线性代数第一章矩阵的基本概念 - 副本
- 格式:ppt
- 大小:1.48 MB
- 文档页数:2
第一章 矩阵矩阵的概念:n m A *(零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵) 矩阵的运算:加法(同型矩阵)---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==(一般AB=BA ,不满足消去律;由AB=0,不能得A=0或B=0) 转置:A A T T =)( TT T B A B A +=+)( T T kA kA =)( TT T A B AB =)( 方幂:2121k k k kA AA += 2121)(k k k k A A +=逆矩阵:设A 是N 阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的, 且B A=-1矩阵的逆矩阵满足的运算律:1、可逆矩阵A 的逆矩阵也是可逆的,且A A =--11)(2、可逆矩阵A 的数乘矩阵kA 也是可逆的,且111)(--=A kkA 3、可逆矩阵A 的转置TA 也是可逆的,且T T A A )()(11--=4、两个可逆矩阵A 与B 的乘积AB 也是可逆的,且111)(---=A B AB ,但是两个可逆矩阵A 与B 的和A+B 不一定可逆,即使可逆,但11)(--+≠+B A B A 。
A 为N 阶方阵,若|A|=0,则称A 为奇异矩阵,否则为非奇异矩阵。
5、若A 可逆,则11--=A A逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆; ③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的。
分块矩阵:加法,数乘,乘法都类似普通矩阵转置:每块转置并且每个子块也要转置注:把分出来的小块矩阵看成是元素初等变换:1、交换两行(列)2.、非零k 乘某一行(列)3、将某行(列)的K 倍加到另一行(列) 初等变换不改变矩阵的可逆性,初等矩阵都可逆 初等矩阵:单位矩阵经过一次初等变换得到的矩阵等价标准形矩阵⎪⎪⎭⎫⎝⎛=O O O I D r r第二章 行列式N 阶行列式的值:行列式中所有不同行、不同列的n 个元素的乘积的和n nn nj j j j j j j j j nij a a a a ...)1(21212121)..(∑-=τ行列式的性质:①行列式行列互换,其值不变。
线性代数中的矩阵:概念与基本性质矩阵是线性代数中最基本、也是最常用的概念之一。
它是由若干个按照规定大小和次序排列的数构成的矩形阵列,常用大写字母表示。
下面将介绍矩阵的概念与基本性质。
一、矩阵的定义设有m行n列的数a_ij排成一个m×n的矩形阵列,则称这个m×n的阵列为一个矩阵,记作A=(a_ij),其中1≤i≤m,1≤j≤n。
在矩阵A中,a_ij称为矩阵A的第i行第j列的元素,第i行的元素排列在一起,构成了矩阵A的第i行,第j列的元素排列在一起,构成了矩阵A的第j列。
二、矩阵的基本性质1、矩阵的加法设矩阵A=(a_ij)与B=(b_ij)的大小及相对应的元素都相同,则A 与B的和C=A+B的元素c_ij=a_ij+b_ij,1≤i≤m,1≤j≤n。
矩阵加法具有结合律、交换律和分配律。
2、矩阵的数乘设k是一个数,矩阵A=(a_ij),则kA的元素为(k·a_ij),1≤i≤m,1≤j≤n。
矩阵数乘同样具有分配律和结合律。
3、矩阵的乘法设矩阵A=(a_ij)的大小为m×p,矩阵B=(b_ij)的大小为p×n,矩阵C=(c_ij)的大小为m×n,则称C=AB,如果c_ij=a_i1b_1j+a_i2b_2j+…+a_ipb_pj,1≤i≤m,1≤j≤n。
在矩阵C中,第i行第j列的元素c_ij是矩阵A的第i行的元素和矩阵B的第j列的元素的乘积和。
矩阵乘法不具有交换律。
4、矩阵的转置设矩阵A=(a_ij)的大小为m×n,则称A的转置矩阵为A^T=(b_ij),大小为n×m,其中b_ij=a_ji。
矩阵的转置具有分配律和结合律。
5、矩阵的逆设方阵A的大小为n×n,如果存在一个n×n的方阵B,使得AB=BA=E,其中E是n阶单位矩阵,那么称矩阵A是可逆的。
矩阵B称为矩阵A的逆矩阵,记作A^(-1)。
如果矩阵A是可逆的,则其逆矩阵唯一。
大一线性代数矩阵知识点在大一的学习中,线性代数是一门基础而重要的数学课程。
其中,矩阵是线性代数的核心概念之一。
本文将介绍大一线性代数中的矩阵知识点,包括矩阵的基本概念、运算规则以及特殊类型的矩阵。
一、矩阵的基本概念矩阵是由数个数按照一定顺序排列成的矩形阵列。
矩阵的行数和列数分别构成矩阵的维数。
一个m × n的矩阵有m行n列,通常用A、B、C等大写字母表示矩阵。
二、矩阵的运算规则1. 矩阵加法矩阵加法是指将两个行列相等的矩阵按照相同位置的元素进行相加。
若A与B是同维数的矩阵,则它们的和A + B的第i行第j列元素是A和B的对应元素之和。
2. 矩阵数乘矩阵数乘是指将一个矩阵的每个元素都乘以一个常数。
若A是一个m ×n的矩阵,k是一个常数,则kA是一个同维数的矩阵,它的第i行第j列元素等于k乘以A的第i行第j列元素。
3. 矩阵乘法矩阵乘法是指将一个m × n的矩阵A与一个n × p的矩阵B相乘得到一个m × p的矩阵C。
其中,C的第i行第j列元素等于A的第i行与B的第j列对应元素的乘积之和。
三、特殊类型的矩阵1. 零矩阵零矩阵是指所有元素都为0的矩阵。
零矩阵通常表示为O。
2. 单位矩阵单位矩阵是指主对角线上的元素都为1,其余元素都为0的矩阵。
单位矩阵通常表示为I,它是一个方阵。
3. 对称矩阵对称矩阵是指矩阵的转置等于其本身的矩阵。
即A的转置等于A,通常表示为A^T = A。
4. 逆矩阵对于一个方阵A,若存在一个方阵B,使得AB = BA = I,那么B称为A的逆矩阵,记为A^(-1)。
四、矩阵的应用矩阵在许多领域中有着广泛的应用,例如线性方程组的求解、向量空间的研究、图像处理等。
通过矩阵的运算,我们可以描述、分析和解决各种实际问题。
结语矩阵作为线性代数的核心概念之一,在大一的线性代数课程中扮演着重要的角色。
本文介绍了矩阵的基本概念、运算规则,以及几种特殊类型的矩阵。
线性代数中的矩阵理论及其应用线性代数是近年来非常热门的学科,它广泛应用于物理和工程等领域,包括机器学习、图像和信号处理、网络分析和优化,数学建模等等。
而矩阵理论是线性代数中的重要分支,是许多应用的基础。
本文将介绍矩阵理论的基本概念和应用,以及其中一些重要的定理和算法。
一、矩阵的基本概念在矩阵理论中,矩阵是指一个由m行n列元素组成的矩形阵列,通常用A=[aij]表示,其中i代表行号,j代表列号,aij代表矩阵A中的第i行第j列的元素。
当m=n时,矩阵A称为方阵,元素aij对应于A的第i个行向量和第j个列向量的内积。
对于矩阵A和B,它们的和C=A+B是一个矩阵,其中C的每个元素都等于对应位置上A和B的元素之和。
同样地,矩阵的差和数乘分别为D=A-B和E=kA,其中D的每个元素都等于对应位置上A和B的元素之差,E的每个元素都等于A的对应元素乘以k。
此外,矩阵的转置AT是一个矩阵,其中AT的第i行第j列的元素等于A的第j行第i列的元素。
二、矩阵的应用矩阵理论的应用非常广泛,以下介绍一些常见的应用。
1.线性方程组的求解线性方程组的求解是矩阵理论的基础应用之一。
对于一个n元线性方程组Ax=b,其中A是一个n行n列的矩阵,x和b都是n 维列向量,x的每个元素都代表方程组的一个未知数,b的每个元素都代表方程组的一个常数项。
则方程组的解为x=A-1b,其中A-1是矩阵A的逆矩阵。
若A没有逆矩阵,则方程组无解或有无穷解。
2.特征值和特征向量特征值和特征向量也是矩阵理论中的重要概念之一。
对于一个n阶方阵A,若存在一个非零向量x,以及一个标量λ,使得Ax=λx,则λ是矩阵A的一个特征值,x是对应的特征向量。
特征值和特征向量可以用来描述矩阵的几何特性和运动轨迹,以及在状态空间中的扭曲和伸缩等现象。
3.奇异值分解奇异值分解(SVD)是矩阵理论中的另一个重要概念,可以用来分析矩阵的结构和性质。
对于一个m行n列的矩阵A,它的奇异值分解为A=UΣVT,其中U是一个m行m列的正交矩阵,VT是一个n行n列的正交矩阵,Σ是一个m行n列的矩形对角矩阵。
学习指南《线性代数》是理工科及经济管理各学科专业的一门重要数学基础课程。
它的课程目标是通过各个教学环节,充分利用数学软件工具,运用各种教学手段和方法,系统地向学生阐述矩阵、向量、线性方程组的基本理论与基本方法,使学生掌握线性代数的基本概念、基本原理与基本计算方法,理解具体与抽象、特殊与一般、有限与无限等辨证关系,培养学生逻辑思维能力、抽象思维能力、分析问题与解决问题的能力、运用计算机解决与线性代数相关的实际问题的能力,为学习后继课程的学习,从事工程技术、经济管理工作,科学研究以及开拓新技术领域打下坚实的基础 。
第一章 矩阵矩阵是研究线性方程组和其他相关问题的有力工具,也是线性代数的主要研究对象之一。
矩阵作为一种抽象数学结构的具体表现,其理论与方法在自然科学、工程技术、经济管理、社会领域都具有广泛的应用。
本章从实际问题出发,引出矩阵的概念,讨论矩阵的运算及其性质,逆矩阵及其求法,矩阵的分块,矩阵的初等变换与初等矩阵的概念与性质。
重点是矩阵的运算,特别是矩阵的乘法运算,逆矩阵及其性质,初等变换、初等矩阵的概念与性质,用初等变换化矩阵为阶梯形与最简形,用初等变换和定义法求逆矩阵的方法。
1. 矩阵是初学线性代数认识的第一个概念。
矩阵不仅是线性代数主要讨论的对象之一,而且是非常重要的数学工具,它的理论和方法贯穿于本课程始终。
本章的重点之一是矩阵的各种运算,其中又以矩阵的乘法最为重要,它也是难点之一。
两个矩阵的乘积是有条件的,不是任何两个矩阵都能相乘的。
AB 有意义,必须是A 的列数等于B 的行数,而积矩阵AB 的行数等于A 的行数,列数等于B 的列数。
积矩阵AB 的第i 行第j 列元素等于左矩阵A 的第i 行与右矩阵B 的第j 列对应元素乘积之和。
读者务必掌握矩阵乘法的实质。
矩阵的乘法与数的乘法不同。
尤其要注意以下三点:(1)矩阵乘法不满足交换律。
当乘积AB 有意义时,BA 不一定有意义,即使BA 有意义,也不一定有AB BA =。
第一章 矩阵1 矩阵的概念特殊矩阵:行矩阵、列矩阵、对角矩阵、上三角阵、下三角矩阵、单位矩阵、对称矩阵、反对称矩阵。
2 矩阵的运算:(1)矩阵的线性运算及其运算规律-矩阵的加法(减法)和数乘。
(2)矩阵的乘法:能够进行乘法运算必须具备的条件,运算方法,左乘与右乘的区别。
乘法的运算规律(应用较为普遍的是矩阵乘法满足结合律) (3)矩阵的转置:(AB)T =B T A T(4)矩阵的逆:AB=BA=I →A -1=B 矩阵的逆唯一 运算规律: (A -1) -1= A ;(λA) -1= λ-1A -1;(AB) -1=B -1A -1;(A T ) -1=(A -1) T 矩阵逆的计算方法:待定系数法、初等变换法、伴随矩阵法。
3 分块矩阵及其运算第二章 线性方程组与矩阵初等变换 1 线性方程组与矩阵的一一对应关系2 高斯消元法:线性方程组的三种变换→阶梯形方程组。
3 利用矩阵初等变换解线性方程组:三种初等变换→行阶梯形矩阵→行最简形矩阵4 非齐次线性方程组解的三种情形的讨论⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛++++0000000000000000000011,221,2222111,111211r r rn r r rr nr r nr r d d c c c d c c c c d c c c c c(1)无解(2)唯一解(3)无数解 5矩阵等价的概念 6 初等矩阵的概念7 初等矩阵与矩阵初等变换的关系8 逆矩阵定理:设A 是n 阶矩阵,那么下列各命题等价: (1)A 是可逆矩阵;(2)齐次线性方程组Ax =0只有零解; (3)A 可以经过有限次初等行变换化为In ; (4)A 可表示为有限个初等矩阵的乘积。
9 利用矩阵初等变换求矩阵的逆 A 可以经过一系列初等行变换化为I ; I 经过这同一系列初等行变换化为A -1P s …P 2P 1 (A | I n )=(I n |A -1)第三章 行列式1 n 阶行列式的定义(1)全排列及其奇偶性:逆序数的概念,对换,相邻对换。
线性代数中矩阵的基本概念与运算线性代数是数学中的一个分支,其中矩阵的概念和运算是非常基本的。
本文将简单介绍矩阵的基本概念和运算。
矩阵的基本概念矩阵是一个方形或长方形的数表,其中的数被排列在行和列中。
一个矩阵通常用大写字母来表示,如下所示:$$A =\begin{bmatrix}a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\\vdots & \vdots & \ddots & \vdots \\a_{m,1} & a_{m,2} & \cdots & a_{m,n}\end{bmatrix}$$其中 $m$ 表示矩阵的行数,$n$ 表示矩阵的列数,$a_{i,j}$ 表示第 $i$ 行第 $j$ 列的元素。
对于一个 $m \times n$ 的矩阵,我们可以简单地把它看做是$n$ 个列向量的组合,每个列向量是一个 $m$ 维的向量。
也就是说,$A$ 可以被写成如下形式:$$A = [a^{(1)}, a^{(2)}, \cdots, a^{(n)}]$$其中 $a^{(i)}$ 表示矩阵 $A$ 的第 $i$ 列向量。
矩阵的加法和减法两个同规格的矩阵可以进行加法和减法运算。
对于两个 $m\times n$ 的矩阵 $A$ 和 $B$,它们的和可以表示为:$$C = A + B =\begin{bmatrix}a_{1,1}+b_{1,1} & a_{1,2}+b_{1,2} & \cdots & a_{1,n}+b_{1,n} \\a_{2,1}+b_{2,1} & a_{2,2}+b_{2,2} & \cdots & a_{2,n}+b_{2,n} \\\vdots & \vdots & \ddots & \vdots \\a_{m,1}+b_{m,1} & a_{m,2}+b_{m,2} & \cdots &a_{m,n}+b_{m,n}\end{bmatrix}$$同理,它们的差可以表示为:$$D = A - B =\begin{bmatrix}a_{1,1}-b_{1,1} & a_{1,2}-b_{1,2} & \cdots & a_{1,n}-b_{1,n} \\a_{2,1}-b_{2,1} & a_{2,2}-b_{2,2} & \cdots & a_{2,n}-b_{2,n} \\\vdots & \vdots & \ddots & \vdots \\a_{m,1}-b_{m,1} & a_{m,2}-b_{m,2} & \cdots & a_{m,n}-b_{m,n}\end{bmatrix}$$需要注意的是,在进行矩阵加法和减法运算时,这些矩阵必须是同规格的,也就是说它们的行数和列数都必须相等。
线性代数的矩阵理论线性代数是数学中的一个重要分支,涉及向量空间以及在这些空间中的线性变换。
矩阵是线性代数核心的工具之一,其不仅在理论上具有深远的意义,还在计算和应用中起着不可或缺的作用。
本文将探讨矩阵的基本概念、性质、运算以及在实际中的应用。
一、矩阵的基本概念定义矩阵是按照矩形排列的复数或实数集合,用方括号或圆括号表示。
一个 m 行 n 列的矩阵称为 m x n 矩阵。
矩阵元素通常用 a_ij 表示,其中 i 表示行索引,j 表示列索引。
特例矩阵零矩阵:所有元素均为零的矩阵称为零矩阵,记作 O。
单位矩阵:对角线元素为1,其余元素为0的方阵称为单位矩阵,记作 I。
对称矩阵:若 A = A^T(A 的转置),则称 A 为对称矩阵。
逆矩阵:若存在一个 B 使得 AB = I,则 B 称为 A 的逆矩阵,记作 A^(-1)。
二、矩阵的性质加法性质两个同型矩阵相加结果也是同型矩阵,即对于任意的 m x n 矩阵 A 和 B,有 C = A + B 也是 m x n 矩阵。
乘法性质矩阵乘法并不满足交换律,但满足结合律和分配律。
在计算时,如果 A 是 m x n 矩阵,B 是 n x p 矩阵,则 C = AB 是 m x p 矩阵。
转置性质矩阵的转置乘积法则为 (AB)^T = B^T A^T,可以利用这个性质简化计算。
行列式与迹方阵的行列式是标量,拥有判别矩阵可逆性的意义。
迹是方阵对角线元素之和,在多种计算中具有重要作用。
三、矩阵运算加法与减法对于同型矩阵,可以逐元素进行加法或减法。
例如:数乘对任意实数或复数 k,与矩阵 A 的乘积 kA 是新的一组修改后的元素,该运算对每个元素进行扩展。
乘法假设 A 为 m x n 矩阵,B 为 n x p 矩阵,对应元素乘积规则如下:转置与逆转置是一种符号操作,将行列互换。
逆是求解 Ax = b 的重要方法,只有当行列式不为零时才存在。
四、特征值与特征向量定义及求解给定一个方阵 A,若存在标量λ 和非零向量 v,使得 Av = λv,则称λ 为 A 的特征值,而 v 为对应的特征向量。