轴心受压偏心受压计算
- 格式:xls
- 大小:110.50 KB
- 文档页数:1
轴心受压构件承载力计算一、偏心受压构件破坏特征偏心受压构件在承受轴向力N和弯矩M的共同作用时,等效于承受一个偏心距为e0=M/N的偏心力N的作用,当弯矩M相对较小时,e0就很小,构件接近于轴心受压,相反当N相对较小时,e0就很大,构件接近于受弯,因此,随着e0的改变,偏心受压构件的受力性能和破坏形态介于轴心受压和受弯之间。
按照轴向力的偏心距和配筋情况的不同,偏心受压构件的破坏可分为受拉破坏和受压破坏两种情况。
1.受拉破坏当轴向压力偏心距e0较大,且受拉钢筋配置不太多时,构件发生受拉破坏。
在这种情况下,构件受轴向压力N后,离N较远一侧的截面受拉,另一侧截面受压。
当N增加到一定程度,首先在受拉区出现横向裂缝,随着荷载的增加,裂缝不断发展和加宽,裂缝截面处的拉力全部由钢筋承担。
荷载继续加大,受拉钢筋首先达到屈服,并形成一条明显的主裂缝,随后主裂缝明显加宽并向受压一侧延伸,受压区高度迅速减小。
最后,受压区边缘出现纵向裂缝,受压区混凝土被压碎而导致构件破坏(图4.3.1)。
此时,受压钢筋一般也能屈服。
由于受拉破坏通常在轴向压力偏心距e0较大发生,故习惯上也称为大偏心受压破坏。
受拉破坏有明显预兆,属于延性破坏。
2.受压破坏当构件的轴向压力的偏心距e0较小,或偏心距e0虽然较大但配置的受拉钢筋过多时,就发生这种类型的破坏。
加荷后整个截面全部受压或大部份受压,靠近轴向压力一侧的混凝土压应力较高,远离轴向压力一侧压应力较小甚至受拉。
随着荷载逐渐增加,靠近轴一侧混凝土出现纵向裂缝,进而混凝土达到极限应变εcu被压碎,受压钢筋的应力也达到f y′,远离一侧的钢筋可能受压,也可能受拉,但因本身截面应力太小,或因配筋过多,都达不到屈服强度(图4.3.2)。
由于受压破坏通常在轴向压力偏心距e0较小时发生,故习惯上也称为小偏心受压破坏。
受压破坏无明显预兆,属脆性破坏。
?3.受拉破坏与受压破坏的界限综上可知,受拉破坏和受压破坏都属于“材料破坏”。
说明:1、本表根据《桥梁混凝土结构设计原理计算示例》(2006)编写。
2、本表用于已知截面、配筋及设计轴力求极限弯矩。
3、本表仅用配普通通钢时矩形截面偏心受压计算。
4、计算时,点击“开始计算”按钮,该按钮用于逼近法求偏心矩增大系数。
5、中间结果右侧的黄色区域可以强制修改对应值,以用于特殊计算或与其它程序对比计算,正常计算时注意对该区域(Q列)清空。
6、当混凝土强度等级高于C50或钢筋为不为HRB335时,请注意修界限受压区高度值,见桥规P25,表5.2.1。
7、本计算假定箍筋足够,不发生剪切破坏。
8、设计轴力(J5)在裂缝计算和承载力计算注意区分。
无条件输入翼板有效宽度bf'(m): 1.3翼板厚度hf'(m):0.1腹板宽b(m):0.225梁高h(m):0.5第一层受拉钢筋直径(mm):22第一层受拉钢筋根数:5第一层受拉钢筋到结构受拉边缘的距离a s1(m):0.07混凝土强度等级C:30第一层受压钢筋直径(mm):28第一层受压钢筋根数:0第一层受压钢筋到结构受压边缘的距离a s1'(m):0.05设计弯矩Md(kN):150#REF!#REF!2006)编写。
钮用于逼近法求偏心矩增大系数。
对应值,以用于特殊计算或与其它程序对比计算,为HRB335时,请注意修界限受压区高度值,见桥规P25,表5.2.1。
第一排受拉钢筋面积(m2):0.0019005第二排受拉钢筋面积(m2):0第三排受拉钢筋面积(m2):0总受拉钢筋面积(m2):0.0019005受拉钢筋到结构受拉边缘的距离as(m):0.07第一排受压钢筋面积(m2):0第二排受压钢筋面积(m2):0第三排受压钢筋面积(m2):0总受压钢筋面积(m2):0受压钢筋到结构受拉边缘的距离as'(m):#REF!混凝土抗压设计强度fcd(MPa):#REF!混凝土相对受压高度x(m):#REF!有效高度h0(m):#REF!M du3(kN):#REF!。
非对称配筋矩形截面偏心受压构件正截面承载力设计与复核1大小偏心的判别当e < h o时,属于小偏心受压。
时,可暂先按大偏心受压计算,若b,再改用小偏心受压计算2、大偏心受压正截面承载力设计1).求A s和A,令b,(HRB33歐,b 0.55; HRB40C级,b 0.52)2Ne i f c bh o b(1 0.5 b)A s REf y(h o a)(混规,f y2).求A sA s A si A s2 A S3(0)若 b 按照大偏心(1)若 b cy 2 i bA ;Ne i f c bh o2 (1 /2)f y(h o a )i f c bh o b NA s 主A s f y适用条件: A s/bh > min,且不小于f t / f y ;A;/ bh > min 0如果 x<2a/,A s N(e h/2 a') f y (h o a/)适用条件:A;/ bh > min,且不小于f t/f y ;A;/bh > min 0 3、小偏心受压正截面承载力设计如果s QA s min bh 再重新求,再计算A s(2)若 h/ h oNe i f c bh(h 。
h )2f y (h o a)然后计算和A sN(h/2 e Q e a a 7)1 f cbh(h/2 a 7) f y (h o a )情况(2)和(3)验算反向破坏。
4、偏心受压正截面承载力复核1).已知N ,求M 或仓。
先根据大偏心受压计算出X : (1)如果 x 2a / ,⑵ 如果2a / x b h 。
,由大偏心受压求e ,再求e 0 ⑶若 b ,可由小偏心受压计算 。
再求e 、e o2).已知e o ,求N 先根据大偏心受压计算出x (1) 如果 X 2a /,(2) 若2a / x b h o ,由大偏心受压求N 。
(3) 若x> b h o ,可由小偏心受压求N 。
二、组合砖砌体构件计算(一)砖砌体和钢筋混凝土面层或钢筋砂浆面层的组合砌体构件1.适用范围若无筋砖砌体受压构件的截面尺寸受到限制,或设计不经济,以及当轴向力偏心距e >0.6y(y为截面重心到轴向力所在偏心方向截面边缘的距离)时,宜采用砖砌体和钢筋混凝土面层或钢筋砂浆面层组成的组合砖砌体构件。
对于砖墙与组合砌体一同砌筑的T形截面,可按矩形截面组合砌体构件计算。
但构件的高厚比β仍按T形截面考虑,截面翼缘宽度亦按规定选用。
2.构造要求组合砖砌体是由砌体和面层混凝土(或面层砂浆)两种材料组成,故应保证它们之间有良好的整体性和共同工作能力。
(1)面层混凝土强度等级宜采用C20。
为了防止钢筋锈蚀,保证钢筋和砂浆面层与砖砌体之间有足够的粘结强度,面层水泥砂浆强度等级不宜低于M10。
砌筑砂浆的强度等级不宜低于M7.5。
(2)竖向受力钢筋的混凝土保护层厚度,不应小于表16-3-2中的规定。
竖向受力钢筋距砖砌体表面的距离,不应小于5rnm。
构件类别环境条件室内正常环境露天或室内潮湿环境墙15 25柱25 35(3)砂浆面层的厚度,如果太薄将不满足保护层厚度等构造要求,太厚则施工困难,结硬时砂浆易开裂,不能保证粘结质量。
砂浆面层的厚度,可采用30~45mm,当面层厚度大于45mm时,其面层宜采用混凝土。
(4)竖向受力钢筋宜采用HPB235级钢筋,对于混凝土面层,亦可采用HRB335级钢筋。
受压钢筋一侧的配筋率,对砂浆面层,不宜小于0.1%,对混凝土面层,不宜小于0.2%;受拉钢筋的配筋率,不应小于0.1%,其目的是增大组合砖砌体的承载力及延性等。
竖向受力钢筋的直径不应小于8mm,钢筋的净间距,不应小于30mm。
(5)箍筋的直径,不宜小于4mm及0.2倍的受压钢筋直径,并不宜大于6mm箍筋的间距不应大于20d(d为受压钢筋的直径)及500mm,并不应小于120mm。
(6)当组合砖砌体构件一侧的竖向受力钢筋多于4根时,应设置附加箍筋或拉结钢筋。
轴心受压
混凝土标号C20混凝土强度设计值(N/mm)fc=10.00N/mm2轴力N900Kn
柱长度l4550.00mm计算长度l04550截面宽度b300mm截面高度h300mm l0/b15.17查表得稳定系数ψ0.89结构系数 1.2
钢筋等级Ⅱ钢筋受压强度设计值(N/mm)fy=310N/mm2受压钢筋面积A`s1011.235955配筋率ρ`0.011235955
偏心受压(对称配筋)
混凝土标号C20混凝土强度设计值(N/mm)fc=10.00N/mm2轴力N480Kn弯矩(kn.m)240Kn.m 截面应变影响系数ζ1 1.000构建长细影响系数ζ2 1.000增大系数η 1.111
实际偏心距e0500.00mm修正偏心距e765.53mm 柱长度l6500.00mm计算长度l06500截面宽度b400mm截面高度h500mm 钢筋保护层厚度a=a`=40mm有效高度h0460mm 结构系数 1.2
钢筋等级Ⅱ钢筋受压强度设计值(N/mm)fy=f`y=310N/mm2
先假定为大偏心
ξ0.313临界相对受压区高度ξb=0.544
为大偏心
如果是大偏心
受压区高度x1442a`80
钢筋面积A`s1670.17配筋率ρ`0.016701725
如果是小偏心
重新计算ξ0.367
钢筋面积A`s1439.37配筋率ρ`0.014393683。