频周期、中频周期和低频周期;按照影响因素可以分为内在周期、外部周期和混合周期等。
不同类型的特征周期在不同的系统中会表现出不同的规律性,需要通过具体的
分析方法和工具进行研究。
特征周期的应用
特征周期的研究对于系统分析和预测具有重要的应用意义。
在金融领域,利用
股市交易数据的特征周期可以制定交易策略,降低风险,获取收益;在气象学中,通过对气候特征周期的研究可以更准确地预测天气变化,提前制定防灾减灾措施;在生物学领域,研究生物钟的特征周期有助于优化作物种植和饲养管理等农业活动。
总之,特征周期的研究不仅有助于我们更深入地了解系统和现象的运行规律,
还可以为我们的决策和行动提供重要参考。
通过对特征周期的深入研究和分析,我们可以更好地应对未来的挑战,实现系统的稳定和可持续发展。
结构自振周期是结构自由振动的周期;
结构基本周期是结构自振周期中最长(数值最大)的那个;
场地卓越周期是场地自振周期中最容易被(地震)激励起的周期;
场地特征周期(设计特征周期)是设计地震反应谱曲线上平台段结束(最右端)的同期值.
产生了疑问:场地卓越周期和场地特征周期有关系吗?
知道一个不相干的,地震动的卓越周期:再振幅谱幅值最大的频率分量所对应的周期,在地震波通过覆盖土层传向地表的过程中,由于土层的过滤性与选择放大作用,地表地震动的卓越周期在很大程度上取决于场地的固有周期。
各条地震波的特征周期很难确定,规范反应谱上的特征周期是根据若干条平均后再进行削平处理而得到的拐点。
对地震波进行傅立叶变换,得到其傅立叶谱,观察其地震波峰值对应的周期,此周期便是地震波的特征周期。
可以在ansys,sap等程序中轻松实现。
傅立叶谱幅值最大点对应的周期为地震动的卓越周期,不是特征周期!特征周期是抗震规范中用到的概念,目的是确定规范谱的形状。
它描述了结构所处的地震环境。
实际上,规范谱不应看作真实的地震反应谱,这一点在其他帖子中已有论述。
我个人的观点,规范是结构抗震理论应用方法的体现,如果研究抗震理论,似乎不应以抗震规范为准绳。
因为规范是为使用者提供的标准,它必须为了工程的安全性和经济性做出一些折中,并不是完全意义上的理论或技术方法。
1、卓越周期是老早以前的提法,原意指的是引起建筑场地振动最显著的某条或某类地震波的一个谐波分量的周期,该周期与场地覆土厚度及土的剪切波速有关。
对同一个场地而言,不同类型的地震波会得出不同的卓越周期,因此概念上存在矛盾。
现在地震工程界已彻底摒弃这种提法;
2、场地与场地土是两个完全不同的概念,你所说的应是场地;
3、现在确定地震影响系数用的是场地特征周期。
即首先根据场地覆土厚度及土的剪切波速确定建筑物的场地类别,并据此查表得场地特征周期,最后有设计地震分组和场地特征周期确定抗震设计所用的地震影响系数。
在结构布置时应使结构结构的第一自振周期避开场地的卓越周期,
以免场地、地基与结构形成共振或类共振”
卓越周期是通过地震波频率分析得到的所占能量最大的周期成分.
特征周期另外又考虑了近震远震的影响(老抗规),新抗震规范用设计地震分组来考虑震级和震中距的影响.
特征周期的概念早已有之,同样卓越周期的概念依然存在;二者数值上很相近,从抗震角度当然结构自振周期避开特征周期和卓越周期为好,从地震影响系数曲线也可清楚看到其中的关系.
关于卓越周期的说法,我是以前听一个教授说的,他的原话是:“大家以后不要再提场地卓越周期这个说法,这个概念本身有问题......"
而他本人是建筑抗震规范编写组的成员。
可以肯定的是,现在新的的抗震规范及有关的背景材料都不再用”卓越周期“的概念,而且近几年公开发表的有关地震工程的论文都不再提“卓越周期”。
我个人认为,现在的“场地特征周期”或许与原来的“卓越周期”有某种概念上的联系,但它们在意义上可能已经完全不同了。
卓越周期是老早以前的提法,原意指的是引起建筑场地振动最显著的某条或某类地震波的一个谐波分量的周期,该周期与场地覆土厚度及土的剪切波速有关。
对同一个场地而言,不同类型的地震波会得出不同的卓越周期,因此概念上存现在确定地震影响系数用的是场地特征周期。
即首先根据场地覆土厚度及土的剪切波速确定建筑物的场地类别,并据此查表得场地特征周期,最后由设计地震分组和场地特征周期确定抗震设计所用的地震影响系数。
地震波在地表土层传播时,由于不同性质界面反射的结果,某个周期的地震波强度被增强,也即土层对这些地震波起到放大作用,这种波的周期称为该土层的卓越周期。
场地卓越周期:地震波在某场地土中传播时,由于不同性质界面多次反射的结果,某一周期的地震波强度得到增强,而其余周期的地震波则被削弱。
这一被加强的地震波的周期称为该场地土的卓越周期。
结构自振周期:自振周期是结构的动力特性之一。
单质点体系在谐波的作用下,都会按一定形状作同频率同相位的简谐运动,其相应的周期就称为自振周期。
当建筑物的自振周期与场地土卓越周期接近时,其地震反应就大,反之则小。
设计特征周期Tg:抗震设计用的地震影响系数曲线中,反映地震震级、震中距和场地类别等因素的下降段起始点对应的周期值,应根据其所在地的设计地震分组和场地类别确定。
当结构的自振周期超过设计特征周期时,地震作用就会随其自振周期的增大而减小。
当结构的自振周期小于0.1s时,地震作用会随其自振周期的增大而急剧增大。
实际的建筑结构的自振周期大都会大于设计特征周期,但一般不大于6.0s。
基本振型:单质点体系在谐波的作用下的振型称为基本振型。
任一地震波都可以分解为若干谐波的叠加,多质点体系按振型分解法计算地震作用时,可以简化为具有基本振型的等效单质点体系进行分析。
而对建筑结构而言,有时又称为主振型,一般是指每个主轴方向以平动为主的第一振型。
高阶振型:相对于低阶振型而言。
一般来说,低阶振型对结构振动的影响要大于高阶振型的影响。
对一般较规则的建筑物,选择的振型个数可以取其地震作用计算时的质点数(大多数情况下为楼层数),若质点数较多时,根据计算结果可以只取前几个振型(即低阶振型)进行叠加。
场地卓越周期——根据场地覆盖层厚度H和土层平均剪切波速`V_s`,按公式T = 4H/`V_s`计算的周期,表示场地土最主要的振动特性。
地基基本周期——地基整体本身固有的震动特性,可根据经验公式或数值模拟求得。
两个周期之间存在最优比值T=3Tg×β。
当地基与场地频率满足最优比值时,基础的抗震性能最佳,它可以作为抗震概念设计中的参考准则。